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Performance assessment of MIMO systems under partial

information
H. Xia* P. Majecki A. Ordys M. Grimble
Abstract— Minimum variance (MV) can characterize the With the information of the magnitude of the time-delay,

most fundamental performance limitation of a system, owing it is relatively easy to estimate the MV benchmark for a
to the existence of time-delays/infinite zeros. It has beenidely SISO system. In the case of MIMO systems, in order to

used as a benchmark to assess the regulatory performance of .
control loops. For a SISO system, this benchmark can be estimate the MV benchmark, we need to construct a new

estimated given the information of the system time delay. In Signal by filtering the system output with the interactor
order to compute the MIMO MV benchmark, the interactor ~ matrix of the system. Although it is possible to estimate the
matrix associated with the plant may be needed. However, the interactor matrices from the closed loop data [3], [6], this
computation of the interactor matrix requires the knowledge makes the computation of the MV benchmark for MIMO

of Markov parameter matrices of the plant, which is rather e . .
demanding for assessment purposes only. In this paper, we systems more difficult. Assuming the order of the interactor

propose an upper bound of the MIMO MV benchmark which ~ matrix is known, a simple interactor of the same order is
can be computed with the knowledge of the interactor matrix proposed as a substitute for the original interactor matrix

order. If the time delays between the inputs and outputs are and prove that the performance index thus computed is an
known, a lower bound of the MIMO MV benchmark can also hner hound. Although the result is suboptimal, the com-
be determined. . . o
putation procedure can be greatly simplified. Furthermore,
. INTRODUCTION a lower bound of the MV benchmark can be computed

The control loop performance benchmarking technique¥hen the.delay.information between inputs and outputs of
have built on ideas used successfully in business bendhie plant is available. These bounds can be used to assess
marking. The aim is to diagnose control loop performancg‘le CPI of the current controller which indicates its cutren
and provide tools to determine: performance level .

1) The best achievable performance which will be The rest of the paper is organized as follows: The deriva-
treated as the performance benchmark tion of the MV benchmark for SISO and MIMO systems

2) The controller performance index (CPI) which is thds briefly introduced in section 2. Then the egtimation of
ratio of the performance benchmark to the actualpe upper/lower bound of the MV benchmark is presented
performance. in sections 3 and 4. Using the FCOR technique introduced

Based onCPl, it can be seen whether there is any oppor'—n [3], we illustrate the results on a simulated example in

tunity to improve the performance of the loop. The Waysectlon 5. The paper is concluded in section 6. Due to space

. : . . %mltatlon, most of the proofs are omitted from the paper. A
in which the loop performance may be improved will be . .
) . . more detailed report can be obtained from the author upon
in the realm of controller design. Controller benchmarklng';

. eguest.
has been an active research area for the recent ten year

[1], [4]. This interest started with the work of Harris II. MV CONTROLLER AND BENCHMARKING

[2]. In his paper, Harris proposed the use of closed-loop | this paper, our major focus is on the system perfor-
data to evaluate and diagnose controller performance Usifghnce in the steady state, and without loss of generality
the output variance under the minimum variance (MV)t js assumed in the following that the reference signal is

controller as a benchmark. set to zero. The only input to the systeinis a zero-mean

The SISO MV benchmark is useful as the absolutgite noise of unity variance. The plant is modeled as:
lower bound on the achievable control performance and

; . R o s —k
is attractive for its simplicity and minimum required in- ye =q "Tus + NG (1)

formation - only the output data collected from the planfyherer is the time delay is the delay-free plant transfer

and the estimate of the process deadtime are needed. F@fction, and\V is the disturbance transfer function. In the
a MIMO system, the interactor matrix was introduced as g|jowing subsections, the SISO MV controller for the plant
multivariable generalisation of the SISO time delay term(l) is first derived, then the result is generalised to MIMO

Assuming the full knowledge of the plant, a MIMO MV gysiems. These derivations are standard and can be found
benchmarking method is presented in [3]. in many references.
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where f; (for i = 0,--- ,k — 1) are constant coefficients, Theorem 2.1:For everyn x m strictly proper, rational
and R is the remaining rational, proper transfer functiorpolynomial transfer-function matrig’, there is a unique,

Equation (1) can be rewritten as: non-singularn x n lower left triangular polynomial matrix
_ D, such thai D| = ¢" and
yr = F¢ +q " (Tus + RG) ©)) 10l =q ~
The first term in this equation cannot be affected by the qlllnio DT = qlllrgoT =K ®

control action,i.e. Var(y,) > Var(F¢). The minimum yphere i is a full rank constant matrix. The integeris

variance control is achieved when the second t€rm Qfefined as the number of infinite zeros®f and T is the
equation (2) is set to zerag. delay-free transfer-function matrix @f which contains only

