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ABSTRACT 

 
In this work the problem of designing a two-point 
(temperature-composition) linear decentralized cascade 
controller for binary distillation columns is addressed 
within a nonlinear robust constructive control framework, 
yielding: a systematic construction, a simple tuning 
scheme coupled with a robust stability criterion, an input-
output pairing criterion based on RGA-like (relative gain 
array) analysis, and the identification of the performance 
limiting factors. The proposed approach is illustrated with 
a benchmark representative example and numerical 
simulations, showing that the proposed linear decentralized 
cascade design can recover the performance of its MIMO 
counterpart (Castellanos-Sahagún and Alvarez, 2004), 
which in turns recovers the performance of an exact 
model-based nonlinear state-feedback composition 
controller. 
 

1. INTRODUCTION 
 

Distillation represents the most used separation operation 
and since it is energy intensive, the development of 
improved control techniques for these processes constitutes 
a relevant problem. Designing dual composition controllers 
is challenging, because of strong nonlinear interaction, and 
ill-conditioning, mostly in high purity columns. Usually, 
the control approach taken is to design decentralized (i. e., 
diagonal) controllers (Niederlinski, 1971; Skogetsad, 1997 
and references therein), which are tuned as two linear 
independent SISO loops. The diagonal input-output parings 
are chosen according to relative gain array (RGA) 
techniques, the interaction conflict is usually handled via 
integral action plus loop detuning (Ogunnaike et. al., 
1994), sacrificing performance. 
 
The structure-oriented nonlinear geometric control theory 
(Isidori, 1995) offers rigorous means to address the 
interaction problem. In fact, dual composition control has 
been investigated in this framework. If the composition 
measurements are on-line available, the construction of a 
nonlinear geometric dual composition control can be 
carried out easily, because the associated relative degrees  
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are equal to one. This has been done using low order 
models (Castro et. al., 1990, Lévine et. al. 1991), and 
nonlinear wave models (Balasubramhanya et. al., 1997), in 
conjunction with suitable state estimators. However, these 
composition controllers have two drawbacks, especially in 
high-purity separations: (i) the low sensitivity of the 
composition outputs with respect to input disturbances and 
controls, and (ii) the control actions take place after the 
disturbances have upset the entire composition profile. To 
cope with these problems, two-point decentralized (Wolff 
and Skogestad, 1996; Alvarez-Ramírez et al. 2002) and 
MIMO (Shin et. al., 2000; Castellanos-Sahagún and 
Alvarez, 2003 & 2004) cascade control schemes have been 
proposed. A fast secondary temperature loop compensates 
quickly the effect of disturbances on the composition 
profile, while a slow primary composition controller yields 
the temperature setpoints, regulating effluent compositions. 
However, it is not clear whether the extension to the 
cascade case of the optimal linear decentralized 
composition controller (Morari et. al., 1989) can 
adequately handle the loop interaction conflict. Wolff and 
Skogestad (1996) studied this problem, and concluded that 
the use of two composition-temperature cascaded loops is 
not advisable, at least for a specific column. Nevertheless, 
three recent studies have successfully addressed this two 
point cascade control problem: (i) Shin et. al. (2000) 
combined a linear decentralized primary controller with a 
nonlinear (reduced-order wave model) observer-based 
secondary controller, (ii) Alvarez-Ramírez et. al. (2002) 
combined a linear decentralized cascade design with a 
linear observer-based modeling error compensator in the 
secondary loop, and (iii) Castellanos-Sahagún and Alvarez 
(2004) proposed a linear MIMO cascade controller, with 
observer-based modeling error compensation in both the 
primary and the secondary loops. In the latter work, a 
linear MIMO cascade recovered the performance of a 
nonlinear state feedback (SF) composition-only controller, 
with the gain limiting factor the presence of high-frequency 
dynamics, mainly holdup dynamics (also known as 
hydraulics, or liquid flow dynamics, Skogestad, 1997). 
Knowing that a linear MIMO cascade controller can 
recover the behavior of a nonlinear SF composition 
controller (Castellanos-Sahagún and Alvarez 2004), and 
keeping in mind the industrial success and acceptance of 
decentralized controllers, in this work is investigated if the 



 

 
 

same behavior recovery can be accomplished with a 
decentralized cascade controller. 

