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Abstract— Gap metric for selecting operating points in
multimodel controller design is discussed and extended to
accommodate the performance requirement. It is shown that
the loop-shaping H∞ approach can integrate the procedure
of selecting operating points and the local controller design.
The local controllers can guarantee not only stability but also
performance specified by the pre- and/or post-compensators.
Thus at each operating points, local controllers can have
similar performance, and the global performance of the system
can be predicted.

I. I NTRODUCTION

Multimodel approach is a popular method for nonlinear
control system design. The method represents the nonlinear
system as a combination of linear systems. Local controllers
can be designed using well-known linear design techniques,
such as LQG,H∞, etc.. The concept is simple, yet it is quite
successful in practical controller design, see, for example,
[1]–[3]. However, the question of how many models are
sufficient in design and where the models should be selected
is still unsolved.

Recently, Galan et. al. [4] suggested using gap metric as
a guideline for selecting local models. The idea is that the
‘distance’ of two selected models should not be larger than
a prescribed level. Since local controller can be designed
to robustly stabilize all the models within the prescribed
level, models selected in this way can guarantee the global
stability of the closed-loop systems as long as the change of
models is ‘slow’. The method is practical in that a detailed
nonlinear system model is not needed. However, stability is
not the only requirement of a control system. Performance
such as disturbance rejection, dynamic response etc. was
not considered in the paper.

McNichols and Fadali [5] proposed to use interval math-
ematics and a classical synthesis design approach to deter-
mine a near minimal set of the design points. The algorithm
made use of the closed-loop poles, since the performance
of the closed-loop system is dependent on them. However,
the approach is restricted to systems with ‘interval’ transfer
functions, i.e., whose coefficients are within known intervals
and vary slowly as a function of some external scheduling
variable.

The measure of nonlinearity [6], [7] provides another
viewpoint on selecting operating points for multimodel
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controller design. The idea is that we should select operating
points near which the system is most ‘nonlinear’, so the lo-
cal linear models can ‘cover’ the nonlinearity of the system.
For the regime where the system is not so nonlinear, one
linear model is sufficient. Unfortunately, the nonlinearity
measure is usually not easy to compute, and a detailed
nonlinear model is assumed to be available, which is often
not possible to get in practice.

In this paper, we will extend the method in [4] to
accommodate the performance requirement. Motivated by
the loop-shapingH∞ approach [8], we will use the gap
metric for ‘compensated’ models as a guide for selecting
operating points. With loop-shapingH∞ design, the local
controllers can guarantee not only stability but also perfor-
mance specified by the pre- and/or post-compensators. Thus
at each operating points, local controllers can have similar
performance, and the global performance of the system can
be predicted.

II. GAP METRIC

In this section, we will review the theory of the gap
metric. Details can be referred to [9]–[11].

The gap between two linear systemsP1 andP2 is defined
by

δ (P1,P2) :=
∥∥ΠG(P1)−ΠG(P2)

∥∥ , (1)

where G(·) represents the graph of a linear operator, and
Π denotes the orthogonal projection. LetP1 = N1M−1

1 ,P2 =
N2M−1

2 be the normalized right coprime factorizations ofP1

andP2, respectively, then

G(P1) =
[

M1

N1

]
H2, G(P2) =

[
M2

N2

]
H2. (2)

The following result is well known:
Proposition 1 [10]

δ (P1,P2) = max{~δ (P1,P2),~δ (P2,P1)}, (3)

where~δ (P1,P2) is the directed gap and can be computed
by

~δ (P1,P2) = inf
Q∈H∞

∥∥∥∥[
M1

N1

]
−

[
M2

N2

]
Q

∥∥∥∥
∞

. (4)

The gap metric is closely related to the coprime factor
uncertainty description. We have

Proposition 2 [10] Let P be a system with a normalized
right coprime factorization P= NM−1. Then for all0< γ ≤
1,

{P1 : ~δ (P,P1) < γ} =
{

P1 : P1 = (N+∆N)(M +∆M)−1,

∆N,∆M ∈H∞,

∥∥∥∥[
∆N

∆M

]∥∥∥∥
∞

< γ

}
.(5)