Tus + RG =0 finite zeros. The matriD is defined as the interactor matrix
and can be written as
This yields p ot
ut:—EQ (4) D:Doq +D1q —|—...—|—Dd,1q (9)
T

o ] ) ] whered denotes the order of the interactor matrix and is
Substituting equation (4) into (3) yields unique for a given transfer-function matrix, an®; (for
G=Fly, (5) i=0....,d-1) are the coefficient matrices. O

The interactor matrixD can be assumed to be one of the
Substituting (5) into (4) gives the minimum variance cohtroghree forms described in the sequel.l¥ is of the form:

law R D = ¢“I, then the transfer function matriX is regarded
Ut = ——==Yt (6) as having asimple interactor matrix If D is a diagonal

FT . _ s di ,do dn, i id-

So the mini . teedback ler i matrix,i.e, D = diag(¢**, ¢*2,...,q%"), thenT is consid
0 the minimum variance feedback controller is ered having aliagonal interactor matrix Otherwise,T" is
Crr — — R 7y considered to have general interactor matrix A special

MV ) ; e .
FT type of general interactor matrix which is called tin@tary

This particular version of minimum variance control re-interactor matrixwas introduced in [7].
quires the plant to be minimum phase if the control law is Definition 2.1: Instead of taking the lower triangular
to be stabilizing. A block diagram of the closed loop systenform, if an interactor matrix defined in Theorem 2.1 satisfies
is shown in Fig.1. It is obvious thak’ is independent of _

DY (¢ ")D(q) =1

pront then this interactor matrix is referred to as a unitary inter
actor matrix.

% For any given full rank rational, proper transfer-function
matrix 7', there exists anon-unique unitary interactor
matrix. However, it was shown' in [7] that any two unitary

(B2 p— interactor matricesp(¢) andD(q), satisfyD(q) = T'D(q),
I'"T" = I . Herel is ann x n unitary real matrix.
Fig. 1. Block diagram of a MV feedback control loop Using the interactor matrix, Huang and Shah [3] proposed

a simple method of deriving the MIMO MV controller.

the controllerC', in other words the tern#'(; which is the Consider a multivariable system

process output under minimum variance controleedback Y, =TU, + N, (10)
controller-invariant The termVar(F(;) is defined as the ] ) ) )
MV benchmark whereT is the system transfer function matrix aid is

If the transfer function front, to v is modeled by an the disturbance transfer function matrix. Then we have

infinite moving-average (MA) time series model, then the Theorem 2.2:(Theorem 4.3.1 of [3]) For a multivariable
computation of the MV benchmafKar(F¢,) is equivalent Process
to the estimation of the first terms of this model.

B. The MIMO MV controller where (; is a vector of random white noise sources with
zero mean, letD be the interactor matrix of’ with the

Time _delay results in the most fundamental limitation %"rderd. The linear guadratic objective function defined by
the achievable performance of any controller. Performance

assessment of SISO processes as discussed before reflects Juv = E(®] ;)
this fundamental performance limitation in a stochastievhereq) — ¢—4DY, is minimized by an explicit optimal
framework. Wolovich and Falb [9] showed that the analog, - I;W given b;

of the time-delay term in a SISO system is the interactor

matrix in a MIMO system. Ui =-T'RF (¢ D), (12)

Y, =TU, 4+ N (11)
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whereT = DT, F and R satisfy the Diophantine identity: Proof: Without loss of generality, it is assumed thatis a

B e vector of zero mean white noise afthr(¢;) = I, then we
¢ DN =Fy+ ...+ Fi1g ™ +¢7 "R (13) have

F d—1
o . . J = trlVar(F¢)] = tr[y_ F/'F} (16)
andR is a rational proper transfer function matrix. Further- e

more, theMIMO MV benchmark is defined as ) ) ) ) ) )
Since D is a unitary interactor matrix of ordef, it can be

Juy = tr[Var(F¢)) (14) written as
Remarks: o

o From above, it is clear that the interactor matrix is b= _X;qu (7)
vital in the computation of MIMO MV benchmark if a -
data-driven method is preferred. According to (13) andubstitutingD and IV into the left hand side of (15), we
(14), the benchmark can be the same for two differertave
plants as long as they have the same interactor and
disturbance transfer function matrix .

« If an MV controller is applied, the control signal is
uy = — 7 for a SISO system and, = —T~'R¢, for Inserting (18) into (16), we havé = > 9" 1r[G;]
a MIMO system. The control signal will be unboundedyhere(;; is the element of the following matrix
if T or T' contain non-minimum phase zeros.

