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Abstract— Minimum variance (MV) can characterize the
most fundamental performance limitation of a system, owing
to the existence of time-delays/infinite zeros. It has been widely
used as a benchmark to assess the regulatory performance of
control loops. For a SISO system, this benchmark can be
estimated given the information of the system time delay. In
order to compute the MIMO MV benchmark, the interactor
matrix associated with the plant may be needed. However, the
computation of the interactor matrix requires the knowledge
of Markov parameter matrices of the plant, which is rather
demanding for assessment purposes only. In this paper, we
propose an upper bound of the MIMO MV benchmark which
can be computed with the knowledge of the interactor matrix
order. If the time delays between the inputs and outputs are
known, a lower bound of the MIMO MV benchmark can also
be determined.

I. I NTRODUCTION

The control loop performance benchmarking techniques
have built on ideas used successfully in business bench-
marking. The aim is to diagnose control loop performance
and provide tools to determine:

1) The best achievable performance which will be
treated as the performance benchmark.

2) The controller performance index (CPI) which is the
ratio of the performance benchmark to the actual
performance.

Based onCPI, it can be seen whether there is any oppor-
tunity to improve the performance of the loop. The ways
in which the loop performance may be improved will be
in the realm of controller design. Controller benchmarking
has been an active research area for the recent ten years
[1], [4]. This interest started with the work of Harris
[2]. In his paper, Harris proposed the use of closed-loop
data to evaluate and diagnose controller performance using
the output variance under the minimum variance (MV)
controller as a benchmark.

The SISO MV benchmark is useful as the absolute
lower bound on the achievable control performance and
is attractive for its simplicity and minimum required in-
formation - only the output data collected from the plant
and the estimate of the process deadtime are needed. For
a MIMO system, the interactor matrix was introduced as a
multivariable generalisation of the SISO time delay term.
Assuming the full knowledge of the plant, a MIMO MV
benchmarking method is presented in [3].
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With the information of the magnitude of the time-delay,
it is relatively easy to estimate the MV benchmark for a
SISO system. In the case of MIMO systems, in order to
estimate the MV benchmark, we need to construct a new
signal by filtering the system output with the interactor
matrix of the system. Although it is possible to estimate the
interactor matrices from the closed loop data [3], [6], this
makes the computation of the MV benchmark for MIMO
systems more difficult. Assuming the order of the interactor
matrix is known, a simple interactor of the same order is
proposed as a substitute for the original interactor matrix
and prove that the performance index thus computed is an
upper bound. Although the result is suboptimal, the com-
putation procedure can be greatly simplified. Furthermore,
a lower bound of the MV benchmark can be computed
when the delay information between inputs and outputs of
the plant is available. These bounds can be used to assess
the CPI of the current controller which indicates its current
performance level .

The rest of the paper is organized as follows: The deriva-
tion of the MV benchmark for SISO and MIMO systems
is briefly introduced in section 2. Then the estimation of
the upper/lower bound of the MV benchmark is presented
in sections 3 and 4. Using the FCOR technique introduced
in [3], we illustrate the results on a simulated example in
section 5. The paper is concluded in section 6. Due to space
limitation, most of the proofs are omitted from the paper. A
more detailed report can be obtained from the author upon
request.

II. MV C ONTROLLER AND BENCHMARKING

In this paper, our major focus is on the system perfor-
mance in the steady state, and without loss of generality
it is assumed in the following that the reference signal is
set to zero. The only input to the systemζt is a zero-mean
white noise of unity variance. The plant is modeled as:

yt = q−kTut + Nζt (1)

wherek is the time delay,T is the delay-free plant transfer
function, andN is the disturbance transfer function. In the
following subsections, the SISO MV controller for the plant
(1) is first derived, then the result is generalised to MIMO
systems. These derivations are standard and can be found
in many references.

A. The SISO MV controller

Using the Diophantine identity:

N = F + q−kR = f0 + · · · + fk−1q
−k+1 + q−kR (2)



wherefi (for i = 0, · · · , k − 1) are constant coefficients,
and R is the remaining rational, proper transfer function,
Equation (1) can be rewritten as:

yt = Fζt + q−k(Tut + Rζt) (3)

The first term in this equation cannot be affected by the
control action,i.e. V ar(yt) ≥ V ar(Fζt). The minimum
variance control is achieved when the second term of
equation (2) is set to zero,i.e.