The gap metric is thus very useful to characterize the
robustness of a feedback system. LetP be a linear system
andK be a stabilizing controller ofP, denotes

bP, K :=
∥∥∥∥[

I
K

]
(I +PK)−1[ I P ]

∥∥∥∥−1

∞
, (6)

then we have
Proposition 3 [10] Suppose the feedback system with the

pair (P,K) is stable. Let

P := {P∆ : δ (P,P∆) < γP}, K := {K∆ : δ (K,K∆) < γK}. (7)

Then the feedback system with the pair(P∆,K∆) is stable
for all P∆ ∈ P and K∆ ∈K if and only if

arcsin(bP, K)≥ arcsin(γP)+arcsin(γK). (8)

If there is no uncertainty in the controller K, i.e.,γK = 0,
then the feedback system with the pair(P∆,K) is stable for
all P∆ ∈ P if and only if

γP ≤ bP, K . (9)

The result provides the theoretical background in applying
the gap metric in selecting operating points for multimodel
controller design. Suppose a certain operating point has
been selected. The local model isP and the local controller
is K. Then the next operating point should be selected at a
distance (in the gap metric sense) no larger thanbP, K , since
all models with a gap metric less thanbP, K to the given
model can be stabilized by the local controllerK. To have
a minimal set of the operating points, the next operating
point should be selected at a distance exactly equal tobP, K ,
or just a little smaller than it.

In practice, the local controller is not available before
selecting the operating points, so we can first prescribe a
distance level, and then starting from an initial operating
point, compute the next operating point till the whole range
of the operating points are covered.

III. G AP METRIC FORSHAPED PLANTS

There are two drawbacks when applying the gap metric
in selecting the operating points for multimodel controller
design:

1) The gap metric is only related to robust stability, that
is, the local controllerK can only guarantee that it
can stabilize the models at operating points close
to the given operating point. However, stability is
not the only issue in control system design. Other
performance should also be guaranteed in selecting
operating points.

2) In multimodel controller design,bP, K should be
checked to make sure it is larger than the prescribed
distance level, otherwise robust stability cannot be
guaranteed.

Motivated by the loop shapingH∞ approach [8], we propose
to include performance weights in the gap metric computa-
tion.

Given a plantP, the loop shapingH∞ design procedure
goes as follows:

1) Loop Shaping. Pre-compensatorW1 and/or post-
compensatorW2 are used to shape the singular values
of P such that the shaped plantP̃ = W2PW1 has the
desired open-loop shape.

2) Robust Stabilization. For the shaped plant̃P, find a
controllerK̃ such that the robust stability marginbopt

is maximized.

b−1
opt = inf

K̃

∥∥∥∥[
I
K̃

]
(I + P̃K̃)−1M̃−1

∥∥∥∥
∞

(10)

whereP̃= M̃−1Ñ is a left coprime factorization of̃P.
3) The final feedback controller is

K = W1K̃W2 (11)

Clearly the method takes the performance into account by
utilizing the pre- and/or post-compensators. It also solves
a robust stabilization problem for the shaped plant, which
guarantees that the performance of the shaped plants does
not degrade even if there is uncertainty in the plant. If the
coprime factorization is normalized, i.e.,

M̃M̃∼+ ÑÑ∼ = I (12)

it is easy to show that

b−1
opt = inf

K̃

∥∥∥∥[
I
K̃

]
(I + P̃K̃)−1[ I P̃ ]

∥∥∥∥
∞

(13)

or
bopt = max

K̃
bP̃, K̃ (14)

So bopt is the maximum of the robustness margin for the
shaped plant̃P. Eq.(10) indicates that we can directly obtain
bopt with loop shapingH∞ design.

The gap metric between the shaped plants thus has poten-
tial applications in selecting operating points for multimodel
controller design. We compute the distance between the
shaped models instead of the original models. Then a
shaped model with a distance less thanbopt to a given
(shaped) model at one operating point can be stabilized
with the local optimal controller and the performance can
be guaranteed.

IV. COMPENSATORSELECTION AND MULTIMODEL

CONTROLLER DESIGN

We need to choose the pre- and/or post-compensators
to reflect the performance requirements. How should we
choose the compensators? Or in other word, what are the
desired open-loop shapes?