In the present work, we show that this question is 
positively answered, the linear decentralized cascade 
control of distillation columns is addressed within a 
nonlinear robust constructive control framework (Krstić et 
al., 1995; Sepulchre et al., 1997) based on the notions of 
passivity and observability of unknown inputs due to 
unmodeled dynamics. The I/O pairings are carried out in 
the light of relative gain array-like (RGA, Bristol, 1966) 
tools, and the decoupling matrix associated to the output 
controllability property. The solvability conditions and the 
closed-loop robust stability issues are discussed, and 
simple tuning guidelines are provided. The proposed 
approach is tested with numerical simulations, showing 
that the proposed linear decentralized cascade controller 
can recover the performance of its MIMO counterpart 
(Castellanos-Sahagún and Alvarez, 2004), which in turns 
recover the performance of a nonlinear SF one, the main 
gain limitation due to the presence of  holdup dynamics. 

 
2. CONTROL PROBLEM 

 
Consider a binary distillation column with N trays plus 
reboiler and condenser, where a binary mixture is fed at 
tray nf, with molar flow F and composition cF, yielding 
flows B (bottoms) and D (distillate), with compositions co 
and cD respectively. The objective is to maintain (co, cD), 
by regulating the temperatures in two trays (to be chosen), 
using the well known RV configuration (Skogestad, 1997). 
The measured outputs are the temperatures Ts and Te, in the 
stripping (and enriching) section of the column, 
respectively, as well as the composition of the bottom 
effluent, and of tray N. The reason for measuring cN instead 
of cD is explained in Castro et. al. (1990): when cD is 
measured, the decoupling matrix (Isidori, 1995) is singular. 
From standard assumptions (constant pressure; equilibrium 
in all trays; perfect level control, constant molar flows), the 
column dynamics are given by: 

c
.

0 = {η(m1)(c1 - c0) + V[c0 - ω(c0)]}m
-1
0  

c
.

i = {η(mi+1)(ci+1 - ci) + V[ω(ci-1) - ω(ci)] 
 + δ

i,nf F(cf - ci)}m
-1
i ,  1 ≤ i ≤ N - 1 

c
.

N = {R(cD - cN) + V[ω(cN-1) - ω(cN)]}m
-1
N 

c
.

D = V[ω(cN) - cD]m
-1
D 

m
.

i = η(mi+1) - η(mi),   1 ≤ i ≤ N,   η(mN+1) = R 
ψ

T
s  = σ(cs), ψ

T
e  = σ(ce), ψ

c
o = λo(co), ψ

c
N = λN(cN) 

λo(co) = ln(co), λN(cN) = -ln(1 - cN) 
 
where δi,nf

 is Kronecker’s delta, ci (or mi) is the light 

component mole fraction (holdup) at the i-th stage, ω σ and 
η are respectively the nonlinear liquid-vapor equilibrium, 
bubble point and the hydraulic functions; ψ

T
s  (or ψ

T
e) is the 

temperature measurement in the s-th (or e-th) tray in the 

stripping (or enriching section). To improve primary control 
behavior, yco (or ycN) is chosen as the logarithmic composition 
measurement (Shinskey, 1988) in the 0-th and N-th trays.  

For control design purposes, we assume constant holdups, 
in the understanding that the application example will include 
holdup dynamics (Skogestad, 1997; Castellanos-Sahagun and 
Alvarez, 2004). In compact notation, the n-state (n=N+2), 2-
input, 4-output, reduced column model is given by: 

c
.
 = F(c, δ, υ),    ψT = hT(c),  ψc = hc(c)    (1) 

c = (c0, c1 ,…, cN, cD)',  δ = (F, cF)', υ = (V, R )' 
hT(c) = [σ(cs), σ(ce)]',   hc(c) = [λo(co), λN(cN)]' 