Tut + Rζt = 0

This yields

ut = −
R

T
ζt (4)

Substituting equation (4) into (3) yields

ζt = F−1yt (5)

Substituting (5) into (4) gives the minimum variance control
law

ut = −
R

FT
yt (6)

So the minimum variance feedback controller is

CMV = −
R

FT
(7)

This particular version of minimum variance control re-
quires the plant to be minimum phase if the control law is
to be stabilizing. A block diagram of the closed loop system
is shown in Fig.1. It is obvious thatF is independent of
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Fig. 1. Block diagram of a MV feedback control loop

the controllerC, in other words the termFζt which is the
process output under minimum variance control, isfeedback
controller-invariant. The termV ar(Fζt) is defined as the
MV benchmark.

If the transfer function fromζt to yt is modeled by an
infinite moving-average (MA) time series model, then the
computation of the MV benchmarkV ar(Fζt) is equivalent
to the estimation of the firstk terms of this model.

B. The MIMO MV controller

Time delay results in the most fundamental limitation on
the achievable performance of any controller. Performance
assessment of SISO processes as discussed before reflects
this fundamental performance limitation in a stochastic
framework. Wolovich and Falb [9] showed that the analog
of the time-delay term in a SISO system is the interactor
matrix in a MIMO system.

Theorem 2.1:For everyn × m strictly proper, rational
polynomial transfer-function matrixT , there is a unique,
non-singular,n×n lower left triangular polynomial matrix
D, such that|D| = qr and

lim
q−1→0

DT = lim
q−1→0

T̃ = K (8)

whereK is a full rank constant matrix. The integerr is
defined as the number of infinite zeros ofT , and T̃ is the
delay-free transfer-function matrix ofT which contains only
finite zeros. The matrixD is defined as the interactor matrix
and can be written as

D = D0q
d + D1q

d−1 + . . . + Dd−1q (9)

whered denotes the order of the interactor matrix and is
unique for a given transfer-function matrix, andDi (for
i=0,. . . ,d-1) are the coefficient matrices. �

The interactor matrixD can be assumed to be one of the
three forms described in the sequel. IfD is of the form:
D = qdI, then the transfer function matrixT is regarded
as having asimple interactor matrix. If D is a diagonal
matrix, i.e., D = diag(qd1, qd2 , . . . , qdn), thenT is consid-
ered having adiagonal interactor matrix. Otherwise,T is
considered to have ageneral interactor matrix. A special
type of general interactor matrix which is called theunitary
interactor matrixwas introduced in [7].

Definition 2.1: Instead of taking the lower triangular
form, if an interactor matrix defined in Theorem 2.1 satisfies

DT (q−1)D(q) = I

then this interactor matrix is referred to as a unitary inter-
actor matrix.
For any given full rank rational, proper transfer-function
matrix T , there exists anon-unique unitary interactor
matrix. However, it was shown‘ in [7] that any two unitary
interactor matrices,D(q) andD̃(q), satisfyD̃(q) = ΓD(q),
ΓT Γ = I . HereΓ is ann × n unitary real matrix.

Using the interactor matrix, Huang and Shah [3] proposed
a simple method of deriving the MIMO MV controller.

Consider a multivariable system

Yt = TUt + Nζt (10)

whereT is the system transfer function matrix andN is
the disturbance transfer function matrix. Then we have

Theorem 2.2:(Theorem 4.3.1 of [3]) For a multivariable
process

Yt = TUt + Nζt (11)

where ζt is a vector of random white noise sources with
zero mean, letD be the interactor matrix ofT with the
orderd. The linear quadratic objective function defined by

JMV = E(ΦT
t Φt)

whereΦt = q−dDYt is minimized by an explicit optimal
control law given by

Ut = −T̄−1RF−1(q−dD)Yt (12)



whereT̄ = DT , F andR satisfy the Diophantine identity:

q−dDN = F0 + . . . + Fd−1q
−d+1

︸ ︷︷ ︸

F

+q−dR (13)

andR is a rational proper transfer function matrix. Further-
more, theMIMO MV benchmark is defined as

JMV = tr[V ar(Fζt)] (14)
Remarks:

• From above, it is clear that the interactor matrix is
vital in the computation of MIMO MV benchmark if a
data-driven method is preferred. According to (13) and
(14), the benchmark can be the same for two different
plants as long as they have the same interactor and
disturbance transfer function matrix .