The desired open-loop shape normally means high gain
at low frequencies, roll-off rates of approximately 20
dB/decade at the desired bandwidth(s), and higher rates at
high frequencies [11]. It is illustrated in Fig. 1.

To obtain a desired loop shape, we can choose the pre-
and post-compensators following the guidelines [12]:



Fig. 1. The desired open-loop shape

1) The post-compensatorW2 is usually chosen as a
constant, reflecting the relative importance of the
outputs to be controlled. It is often set to an identity
matrix if the model is well scaled.

2) In general the pre-compensatorW1 has the formW1 =
WpWaWg.
• Wp contains dynamic shaping. Integral action

for low frequency performance; phase-advance
for reducing the roll-off rates at crossover; and
phase-lag to increase the roll-off rates at high
frequencies should all be placed inWp if desired.

• Wa is a constant that aligns the singular values at a
desired bandwidth (optional). This is effectively
a constant decoupler and should not be used if
the plant is ill-conditioned in terms of large RGA
elements.

• Wg is an additional gain matrix to provide control
over actuator usage (optional). It is diagonal
and adjusted so that the actuator rate limits are
not exceeded for reference demands and typical
disturbances on the scaled plant outputs.

For multimodel controller design, we have two options
in choosing the compensators:

1) Choose a fixed set of pre- and/or post-compensators
for all operating points.

2) Choose different sets of pre- and/or post-
compensators at different operating points.

Obviously, the first method is simple. However, due to
different gains of the models at different operating points,
the resulting open-loop shapes will certainly be different,
that means at different operating points the performance
specifications are different, which is undesired. The most
desired is that at all the operating points, we specify the
same open-loop shapes. However, it is not always possible
due to system nonlinearity. Note that in process control most
of the disturbance arises at the low frequency, so we will
choose sets of compensators such that the desired open-loop
shapes at all operating points are almost the same at the low
frequency, which means that the closed-loop systems will
have similar disturbance rejection ability at all operating
points.

Once local controllers are designed, we can form the
global controller by switching, or using weights (fuzzy
logic). We will use membership functions to create a
transition region according to the operating pointz,

u(t) =
k

∑
i=1

ui(t)ρi(z) (15)

wherek is the number of operating points,ui(t) is the output
of the ith local controller, andρi(z) is the membership func-
tion of the ith local controller. There are many membership
functions available. We will use trapezoidal functions in the
examples below.

V. I LLUSTRATIVE EXAMPLES

Two examples will be used to illustrate the proposed
method.

Example 1: Isothermal CSTR:Consider an isothermal
continuous-flow stirred-tank chemical reactor (CSTR) in
which a first-order irreversible reaction takes place [13],
[14]. The relevant mass balance is

dCA

dt
=−kCA +(CAi−CA)u (16)

whereCA is the reactant concentration,u= q/V is the input,
andCAi is the feed concentration. Reactor volumeV is 2000
l, CAi is 1.0 mol l−1, reaction temperature is 350K and the
rate constantk is 0.028 min−1.

The steady-state input-output map of the system is shown
in Fig. 2.
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Fig. 2. Steady-state map: Example 1

For a prescribed ‘distance’ levelγ = 0.5, starting from
CA0 = 0, along the steady states, it can be shown that three
operating points are needed to cover the entire range ofCA0.
The three operating points correspond to

1. CA0 = 0.66;
2. CA0 = 0.83;
3. CA0 = 0.91.

(17)

It is clear that the nonlinearity of the system lies at large
values ofCA0. We then need three operating points to design



multimodel controllers, with each local controller will have
a robustness margin of at least 0.5 at each operating point.

To include other performance specifications, e.g., rejec-
tion of steplike disturbances and attenuation of measure-
ment noise, we specify the desired open-loop shape as
follows:

• Magnitude is at least 40dB at low frequency range
(from 0 to 10−2 rad/s);

• Magnitude is at most -20dB at high frequency range
(from 102 to ∞ rad/s);

• Roll-off rate is at most -20dB/dec at medium frequency
range.