At the nominal steady state operation (c-, δ-, υ-), the 
following algebraic equations are satisfied: 
 

0 = F(c-, δ-, υ-),  ψ- T = hT(c-),  ψ- c = hc(c-)    (2) 
 
Our cascade control problem consists in designing a 
decentralized linear dynamic cascade controller to regulate 
the output concentrations (ψc) by means of a slow primary 
controller that yields the temperature setpoint vector (ψ*T) of 
a fast secondary controller that steers the control input vector 
(υ). In particular, we are interested in: (i) drawing a 
systematic design methodology with a simple tuning scheme, 
coupled to a closed-loop robust stability criterion, (ii) 
identifying the I/O pairs for decentralized control, (iii) and 
putting our approach in perspective with the existing linear 
and nonlinear cascade control designs. 
 

3. CONSTRUCTIVE CONTROL FRAMEWORK 

3.1 Coordinate Change  
The application of the relative degree algorithm (Isidori, 
1995) to the reduced column model (2), leads to the 
following conclusions: (i) the secondary input-output pair (yT, 
u) has a (passive) relative degree (1, 1), and (ii) the primary 
input-output pair (yc, yT) has a (non-passive) relative degree 
(s, N - e). This means that the secondary SF (state feedback) 
controller problem admits a robust solution, and that the same 
is not true for the primary controller because its construction 
involves high (s, and N-e) order derivatives of the nonlinear 
uncertain functions ω and σ. Following the constructive 
control paradigm, Sepulchre, Janković and Kokotović, 1997), 
the high degree obstacle is removed via the derivation of a 
linear passive realization of the model. First, let us introduce 
the next (deviation) coordinate change 
x(c) = (x'

c, x'
T, x'

I)', xc = [λo(co) - λo(c-o); λN(cN) - λN(c-N)]' 
xT = [σ(cs) - σ(c-s); σ(ce) - σ(c-e)]',   xI = (cI - c-I)' 
cI = [c1,..., cs-1, cs+1,..., ce, ce+1, cN-1, cN+1]' 

d = δ - δ-,  u = υ - υ-, yT = ψT - ψ- T, yc = ψc - ψ- c 
 
to take the column into (linear in the output) nonlinear system 

x
.

c= fc(xc, xI, d, u),     yc = xc 

x
.

T = fT(xT, xI, d, u),     yT = xT 



 

 
 

x
.

I = fI(xc, xT, xI, d, u),     dim(xI) = n-4  (3) 
 
3.2 Decoupling Matrices 
Now, take the directional derivatives of the output maps 
(matrices and nonlinear maps are defined in the Appendix): 

y
.

c = fc(x, d, u);  y
.

T = fT(x, d, u)       (4) 
 
The decoupling matrices (Isidori, 1995) associated with the 
pairs (u, yc), and (u, yT) are given respectively by 
(Castellanos-Sahagún and Alvarez, 2003): 

A- c = ∂ufc(0, 0, 0) = DcP;  A- T = ∂ufT(0, 0, 0) = DTP 
Dc = diag{(c-1 - c-o)/(c-omo), (c-D - c-N)/[(1 - c-N)mN]} 
DT = diag{σ′(c-s)(c-s+1 - c-s)/ms, σ′(c-e)(c-e+1 - c-e)/me} 

P = ⎣
⎡

⎦
⎤- ps 1

- pe 1 , ps = (R- +F-)/V- ,  pe = R- /V-  
               (5) 
where ps ≥ 1, pe ≤ 1, are the slopes of the stripping and 
enriching section operating lines in the corresponding 
nominal McCabe-Thiele design diagram. As shown in our 
previous work, (Castellanos-Sahagún and Alvarez, 2004), P 
is nonsingular if ps ≠ 1, and  pe ≠ 1 (ps = pe = 1 at infinite 
energy, or equivalently, minimum number of stages, 
Skogestad 1997). 
Necessarily, the nonsingularity of DT requires a temperature 
measurement in each section of the column, preferably 
allocated where the maximum tray-to-tray temperature 
change occurs (Castellanos-Sahagún and Alvarez, 2003). The 
diagonal elements of the diagonal matrix Dc can be close to 
zero, especially in high-purity columns with a large number 
of trays, and this could limit the performance (i.e., small gains 
should be used to avoid error propagation). The 

nonsingularity of the decoupling matrix A- c (or A- T) is 
equivalent to the output controllability property (Chen, 1984) 
of the column with the output yc (yT). Thus, these matrices 
contain the input-output (I/O) interaction information that is 
relevant for a linear cascade control design with passive 
relative degrees. 
 