• If an MV controller is applied, the control signal is
ut = −R

T
ζt for a SISO system andUt = −T̄−1Rζt for

a MIMO system. The control signal will be unbounded
if T or T̄ contain non-minimum phase zeros.

• The inverse ofT̄ is used to derive the MIMO MV
controller and this impliesn ≤ m, i.e. the number of
plant inputs is greater or equal to the number of plant
outputs. In another word, equation (12) in general only
holds whenn ≤ m.

In the following, without loss of generality we assume
that the plants can be represented as square strictly proper
rational transfer-function matrices.

III. T HE UPPER BOUND OF THEMIMO MV
BENCHMARK

As discussed before, the interactor matrix is needed to
estimate the MIMO MV benchmark. However, the compu-
tation of the interactor matrix is rather involved. Recursive
algorithms for calculating a lower triangular and nilpotent
interactor were proposed in [9] and [8], respectively. The
need for a complete open loop transfer function limits the
usefulness of these methods. It was later shown in [3] that
the interactor matrix could be determined from the leading
Markov parameter matrices of the plant model. Assuming
the order of the interactor matrix isd, then the firstd
Markov parameter matrices have to be found to calculate the
exact interactor matrix. These matrices can only be obtained
through open or closed-loop identification techniques.

In this section, it will be shown that an upper bound of the
benchmark can be estimated based only on the information
on the order of the interactor matrix.

Theorem 3.1:Let J = tr[V ar(Fζt)] whereF satisfies
the following identity:

q−dDN = F0 + . . . + Fd−1q
−d+1

︸ ︷︷ ︸

F

+q−dR (15)

where D is any unitary interactor matrix of orderd and
N =

∑∞

i=0 Niq
−i is a given transfer function. ThenJ is

maximised whenD = qdI. �

Proof: Without loss of generality, it is assumed thatζt is a
vector of zero mean white noise andV ar(ζt) = I, then we
have

J = tr[V ar(Fζt)] = tr[

d−1∑

i=0

FT
i Fi] (16)

SinceD is a unitary interactor matrix of orderd, it can be
written as

D =

d−1∑

i=0

Diq
d−i (17)

SubstitutingD and N into the left hand side of (15), we
have

Fi =
i∑

j=0

DiNi−j , i = 0, . . . , d − 1 (18)

Inserting (18) into (16), we haveJ =
∑d−1

i=0

∑d−1
j=0 tr[Gij ]

whereGij is the element of the following matrix

G =












NT

0

∑
d−1

i=0
(DT

i
Di)N0 · · · NT

d−1
DT

0Dd−1N0

NT

0

∑
d−2

i=0
(DT

d−i−1Di)N1 · · ·

...
...

. . .
...

NT

0
DT

d−1D0Nd−1 · · · NT

d−1
DT

0D0Nd−1












(19)

Based on the fact thatD is a unitary interactor matrix,i.e.
DT (q−1)D(q) = I, we have

∑j

i=0 DT
d−i−1Di = 0 with j = 0, . . . , d − 2

∑d−1
i=0 DT

iDi = I

(20)

Substituting (20) intoG, G can be rewritten as:

G =












NT

0
N0 0 · · · 0

0 NT

1

∑
d−2

i=0
(DT

i
Di)N1 · · ·

...
...

...
...

...

0 NT

1
DT

d−2D0Nd−1 · · · NT

d−1
DT

0D0Nd−1












(21)

By careful inspection, it can found that the termDd−1 does
not appear in (21). Using the Lagrange multiplier technique
[5], it can be shown thatJ is maximisedwhenDd−1 is set
to zero. InsertingDd−1 = 0 back to (20), we have

∑j

i=0 DT
d−i−2Di = 0 with j = 0, . . . , d − 3

∑d−2
i=0 DT

iDi = I

(22)

Substituting (22) back to (21), we have

G =











NT
0 N0 0 · · · 0

0 NT
1 N1 · · · 0

...
...