« The inverse ofT is used to derive the MIMO MV NI S 4=1(DT D;)No <o NT DTDy_1No
controller and this implies. < m, i.e. the number of -
plant inputs is greater or equal to the number of plants — Ny (DT a1 D) N
outputs. In another word, equation (12) in general only :
holds whenn < m.

In the following, without loss of generality we assume
that the plants can be represented as square strictly prof@ased on the fact thab is a unitary interactor matrix,e.

j=0

NIDT 4 1 DoNy_y <+ NI DToDoNg_4
19

rational transfer-function matrices. DT (¢71)D(q) = I, we have
I1l. THE UPPER BOUND OF THEMIMO MV j_o DTy . 1D; =0 with j=0,...,d—2
BENCHMARK - (20)

_ _ o Sy DTD =1
As discussed before, the interactor matrix is needed to

estimate the MIMO MV benchmark. However, the compuSubstituting (20) inta&, G can be rewritten as:

tation of the interactor matrix is rather involved. Recuesi

algorithms for calculating a lower triangular and nilpdten Ng No 0 0

interactor were proposed in [9] and [8], respectively. The 0 NT S9-2(DT D) N, :

need for a complete open loop transfer function limits th& =

usefulness of these methods. It was later shown in [3] that

the interactor matrix could be determined from the leading 0 NEDT _3DoNg_y -+ NgilDTODONd(,le

Markov parameter matrices of the plant model. Assuming ) o
the order of the interactor matrix ig, then the first¢ BY careful inspection, it can found that the tei, does

Markov parameter matrices have to be found to calculate tHf{9t @Ppear in (21). Using the Lagrange multiplier technique
exact interactor matrix. These matrices can only be obdainé): it can be shown thaf is maximisedwhen D1 is set
through open or closed-loop identification techniques. (O Z€ro. InsertingD,_, = 0 back to (20), we have

In this section, it will be shown that an upper bound of the _
benchmark can be estimated based only on the information >_j—o D" a—i—2Di =0 with j =0,...,d 3 22)

on the order of the interactor matrix. 42pT.p, =1
Theorem 3.1:Let J = tr[Var(F¢;)] where F satisfies "~
the following identity: Substituting (22) back to (21), we have
¢ DN =Fy+...+Fy_1g% +¢ R (15) NI Ny 0 . 0
F T .
g=| © MM ! (23)

where D is any unitary interactor matrix of ordet and
N = Z;’io N;q~% is a given transfer function. Thes is
maximised whenD = ¢?1. O 0 0 o NI DT4DoNg_1

3570



while D;_» does not appear in (23). As a result is Remarks: A useful fact worth being pointed out is that
maximised whenD,_, is zero. Following the same line D is only determined by the delay information Bf while
of thought, it can be found that is maximised with D can only be found with the full information df'.
Lemma 4.3:Let J = tr[Zf;OI FI'F;] where F satisfies

T _ J— — _ . . .
Do Do =1 Di=0i=1,...,d-1 the following identity:
E)WE 2§tD0 = I, we can see thaf is maximised WhDen ¢ IDN = Fo+ ...+ Fy_1q-%" +47R
= q .
Based on the above theorem, the following corollary can E
be obtained: where D is a unitary interactor matrix of ordetf.

Corollary 3.1: Given the order of the interactor matrix is For any given integerd’ > d, we have J =
d, the least conservative upper bound/afy can be found tr[Zf;Ol FIF] = tr[Zf:f)l F!TF!] whereF’ satisfies the
by estimating/,,,per = tr(Var(F¢)) whereF satisfies the following identity:

following identity: ! ' '
wing identity ¢ DN =F,+...4+F, %' 4¢ ¥R  (26)

N=No+...+Ng_1¢ " +¢ R

F/
Lemma 4.4:Given a transfer function matrixl’, let

F
D4(T) be the diagonal delay matrix Gf. A set of unitary
IV. THE LOWER BOUND OF THEMIMO MV interactor matrices is defined as
BENCHMARK

An upper bound of the MIMO MV benchmark has been D={D : D=PD}

discussed in the previous section. In this section, a lowgfhere P is any unitary interactor matrix and) =
bound will be introduced. q 1 Dy(T).
Given a transfer function matrif’, if the time delays For any D € D, a cost function is defined ag(D) =

between inputs and outputs are known, thewiagonal 43"/~ ! FTF] with F satisfies the following identity:
delay matrixassociated withl" can be defined as:

o ) ¢ DN =Fy+...+ Fy_1qg ™" +¢ R
Do(T) = diag{q™,....q¢""} (24)