3.3 I/O Pairings 
Usually, a RGA (relative gain array, Bristol, 1966) analysis 
can be applied to an input-to-output transfer function of a 
MIMO process. Here we apply a similar analysis to the static 
decoupling matrices (which can be seen as the input-to-output 
time derivative static transfer function). The resulting 
interaction parameters ρ are equal for both decoupling 
matrices: 

ρ(A- c) = ρ(A- T) = 1/(1 - pe/ps) = 1 + R- /F-  > 1    (6) 
 
This expression with ρ > 1, says that the best pairings are 
those in the diagonal, since pairings with negative RGA 
parameters should be avoided (Skogestad, 1997; Shinskey, 
1988). This is consistent with previous findings (Sågfors and 
Waller, 1998). Thus, according to the RGA parameter, in the 
light on the interaction feature associated to the output 

controllability property, the best pairings for decentralized 
control are: (y0, V) and (yN, R) for the composition loop, and 
(ys,V) (ye, R) for the temperature loop. Such pairings agrees 
with previous ones (Skogestad and Morari, 1988; Skogestad 
and Lundström, 1990; Wolff and Skogestad, 1996), drawn 
from the application of the RGA to the I/O transfer function 
of the column. 
 
3.4 Linear Decentralized Realization 
In terms of the (nonsingular) diagonal approximations Ac 

and AT of the (squared) decoupling matrices A- c and A- T: 
Ac = diag{-ps(c-1 - c-o)/(c-omo), (c-D - c-N)/[(1 - c-N)mN]} 
AT = diag{-psσ′(c-s)(c-s+1 - c-s)/ms, σ′(c-e)(c-e+1 - c-e)/me} (7) 
 
the distillation column dynamics can be rewritten in the next 
linear-nonlinear interconnected systems form (see figure 1): 

x
.

c = Acu + bc,   yc = xc        (8) 

x
.

T = ATu + bT,  yT = xT 

x
.

I = fI(x, d, u),   bc = βc(x, d, u), bT = βT(x, d, u) 
βc(x, d, u) = fc(x, d, u) - Acu,  βT(x, d, u) = fT(x, d, u) - 
ATu 
(βc, βT, fI)'(0, 0, 0, 0, 0) = (0, 0, 0)' 
 
This system is made by the interconnection of two linear 
decentralized controllable subsystems, and a nonlinear 
unmodeled one. Each linear subsystem is controllable, and 
the state-input pairs (xc,bc), (xT,bT) are instantaneously 
observable (Hermann et. al., 1977), because they can be 
reconstructed from the measurement yc (or yT) and its 

derivative x
.

c (or x
.

T). Therefore, the effect (bc or bT) of the 
"unknown" dynamics xI on the linear subsystem xc (or xT) 
can be reconstructed arbitrarily fast, via a dynamic observer, 
and as a consequence, we can assume they are known for 
observer-based control design purposes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Distillation Column in linear-nonlinear 
interconnected form 
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3.5 Linear Decentralized Control Model 
 
Knowing that any robust linear controller can be realized in 
observer-controller form (Zhou, 1998), let us consider the 
following internal linear decentralized model: 

x
.

c = Acu + bc,   b
.

c  ≈ 0,  yc = xc     (9) 

x
.

T = ATu + bT,  b
.