. . .
...

0 0 · · · NT
d−1D

T
0D0Nd−1











(23)



while Dd−2 does not appear in (23). As a resultJ is
maximised whenDd−2 is zero. Following the same line
of thought, it can be found thatJ is maximised with

DT
0 D0 = I Di = 0, i = 1, . . . , d − 1

If we set D0 = I, we can see thatJ is maximised when
D = qdI. �

Based on the above theorem, the following corollary can
be obtained:

Corollary 3.1: Given the order of the interactor matrix is
d, the least conservative upper bound ofJMV can be found
by estimatingJupper = tr(V ar(Fζt)) whereF satisfies the
following identity:

N = N0 + . . . + Nd−1q
−d+1

︸ ︷︷ ︸

F

+q−dR

IV. T HE LOWER BOUND OF THEMIMO MV
BENCHMARK

An upper bound of the MIMO MV benchmark has been
discussed in the previous section. In this section, a lower
bound will be introduced.

Given a transfer function matrixT , if the time delays
between inputs and outputs are known, then adiagonal
delay matrixassociated withT can be defined as:

Dd(T ) = diag{qd1, . . . , qdn} (24)

where each elementdi of Dd(T ) is the minimum delay in
the ith row of T . Another parametric matrixU(T ) can be
defined as

U(T )i,j =







ui,j 6= 0 if time delay of Ti,j equals di

0 otherwise
(25)

andui,j represents theijth element oflimq−1→0 DdT

According to the definition of the interactor matrix (see
(8)), we have the following lemma:

Lemma 4.1:For a transfer function matrixT with
only the input/output time-delay information given, if
det(U(T )) 6= 0 for all ui,j 6= 0 thenDd(T ) is the diagonal
interactor matrix ofT . �

Note that the above lemma is only a sufficient condition
for Dd(T ) to be the diagonal interactor matrix ofT . If
there exists a set ofui,js such thatdet(U(T )) = 0, then
the method introduced in [3] has to be used to find the
interactor matrix ofT .

Lemma 4.2:Given a transfer function matrixT , a diag-
onal polynomial matrix is defined as:

D̃ = q−1Dd(T )

whereDd(T ) is the diagonal delay matrix ofT . Then the
unitary interactor matrixD of T can be represented as:

D = PD̃

whereP is a unitary interactor matrix of̃DT . �

Remarks: A useful fact worth being pointed out is that
D̃ is only determined by the delay information ofT , while
D can only be found with the full information ofT .

Lemma 4.3:Let J = tr[
∑d−1

i=0 FT
i Fi] whereF satisfies

the following identity:

q−dDN = F0 + . . . + Fd−1q
−d+1

︸ ︷︷ ︸

F

+q−dR

whereD is a unitary interactor matrix of orderd.
For any given integerd′ ≥ d, we have J =

tr[
∑d−1

i=0 FT
i Fi] = tr[

∑d′
−1

i=0 F ′T
i F ′

i ] whereF ′ satisfies the
following identity:

q−d′

DN = F ′
0 + . . . + F ′

d′−1q
−d′+1

︸ ︷︷ ︸

F ′

+q−d′

R′ (26)

Lemma 4.4:Given a transfer function matrixT , let
Dd(T ) be the diagonal delay matrix ofT . A set of unitary
interactor matrices is defined as

D = {D : D = PD̃}

where P is any unitary interactor matrix and̃D =
q−1Dd(T ).