F

where each elemen; of Dy(T') is the minimum delay in The order ofD is d and N = S, Nig~" is a given
the i'" row of 7. Another parametric matrix/(7) can be transfer-function matrix. Then -

defined as
arg gli% J(D) = Dy(T)
. . €
UT)i,; = ¢ " 70 if time delay of Ti; equals d;  Based on the above lemmas, the following theorem is
N 0 otherwise obtained concerning the lower bound of MIMO MV bench-
(25) mark
andu; ; represents thej'" element oflim,—1 o DyT Theorem 4.1:Given a transfer function matrid’, let
According to the definition of the interactor matrix (seeDa(T) be its diagonal delay matrix with ordef; the
(8)), we have the following lemma: least conservative lower bound afy;,y can be found

Lemma 4.1:For a transfer function matrix’ with Dy estimatingJiower = Var(F¢;) where I satisfies the
only the input/output time-delay information given, if following identity:
_det(U(T)) #0 for all u; ; # 0 thenD,4(T) is the diagonal ¢ DUTIN = Fo+ ...+ Fyrq- ™' 44~ R
interactor matrix ofl". O
Note that the above lemma is only a sufficient conditioRo anove theorem can be interpreted as follows: the

for Dy(T') to be the diagonal interactor matrix df. If  gja50nal delay matrix can be considered as a simple gener-

there exists a set af, ;s such thatlet(U(T)) = 0, then 4jization of the time delay of the SISO system. Lét be
the method introduced in [3] has to be used to find thg,. stochastic noise acting on thé system output:
interactor matrix of7".

Lemma 4.2:Given a transfer function matri¥, a diag- Ni = fo&e + fi&e—1+ ..+ fa,—1&—a;—1+ - -
onal polynomial matrix is defined as:

€

D =q 'Dy(T) where¢; is white noise andi; is the minimum time delay
of the i*" row of 7.
where Dy(T) is the diagonal delay matrix ¢f. Then the |t js obvious thate is the portion of noise which is
unitary interactor matrixD of 7" can be represented as:  jndependent of feedback control. Furthermore there may be
D—=PD other portion of N; which cannot be compensated due to
the other infinite zeros of'. This inevitably increases the
where P is a unitary interactor matrix oD7'. 0 achievable minimum variance.
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V. EXAMPLES The theoretically achievable minimum variance then foow

In the following, the application of the results obtained"om equation (14) agy = 2.9990.
in the previous sections is demonstrated for performance On the other hand, if instead of using the general interac-
assessment on a two by two MIMO controller. The approad®’ matrix D we use its simple and diagonal approximations
consists of estimating the upper and lower bounds of th&upper = ¢*I and
controller performance rather than the index itself. The

advantage, however, is that it is not necessary to know D _1aqa O
. . lower —
the interactor matrix - the knowledge of the order of 0 ¢
the interactor matrix and of the individual time delays is
sufficient. the corresponding polynomial matricé$, e, and Fioyper

Example This example was originally used by HuangWill assume the form

and Shah [3] to demonstrate the application of the FCOR al- . .
gorithm to performance assessment of multivariable system Foupper = 1+0.5¢ —0.6 - 0.3¢
with the general interactor matrix. Our objective here will 0.5+ 0.25¢~! 1+0.5¢7"
be to illustrate how Theorems (3.1) and (4.1) can be used

to estimate the upper and lower bounds of the controller

performance index from plant data, the interactor order Frower =
and the individual time delays. For that purpose, we will 05 1
apply the benchmarking algorithm twice: first assuming
simple interactor of orded, and then using the knowledge
of the individual time delays to replace the actual intesact
with its diagonal approximation. For comparison, we will

also use full knowledge of the plant model to calculate thge available and the above values have to be estimated
true general interactor matrix and hence the actual cdetrol from plant data. In order to estimate the minimum variance

performance index. it?éelf, the plant interactor matrix must be known. There are

1 -06

And the upper and lower bounds of the minimum variance
can then be calculated ag?>*" = 3.2896 and J\5¢°" =
2.6637.