T ≈ 0,  yT = xT    (10) 
 
where the unknown but observable input bc (bT) is regarded 
as an augmented dynamical state with a rate of change that is 
slow when compared with the observer (to be constructed) 
dynamics. This model is consistent with the Internal Model 
Principle (Wonham, 1985) which states that “to compensate 
the effect of the unknown disturbances (bc, bT) generated by 
an unknown exosystem (i.e., the unmodeled dynamics), the 
controller must include an exosystem model”. 
 

4. LINEAR DECENTRALIZED CASCADE CONTROL 
 
4.1 Cascade SF-Controller 
 
To build the cascade controller, we must find a temperature 
setpoint vector that ensures that the measured compositions 
track the desired setpoints. For this aim, impose the closed-
loop decoupled composition regulation dynamics (ωc is the 
primary loop gain): 
 

x
.

c = - Kcxc,  Kc = diag(ωc, ωc)      (11) 
 
in (9a) and solve for u to obtain the "virtual" controller: 
 
uc = A

-1

c (- Kcxc - bc),           (12) 
 
The application of this controller to the temperature 
equation of the internal model (10) yields the decentralized 
primary controller (i.e., the setpoint generator): 
 

x
.

*T = ATA
-1

c (- Kcxc - bc) + bT         (13) 
 
where ATA

-1

c  is a diagonal matrix. To build the secondary 
controller, let us enforce the first order decoupled temperature 
dynamics in (10): 
 

x
.

T - x
.

*T = - KT(xT - x*T), KT = diag(ωT, ωT)   (14) 
 
(ωT is the secondary controller gain), and solve for u: 

u = A
-1

T [x
.

*T - KT(xT - x*T) - bT],       (15) 
 
4.2 Solvability Conditions 
As stated in Castellanos-Sahagún and Alvarez (2003), 
using well known nonlinear geometric control arguments 
(Isidori, 1995), the necessary and sufficient conditions for 
the solvability of the cascade SF-controller are: 

i) The matrices A- c, A
-

T have inverses, or equivalently, |P| ≠ 
0, |Dc| ≠ 0, |DT| ≠ 0 (see section 3).  
ii) The stability of origin of the (n - 2)-dimensional 
(internal) zero-dynamics (i.e, (12) with xc = 0, under the 
control uc = -A

-1

c bc) 

x
.

I = ΦI(0, x*T, xI, d),   xI(t = 0) = xIo     (16) 

x
.

*T = ΦT(0, x*T, xI, d) 
 
iii) The secondary controller is tuned sufficiently faster 
than the primary one (ωT ≥ ωc). 
Condition (i) is met if: (a) the slopes of the operating lines 
are different (ps ≠ pe). (b) Diagonal elements of Dc can be 
very small numbers (c) DT will be nonsingular if its 
diagonal elements 
 

σ´(c-s)(c-s+1 - c-s) ≈ Ts+1 - Ts ≠ 0       (17) 
σ´(c-e)(c-e+1 - c-e) ≈ Te+1 - Te ≠ 0 
 
As (17) shows, the numerators of the elements of DT are 
approximately the temperature gradients in the chosen 
trays. To obtain a well-conditioned matrix, the 
measurements trays should be those where the maximum 
tray to tray change occurs in each section of the column. 
Physically speaking, the condition (ii) means that the plant 
is stable under the material balance control uc = -A

-1

c bc. 
Condition (iii) is required to enhance the control response, 
i.e., the secondary controller is intended to reject load 
disturbances before the latter ones affect the output 
compositions. 
 
4.3 Measurement-Driven Cascade Controller 
The combination of the open-loop observers (eq. 18), 
associated to the linear internal model (eqs. 9, 10), with the 
cascade controller (eqs. 13, 15) yields the measurement-
driven controller in IMC form (ζ is a damping factor of the 
second order observer, and ωo is the observer gain): 
 
Internal model:           (18) 

x̂
.

c = Acû + b̂c +  K
P

O (yc - x̂c),   b̂
.

c = K
P

I (yc - x̂c) 

x̂
.

T = ATû + b̂T +  Ks
O (yT - x̂T),  b̂

.
T = Ks

I (yT - x̂T) 

Ks
O = K

P

O = 2ζωodiag(1,1), Ks
I  = K

P

I  = ωo
2diag(1,1) 

Control             (19) 

x̂
.

