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Abstract— This paper presents a mathematical discrete
event state space model for plants and controllers that is
amenable to classical state space control theory. The model
is based upon industry-standard N-squared diagrams which
are shown to readily translate into a state space matrix form. A
hierarchical structure is defined that allows the design to scale
in dimension and remain tractable. The motivation for using
this state space model approach is to develop reachability,
observability and stability results using approaches based upon
existing control theory, and well as to adapt certain control
design paradigms. The state space model defined is based upon
Boolean algebra, and so the desired theoretical results must be
adapted accordingly. The model is described in the context of
two examples, the first being a Bouc-Wen modified hysteresis
model, and the second a general supervisory discrete-event
servo controller.

I. I NTRODUCTION

The discrete event model defined in this paper is most
readily defined in the context of examples. A four-state
model of a Bouc hysteresis is used to illustrate the fun-
damental concepts underlying N2 diagrams, and a larger
more complicated supervisory servo controller is used to
motivate the idea of hierarchically structured N2 diagrams
and to provide a basis for the state space discrete event
control paradigm derived from the N2 diagrams.

II. N2 DIAGRAM DEFINITION ILLUSTRATED USING AN

MR DAMPER MODEL

The state space discrete event model presented herein
was motivated while investigating means of stabilizing a
three degree of freedom (3DOF) structure during seismic
excitation. The nonlinear controller considered utilized a
hysteretic magnetorheological damper (MRD) to control
the structure’s effective damping, a so-called semi-passive
approach. In the 3DOF structure shown Fig. 1,v is the
applied control signal to the MRD,f is the force applied
to the MRD by the structure,mi and xi, i = 1, 2, 3, are
the respective masses and the positions of the three floors
in the structure, and̈xg is the applied ground-level seismic
acceleration. The equations of motion for the structure are
detailed by Dykeet al. [1], [2], [3], but only the discrete
event portion of the model is presented here.
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Fig. 1. Connection of an MR damper to a 3DOF building.

A. An MR Damper Bubble Chart State Diagram

The hysteretic nature of the MRD is represented using a
second-order modified Bouc-Wen hysteresis model [4], [5],
[6] described by a differential equation of the form

ż = (a− b1z
2)ẋ, sgnz = sgnẋ, (1)

ż = (a− b2z
2)ẋ, sgnz 6= sgnẋ, (2)

where a, b1, b2, x and z are real scalars,x represents
displacement of the MRD,z is a nonphysical variable
representing the hysteretic portion of the restoring force
applied by the MRD, anda, b1 and b2 are loop-shaping
parameters for the hysteresis.

Use of the Bouc model led to the discrete event bub-
ble chart model in Fig. 2. The appealing intuitive clarity
displayed by bubble charts, however, generally disappears
as the system becomes more complex, limiting this form



Fig. 2. Connection of an MR damper to a 3DOF building.

to relatively simple models with few states and transitions.
For example, even the relatively simple chart for the MRD
threatens to become an intractable tangled web of transitions
if a second damper should be added to the system.

B. An MR Damper N2 Diagram

N-squared diagrams are an industry standard for repre-
senting complex discrete event plant and controller behav-
ior, and provide a basis for the mode and fault control
designs in autonomous and semi-autonomous systems. Ad-
ditionally, their matrix-like structure leads readily to the
development of state space realizations, paving the way
for qualitative assessment of discrete event control system
properties.

For a given model having a set ofn distinct operating
conditions, let the corresponding discrete event model have
n unique states. The corresponding N2 diagram is ann ×
n grid with the n discrete states of the model placed on
the squares on the main diagonal of the grid. The first or
entrance state is placed in the upper left corner and the exit
or final state is placed in the lower right corner. Intermediate
states can be placed in any order along the main diagonal.
Fig. 3 illustrates placement of the states shown in the state
chart in Fig. 3 into an N2 diagram (entries A1, B2, C3 and
D4).

Transitions are represented on the off-diagonal elements
in an N2 diagram. Letsi, i = 1, ..., n, denote the set of

1 2 3 4

A ẋ ≥ 0 ẋ < 0 ẋ ≤ 0
z ≥ 0 z = 0 z > 0

B ẋ ≥ 0 ẋ ≥ 0 ẋ < 0
z = 0 z < 0 z < 0

C ẋ > 0 ẋ > 0 ẋ ≤ 0
z = 0 z < 0 z ≤ 0

D ẋ > 0 ẋ ≤ 0 ẋ ≤ 0
z > 0 z = 0 z > 0

Fig. 3. N2 diagram corresponding to Fig. 2.