For anyD ∈ D, a cost function is defined asJ(D) =
tr[

∑d−1
i=0 FT

i Fi] with F satisfies the following identity:

q−dDN = F0 + . . . + Fd−1q
−d+1

︸ ︷︷ ︸

F

+q−dR

The order ofD is d and N =
∑∞

i=0 Niq
−i is a given

transfer-function matrix. Then

arg min
D∈D

J(D) = Dd(T )

Based on the above lemmas, the following theorem is
obtained concerning the lower bound of MIMO MV bench-
mark

Theorem 4.1:Given a transfer function matrixT , let
Dd(T ) be its diagonal delay matrix with orderd; the
least conservative lower bound ofJMV can be found
by estimatingJlower = V ar(Fζt) where F satisfies the
following identity:

q−dDd(T )N = F0 + . . . + Fd−1q
−d+1

︸ ︷︷ ︸

F

+q−dR

The above theorem can be interpreted as follows: the
diagonal delay matrix can be considered as a simple gener-
alization of the time delay of the SISO system. LetNi be
the stochastic noise acting on theith system output:

Ni = f0ξt + f1ξt−1 + . . . + fdi−1ξt−di−1
︸ ︷︷ ︸

e

+ . . .

whereξt is white noise anddi is the minimum time delay
of the ith row of T .

It is obvious thate is the portion of noise which is
independent of feedback control. Furthermore there may be
other portion ofNi which cannot be compensated due to
the other infinite zeros ofT . This inevitably increases the
achievable minimum variance.



V. EXAMPLES

In the following, the application of the results obtained
in the previous sections is demonstrated for performance
assessment on a two by two MIMO controller. The approach
consists of estimating the upper and lower bounds of the
controller performance rather than the index itself. The
advantage, however, is that it is not necessary to know
the interactor matrix - the knowledge of the order of
the interactor matrix and of the individual time delays is
sufficient.

Example This example was originally used by Huang
and Shah [3] to demonstrate the application of the FCOR al-
gorithm to performance assessment of multivariable systems
with the general interactor matrix. Our objective here will
be to illustrate how Theorems (3.1) and (4.1) can be used
to estimate the upper and lower bounds of the controller
performance index from plant data, the interactor orderd

and the individual time delays. For that purpose, we will
apply the benchmarking algorithm twice: first assuming a
simple interactor of orderd, and then using the knowledge
of the individual time delays to replace the actual interactor
with its diagonal approximation. For comparison, we will
also use full knowledge of the plant model to calculate the
true general interactor matrix and hence the actual controller
performance index.
The process has two inputs and two outputs and is described
by the equation (10), with the plant and disturbance transfer
matrices given as:

T =





q−1

1−0.4q−1

K12q−2

1−0.1q−1

0.3q−1

1−0.1q−1

q−2

1−0.8q−1





N =





1
1−0.5q−1

−0.6
1−0.5q−1

0.5
1−0.5q−1

1.0
1−0.5q−1





The white noise inputat is a two-dimensional white noise
sequence of the covariance matrixΣζ = I. SettingK12 = 1
in the plant transfer matrix, the actual unitary interactor
matrix for this example is of orderd = 2 and can be
determined as

D =




−0.9578q −0.2873q

−0.2873q2 0.9578q2





In this case, the order of the interactor matrix equals the
largest time delay of the system, however it must be stressed
that generally this does not have to be the case. The MV
criterion to minimize is the sum of the variances of the
two outputs:JMV = E[Y T

t Yt]. The minimum achievable
value of JMV is determined by the polynomial matrixF
in equation (13) and this can be obtained as:

F =




−1.1014q−1 0.2874q−1

−0.1916− 0.0958q−1 −1.1302− 0.5651q−1





The theoretically achievable minimum variance then follows
from equation (14) asJMV = 2.9990.

On the other hand, if instead of using the general interac-
tor matrixD we use its simple and diagonal approximations
Dupper = q2I and

Dlower =




q 0

0 q





the corresponding polynomial matricesFupper and Flower

will assume the form

Fupper =




1 + 0.5q−1 −0.6 − 0.3q−1

0.5 + 0.25q−1 1 + 0.5q−1





Flower =




1 −0.6

0.5 1





and the upper and lower bounds of the minimum variance
can then be calculated asJupper

MV = 3.2896 and J lower
MV =

2.6637.
In reality, the plant and disturbance models might not

be available and the above values have to be estimated
from plant data. In order to estimate the minimum variance
itself, the plant interactor matrix must be known. There are
algorithms for its calculation or estimation from the first
few Markov parameters of the plant [3], however they tend
not to be very reliable in practice. Here we go around this
problem by estimating the upper and lower bound of the
minimum variance which only requires the knowledge of
the order of the interactor matrix and of the individual time
delays.