*T = ATA
-1

c [ - Kcx̂c - b̂c] + b̂T      (primary) 

û = A
-1

c ( - Kcx̂c - b̂c) -A
-1

T KT(x̂T - x̂*
T)   (secondary) 

 
4.4 Closed-Loop Stability and Tuning 
The closed-loop error dynamics of the nonlinear column 
(2) with the dynamic output feedback cascade controller 
(18-19), is given by the following equations: 
 



 

 
 

Closed-loop reduced model        (20) 

x
.

I = ΦI(xc, x*T, xI, d) + ΩI (ε, ε*T),   ΩI(0, 0) = 0 

x
.

c = - Kcxc- AcA
-1

T KTε*T + Ωc(ε),   Ωc(0) = 0 

x
.

*T = ΦT(xc, x*T, xI, d) 

x
.

T = x
.

*T + KTε*T + ΩT(ε)     ΩT(0) = 0 

ε
.

*T = - KTε*T + Ω*T(ε),      Ω*T(0) = 0 

ε
.
 = Aoε + πθε(ε, xc, xT, xI, d),   θe(0, 0, 0, 0, 0) = 0 

 
where ε*T = x̂T - x̂*T, and xc, are the regulation errors, and ε is 
the observation error. Moreover, with (θe, Ω*T, ΩT, Ωc, ΩI) = 
0, the individual subsystems (x, ε*T, ε) are stable. From 
singular perturbation arguments (Kokotović et. al., 1986), 
and the vanishing properties of (θe,Ω*T, ΩT, Ωc, ΩI), follows 
that the preceding closed-loop system is stable if the 
observer is tuned sufficiently faster than the secondary 
controller, which in turn must be tuned faster than the 
primary one. This is 
 
ωo > ωT > ωc 
 
such that the estimation, secondary and primary controller 
dynamics are sufficiently separated. The presence of 
(parasitic high frequency) holdup dynamics limits the 
observer and controller gains, as shown in Castellanos-
Sahagún and Alvarez (2004). In that work it was proven 
that with any nonsingular approximations of Ac and AT, the 
linear decentralized controller recovers the behavior of an 
exact model-based nonlinear SF composition controller. 
The preceding results lead us to the following tuning 
guidelines. Keeping in mind the level of measurement 
noise and the unmodeled high-frequency dynamics (mainly 
holdup dynamics): 
 
(i) Tune the observer gain ωo as fast as possible  
(ii) With the primary controller disconnected (ωc = 0), tune 
the secondary temperature controller as fast as possible, 
typically at least 3 - 10 times slower than the observer (ωT 
≈ 1/10 - 1/3ωo).  
(iii) Increase the primary control gain ωc until a satisfactory 
behavior is attained, in the understanding that ωc|A

-1

c | ≈ 1 
limits the gain ωc. 
 

5. APPLICATION EXAMPLE  
 

As a representative example, let us consider Morari et. al.’s 
(1989) distillation column A, including the holdup 
dynamics described in Wolff and Skogestad (1996). The 
application of the sensor allocation criterion (17) yields 
that the temperature measurement trays are s = 13 
(stripping section), e = 24 (enriching section). The 
application of the tuning guidelines yielded in a rather 
straightforward manner ζ = 3, ωo = 4 min-1, ωs = 0.67 min-1, 