In reality, the plant and disturbance models might not

The process has two inputs and two outputs and is descrlbg orithms for its calculation or estimation from the first

by the equation (10), with the plant and disturbance transf?ew Markov parameters of the plant [3], however they tend
matrices given as: '

not to be very reliable in practice. Here we go around this

gt K12~ 2 problem by estimating the upper and lower bound of the
T=| 104" 1-01¢" minimum variance which only requires the knowledge of

0.3¢"" q? . - P .
00T T 08T the order of the interactor matrix and of the individual time

delays.
) o6 The FCOR (Filtering and Correlation) algorithm used
N = | T-05¢ T 1-0.5¢ 1 in the numerical calculations is described in Huang and
0.5 1.0 Shah [3]. The algorithm involves modeling the outputs as a
1—0.5g- L 1—0.5¢ !

multivariable time series in order to estimate the whitesgoi
The white noise input; is a two-dimensional white noise driving sequences. This "whitening” step is not unique and
sequence of the covariance matfix = I. SettingK12 =1 may result in different polynomial matricés- in particular,
in the plant transfer matrix, the actual unitary interactothe Cholesky algorithm can be used to obtain orthogonal
matrix for this example is of orded = 2 and can be driving sequences (i.e. of identity covariance matrix)ttha
determined as match the theoretical model. However, it is worth noting
that the minimum achievable value of the cost function, i.e.
—0.9578¢  —0.2873¢ the value that we eventually want to estimate, is invariant
—0.2873¢2  0.9578¢2 of the particular form of the polynomial matri¥’. The

. _ . estimates obtained (calculated using a data set of 5000
In this case, the order of the interactor matrix equals th

| ttime del P ‘ h i t be st § mples), together with the theoretical values, are given
argestlime defay of the system, however It must be s ressﬁ)gTabIe [. An important point to note is that in order to
that generally this does not have to be the case. The M

criterion to minimize is the sum of the variances of the

D =

two outputs:Jyv = E[YTY;]. The minimum achievable Lower Bound | Actual Value | Upper Bound
value of Jyv is determined by the polynomial matrik Theoretical 2.6637 2.9990 3.2896
in equation (13) and this can be obtained as: Estimated 25898 . 3.2426
TABLE |
—1. -1 . -1
F = 1014(] 0 2874(] MINIMUM VARIANCE ESTIMATES

—0.1916 — 0.0958¢~ !  —1.1302 — 0.5651¢ !
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estimate the coefficients of the polynomial matfix,,.., of the benchmarking experiment (this concerns only the

it was necessary to introduce for the time of the experimemistimation of the upper bound). Moreover, the order of the

an additional delay term to the controller transfer matrixinteractor matrix needed for calculating the upper bound

The reason for this can be explained briefly as followsof the benchmark cost is not directly related to the actual

By assuming a simple interactor matrix of ordér we delays present in the system and has to be determined
effectively attempt to estimate the fikstoefficient matrices separately.

of the disturbance model (2). Now with the actual plant
(having a general interactor matrix) in the feedback loop,
the closed-loop expression for the output is

yr = F& +q "R — DT Coys

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed controller performance
assessment of multivariable systems using the minimum
variance controller as a benchmark. In order to avoid the

and in order to separat€ from the other terms on the ¢ estimati f the int ¢ i q
right hand side of this equation (required for the FcorRxact estimation ot the nteractor matrix, we proposed a
method to estimate the upper and lower bound of the

algorithm), d — 1 additional delays need be introduced to_ .. . . ) . :
the controllerCy. On the other hand, there is no such diffi-TNmMuMm achievable variance instead of the minimum vari-

culty when estimating the lower bound using the diagon%nCe ltself. ‘We proved_ that an upper bound of the MV
interactor. enchmark can be estimated using only the known order

To better see the effect which these approximations hafé the interactor matrix, whereas the estimation of the

on the calculated performance index, compare the thr Qwer bound requires only the knowledge of the individual
corresponding values for different values of paramétey time delays of the system. Although the knowledge of

in the plant transfer matrix (this parameter determine@il mteratﬁor order is St”.l ? prerﬁqwsne,éhg ionmﬂm h
the level of interaction between input 2 and output 1)re uces the necessary information needed to assess the

: : . System performance.
The following multi-loop controller was used in all the .
9 P The MV benchmarking procedures assess the perfor-

simulations: - . .
mance of the existing controller against that of the optimal
0i5_0052q:11 0 full-order controller. Such an unconstrained optimizatio
K = o 0.250.2q-1 problem results in high-order controllers (this order lgein
0 25—0.

at least as high as the order of the plant) and a question then

. . - arises how to adequately interpret the value of the caledlat
The CPI is defined as% where Y; is the system performance inde?x: is yit SO0 l:)Iow because the controller
outputY; filtered by~ “D. The results for different values is poorly tuned or simply because it is not possible to
of parameterK;, are plotted in Figure 2. Considering get a better result with the existing controller structure?
Future research will be focused on the computation of
the meaningful benchmark under the controller structure
constraints.

(1—0.5¢=1)(140.5¢1)

Minimum variance
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