The FCOR (Filtering and Correlation) algorithm used
in the numerical calculations is described in Huang and
Shah [3]. The algorithm involves modeling the outputs as a
multivariable time series in order to estimate the white noise
driving sequences. This ”whitening” step is not unique and
may result in different polynomial matricesF - in particular,
the Cholesky algorithm can be used to obtain orthogonal
driving sequences (i.e. of identity covariance matrix) that
match the theoretical model. However, it is worth noting
that the minimum achievable value of the cost function, i.e.
the value that we eventually want to estimate, is invariant
of the particular form of the polynomial matrixF . The
estimates obtained (calculated using a data set of 5000
samples), together with the theoretical values, are given
in Table I. An important point to note is that in order to

Lower Bound Actual Value Upper Bound

Theoretical 2.6637 2.9990 3.2896

Estimated 2.5898 - 3.2426

TABLE I

M INIMUM VARIANCE ESTIMATES



estimate the coefficients of the polynomial matrixFupper ,
it was necessary to introduce for the time of the experiment
an additional delay term to the controller transfer matrix.
The reason for this can be explained briefly as follows.
By assuming a simple interactor matrix of orderd, we
effectively attempt to estimate the firstd coefficient matrices
of the disturbance model (2). Now with the actual plant
(having a general interactor matrix) in the feedback loop,
the closed-loop expression for the output is

yt = Fζt + q−dRζt − D−1T̄C0yt

and in order to separateF from the other terms on the
right hand side of this equation (required for the FCOR
algorithm),d − 1 additional delays need be introduced to
the controllerC0. On the other hand, there is no such diffi-
culty when estimating the lower bound using the diagonal
interactor.

To better see the effect which these approximations have
on the calculated performance index, compare the three
corresponding values for different values of parameterK12

in the plant transfer matrix (this parameter determines
the level of interaction between input 2 and output 1).
The following multi-loop controller was used in all the
simulations:

K =





0.5−0.2q−1

1−0.5q−1 0

0 0.25−0.2q−1

(1−0.5q−1)(1+0.5q−1)





The CPI is defined as JMV

E(Ỹ T

t
Ỹt)

where Ỹt is the system

outputYt filtered byq−dD. The results for different values
of parameterK12 are plotted in Figure 2. Considering
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Fig. 2. Performance assessment of a MIMO system with the general
interactor matrix

the definition of theCPI and Theorems (3.1) and (4.1),
it is clear that the “true” performance index will always
lie between the upper and lower bounds calculated
based on these theorems. The price that must be paid
for thus simplifying the problem isthe necessity of
introducing additional delays to the controllerfor the time

of the benchmarking experiment (this concerns only the
estimation of the upper bound). Moreover, the order of the
interactor matrix needed for calculating the upper bound
of the benchmark cost is not directly related to the actual
delays present in the system and has to be determined
separately.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed controller performance
assessment of multivariable systems using the minimum
variance controller as a benchmark. In order to avoid the
exact estimation of the interactor matrix, we proposed a
method to estimate the upper and lower bound of the
minimum achievable variance instead of the minimum vari-
ance itself. We proved that an upper bound of the MV
benchmark can be estimated using only the known order
of the interactor matrix, whereas the estimation of the
lower bound requires only the knowledge of the individual
time delays of the system. Although the knowledge of
the interactor order is still a prerequisite, this considerably
reduces the necessary information needed to assess the
system performance.

The MV benchmarking procedures assess the perfor-
mance of the existing controller against that of the optimal
full-order controller. Such an unconstrained optimization
problem results in high-order controllers (this order being
at least as high as the order of the plant) and a question then
arises how to adequately interpret the value of the calculated
performance index: is it so low because the controller
is poorly tuned or simply because it is not possible to
get a better result with the existing controller structure?
Future research will be focused on the computation of
the meaningful benchmark under the controller structure
constraints.
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