With this specification, a pre-compensatorW1 can be chosen
as

W1 = K(1+
1
s
) (18)

where the gainK is adjusted at different operating points.
The post-compensator is chosen asW2 = 1. Now with
the same prescribed ‘distance’ levelγ = 0.5, starting from
CA0 = 0, along the steady states, we find that we also need
three operating points to cover the entire range ofCA0. The
three operating points correspond to

1. CA0 = 0.67;W1 = 0.598(1+1/s);
2. CA0 = 0.89;W1 = 5.289(1+1/s);
3. CA0 = 0.96;W1 = 40(1+1/s).

(19)

The three operating points are labeled with ‘x’ in the steady-
state map (Fig. 2).

The sigma plots of the shaped open-loop plants at the
operating points given above are shown in Fig. 3. They are
almost equal at low frequencies, which guarantees that at
each operating point the local controller will have similar
disturbance rejection ability.
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Fig. 3. Desired open-loop shapes: Example 1 (solid: operating point 1;
dashed: operating point 2; dashdotted: operating point 3)

The gap metrics between the shaped plants at the three
operating points and̃P0 (corresponding toCA0 = 0) andP̃4

(corresponding toCA0 = 0.99) are shown in Table I. The
robustness margins computed by Eq.(10) at three operating
points are shown in the last column of the table. Because

TABLE I

GAP METRICS BETWEEN SHAPED PLANTS: EXAMPLE 1

δ P̃0 P̃1 P̃2 P̃3 P̃4 bopt

P̃0 0 0.500 0.789 0.901 0.946 –
P̃1 0.500 0 0.489 0.754 0.890 0.518
P̃2 0.789 0.489 0 0.442 0.775 0.596
P̃3 0.901 0.754 0.442 0 0.553 0.679
P̃4 0.946 0.890 0.775 0.553 0 –

the linearized model is singular atCA0 = 1, we choose
CA0 = 0.99 as the end point. The gap metric betweenP3

and P4 is greater than 0.5, however, since the robustness
margin is also greater than 0.553, and the values ofCA

at two operating points are close, we do not need more
operating points within the small range ofCA from 0.96 to
1.

The three local controllers can be computed from Eq.(10).

K1 =
0.970s2 +1.198s+0.229

s2 +0.642s
, (20)

K2 =
7.123s2 +10.384s+3.261

s2 +0.830s
, (21)

K3 =
43.21s2 +78.91s+35.703

s2 +0.964s
. (22)

To obtain a global controller, we use the membership
functions shown in Fig. 4 for the three local controllers.
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Fig. 4. Membership functions of local controllers

Simulations are done for the global controller with set-
points changing in the whole range of the operating points.
One simulation result is shown in Fig. 5. It can be shown
that the global controller will have large overshoot for
setpoint step change (dash line in Fig. 5). It is not surprising
since when we design local controllers we aim at achieving
good disturbance rejection. The problem can be simply
overcomed by adding a setpoint filter. In this example, the
filter is chosen as 1

4s+1 which gives good setpoint tracking
as shown with the solid line in Fig. 5.

Example 2. Nonisothermal CSTR:The gap metric for
the shaped plants gives similar operating points as those
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predicted by the gap metric for the original models in the
previous example. However, this is not always the case, as
will be shown in this example.

Consider a nonisothermal CSTR where an irreversible,
first-order reaction takes place [15]. The mathematical
model is

ẋ1 = −x1 +Da(1−x1)exp(− x2
1+x2/γ

)
ẋ2 = −x2 +BDa(1−x1)exp(− x2

1+x2/γ
)+β (u−x2)

y = x2
(23)

wherex1, x2, andu are the dimensionless reagent conver-
sion, the temperature, and the coolant temperature, respec-
tively. The nominal values for the constants areDa = 0.072,
γ = 20,B= 8, andβ = 0.3. The system is interesting in that
it exhibits output multiplicity. Further, linearized systems
at some equilibrium points are stable, and at some others,
unstable.

The steady-state map of the system is shown in Fig. 6.
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Fig. 6. Steady state map: Example 2

Three typical operating points are usually considered in

multimodel controller design [4].