ωp = 0.0.4 min-1. We compare the performance of the 
proposed approach with the one of the previous MIMO 
linear cascade control of Castellanos-Sahagún and Alvarez 
(2004) (with ωo = 0.89 min-1, ωs = 0.267 min-1, ωp = 0.133 
min-1).  Figure 2 shows the closed-loop (CL) response of 
both controllers to a sequence of step disturbances. At t = 0 
minutes, the column is subjected to a step perturbation in feed 
composition, from 0.5 to 0.2. Then at t = 200 minutes, there 
is -30% step change in feed flow rate. At t = 400 minutes, 
feed composition steps from 0.2 to 0.5. Finally, at = 600 min, 
feed rate returns to its nominal value. From the figure we can 
see that the proposed linear decentralized cascade controller 
yields a behavior similar to the aforementioned MIMO 
controller, with recovery times of about 50-60 min (i.e, 0.25-
0.3 natural settling times, if we consider that this column has 
a response time of about 200 min). As stated before, the 
presence of (high-frequency) holdup dynamics limits the 
observer and controller gains (e.g., if higher observer and 
controller gains are used, the response becomes oscillatory; 
nevertheless, the output compositions are still regulated 
properly). On the other hand, if slower observer and 
controller gains are used, the response degrades (i.e., the 
deviations, and the recovery rates are larger). This was shown 
in the previous study of Skogestad and Lundström (1990), 
where the use of more conservative gains and integral times 
in their decentralized PI composition controllers degraded the 
performance. Comparing with the existing linear and 
nonlinear controllers (Skogestad and Morari, 1988; Shin et. 
al., 2000), the proposed controller yields a faster recovery 
with smaller deviations, meaning that the successful 
optimal composition control design (Morari et. al., 1989) 
can be effectively extended to the cascade case. 
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Figure 2. Response comparison between the 
proposed cascade decentralized controller and a 
linear MIMO one, to a sequence of step 
disturbances. 

 
 
 
 



 

 
 

6. CONCLUSIONS 
 
A methodology for the constructive design of two-point 
decentralized cascade controllers for binary distillation 
columns has been developed, including a systematic 
construction, a tuning scheme coupled with a stability 
criterion, the election of the best pairings for decentralized 
control, and the property of recovering the behavior of an 
exact model based nonlinear SF composition controller. 
The methodology is consistent with widely used heuristic 
knowledge, and identifies a connection between linear and 
nonlinear control techniques.  
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APPENDIX 
 

θc(xc, xT, xI, ε*T, ε, d) = (∂βc/∂xc)x
.

c + (∂βc/∂xT)x
.

T  

+ (∂βc/∂x
I
)x
.

I + (∂βc/∂u)û
.
 + (∂βc/∂d)d

.
 

θT(xc, xT, xI, ε*T, ε, d) = (∂βT/∂xc)x
.

c + (∂βT/∂xT)x
.

T  

+ (∂βT/∂x
I
)x
.

I + (∂βT/∂u)û
.
 + (∂βT/∂d)d

.
 

û
.
 = Ωu(x, ε*T, ε) = A

-1

c {- Kc[- Kc(xc + εc) + K
P

Oεc] - K
P

I εc} 

- A
-1

T  KT[-KTε*T + Ω*T(ε)] 
 
Observation errors 
ε = (εc1, εbc1

, εc2, εbc2
, εT1, εbT1

, εT2, εbT2
)' 

εc1 = x̂c1 - xc1,  ε
bc1

 = b̂c1 - bc1, 

εc2 = x̂c2 - xc2,   ε
bc2

 = b̂c2 - bc2 

εT1 = x̂T1 - xT1,  ε
bT1

 = b̂T1 - bT1, 

εT2 = x̂T2 - xT2,  ε
bT2

 = b̂T2 - bT2 
 
bd = block diagonal matrix 

A = ⎣
⎡

⎦
⎤-2ζωo  1

-ωo
2    1 , Ao= bd(A, A, A, A) 

πo = ⎣
⎡
⎦
⎤0

1  , π = bd(πo, πo, πo, πo) 

θε = [θθc(xc, xT, xI, ε*T, ε, d), θT(xc, xT, xI, ε*T, ε, d)]' 
Ωc(ε) =  - Kcεc- εbc 
ΩI(ε, ε*T) = qI[qu(ε, ε*T)] 
qI(û - uc) = fI(x, d, û) - fI(x, d, uc) 
û - uc := qu(ε, ε*T)= A

-1

c ( -Kcεc + ε
bc

) - A
-1

T KTε*T 

ΩT(ε) = ATA
-1

c ( - Kcεc + ε
bc

) 

Ω*T(ε) = K
s

OεT 
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