1. u0 = 0,x10 = 0.144,x20 = 0.886,G1 = 0.3s+0.35
s2+1.41s+0.46

;
2. u0 = 0,x10 = 0.447,x20 = 0.75,G2 = 0.3s+0.53

s2+0.36s−0.41
;

3. u0 = 0,x10 = 0.765,x20 = 4.70,G3 = 0.3s+1.29
s2+1.6s+1.6

.
(24)

So the local model at operating point 2 is unstable, while
the models at operating points 1 and 3 are stable. The gap
metric betweenG2 and G1 (G3) is 1, which indicates that
operating point 2 is quite far away from operating points
1 and 3. However, with performance weights, the shaped
models at the three operating points are not so far.

For instance, choose the post-compensatorW2 = 1 and
the pre-compensatorW1 = K(6+3/s), whereK is adjusted
at different operating points to have almost the same mag-
nitude at low frequency. For the three operating points, we
have

1. W1 = 1.6(6+3/s);
2. W1 = 6+3/s;
3. W1 = 1.6(6+3/s).

(25)

The sigma plots of the shaped open-loop systems at the
operating points given above are shown in Fig. 7.
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Fig. 7. Desired open-loop shapes: Example 2 (dashed: operating point 1;
solid: operating point 2; dashdotted: operating point 3)

TABLE II

GAP METRICS BETWEEN SHAPED PLANTS: EXAMPLE 2

δ P̃1 P̃2 P̃3 bopt

P̃1 0 0.371 0.352 0.690
P̃2 0.371 0 0.470 0.536
P̃3 0.352 0.470 0 0.619

The gap metrics between the shaped plants at the three
operating points are shown in Table II. The robustness
margins computed by Eq.(10) at three operating points
are shown in the last column of the table. Clearly the
distances between the shaped models are small compared
with the robustness margin at each operating point. Further
computation shows that the distance between the shaped
model at any of the operating point above and any shaped



model along the steady states is less than 0.5, which means
that we need only one operating point to achieve the desired
performance at the entire operating range.

The three local controllers can be computed from Eq.(10).

K1 =
10.067s3 +20.519s2 +12.994s+2.626

s3 +1.647s2 +0.574s
, (26)

K2 =
9.453s3 +17.082s2 +9.287s+1.554

s3 +2.133s2 +0.816s
, (27)

K3 =
12.212s3 +34.797s2 +23.384s+4.942

s3 +3.682s2 +1.115s
. (28)

With a setpoint filter 1
s+1, the responses of the closed-

loop systems for the three controllers are shown in Fig. 8.
All controllers give good setpoint tracking at the entire
operating range.
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Fig. 8. Closed-loop responses of the CSTR: Example 2 (dashed:K1;
solid: K2; dashdotted:K3; dotted: setpoint)

Sometimes a nonlinear model is not the same as the real
process, then there will be uncertainties in the local models.
Since the local controllers are designed with the robustness
in mind, the global controller is expected to be able to
tolerate some uncertainties in the nonlinear model. It can be
shown that the three controllers all work well when there
are uncertainties in the model parametersDa, B, β and γ.
Fig. 9 illustrates the responses ofK1 for the case that the
parameterβ is increased or decreased by 30%.

VI. CONCLUSIONS

The method of using the gap metric for selecting operat-
ing points in multimodel controller design was extended to
accommodate the performance requirement. With the loop-
shapingH∞ approach, the procedure of selecting operating
points and the local controller design can be integrated. The
local controllers can guarantee not only stability but also
performance specified by the pre- and/or post-compensators.
Thus at each operating points, local controllers can have
similar performance, and the global performance of the
system can be predicted.

Though the performance weighted gap metric is shown to
be very useful in multimodel controller design, a drawback
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Fig. 9. Closed-loop responses of the CSTR: Parameter uncertainty (solid:
nominalβ ; dashed:β increased by 30%; dashdotted:β decreased by 30%)

is that the distance of the local models is dependent on
the compensators, which make it somehow difficult to
determine the operating points without advance knowledge
of the achievable closed-loop performance. Further research
thus should be done to have a better measure of distance
between systems, with performance in mind.
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