1 2 3 4

A s1 t13 t14

B t21 s2 t23

C t31 t32 s3

D t41 t43 s4

Fig. 4. Compact N2 diagram for Bouc-Wen hysteresis model.

discrete states. Each transition is uniquely associated with
a singlesourcestate and a singledestinationstate. Given
a unique pair of states(si, sj), wherei 6= j, let si denote
the source state, andsj denote the destination state. The
transition associated with this pair, denotedtij , is placed
in grid location(i, j) of the N2 diagram. Fig. 3 illustrates
placement of the transitions shown in the state chart in
Fig. 2 into an N2 diagram.

Note that the transitions in Fig. 2 having the same source
and destination state are shown only for completeness’ sake
in illustrating the hysteretic behavior of the actuator model,
and are omitted from the N2 diagram. Additionally, for
purposes of this work, all possible or relevant operating
conditions of the modeled system are assumed to be repre-
sented in the N2 diagram.

Evaluation or reading an N2 diagram proceeds as follows.
Let si represent the state that corresponds to the present
operating condition of the system. The system is then said
to be in state si, with the implication that the logical
relations shown in the N2 diagram for statesi evaluatetrue.
Equivalently, the statesi is said to beactive. The system
will change to statesj if and only if an event occurs such
that the conditions associated with transitiontij evaluate
true, assumingtij exists; in this situation, transitiontij is
said to beactive. Nonexistent transitions are represented in
the N2 diagram by empty squares in the grid.

Although useful for illustrative purposes, Fig. 3 assumes
an equivalent and more compact and convenient format
when associated with state and transition tables, illustrated
for the MRD example in Fig. 4 and Tables I and II. Note
∧ and∨ represent the logicaland andor operations.



TABLE I

STATE TABLE FOR BOUC-WEN HYSTERESIS MODEL

State Description

s1 (ẋ ≥ 0) ∧ (z ≥ 0)

s2 (ẋ ≥ 0) ∧ (z < 0)

s3 (ẋ ≤ 0) ∧ (z ≤ 0)

s4 (ẋ ≤ 0) ∧ (z > 0)

TABLE II

TRANSITION TABLE FOR BOUC-WEN HYSTERESIS MODEL

Transition Description

t13 (ẋ < 0) ∧ (z = 0)

t14 (ẋ ≤ 0) ∧ (z > 0)

t21 (ẋ ≥ 0) ∧ (z = 0)

t23 (ẋ < 0) ∧ (z < 0)

t31 (ẋ > 0) ∧ (z = 0)

t32 (ẋ > 0) ∧ (z < 0)

t41 (ẋ > 0) ∧ (z > 0)

t43 (ẋ ≤ 0) ∧ (z = 0)

C. Operating Assumptions and Constraints

In the sequel, a single-threaded serial process will be
assumed. Extension of the model to parallel processes is
reasonably straightforward and is omitted for brevity. The
following modeling assumptions are designed to facilitate
control under fault conditions by eliminating ambiguity with
respect to active states and transitions and also to admit a
specialized state space representation [7].

Assumption 1Each state in an N2 diagram is unique.

Assumption 2 At most one state in an N2 diagram is
active at any given time.

Assumption 3At most one transition in an N2 diagram
is active at any given time.

Assumption 4 Ideally, the time interval over which a
transition is active has measure zero.

Assumption 4 implies that plant activity, including faults,
cannot occur when a transition is active. This greatly
simplifies modeling and design.

If the system is in a given statesi, and the logical rela-
tions associated with it evaluatefalse, then the system must
change state. The new state is determined by examining the
transitionstij , 1 ≤ j ≤ n, i 6= j. If, for example, transition
tik evaluatestrue, then the system has changed to statesk.

D. A State Space Representation of N2 Diagrams

A means of realizing a state space representation of an
N2 diagram is as follows. LetBL = {0, 1} where1 and
0 denote logicaltrue and false, and letBn

L denote the n-
dimensional Euclidean productBL × BL × · · · × BL. Let
xi ∈ BL, i = 1, . . . , n be elements of a state vectorx ∈ Bn

L,
wherex = [x1x2 . . . xn]T . Associate elementxi in the state
vectorx with statesi (grid position(i, i) in the N2 diagram),

and definexi = 1 to mean that statesi is active. Given
xi = 1, then Assumption 1 requiresxj = 0 for all j 6= i.

Define an eventk, k = 0, 1, 2, . . . , to be a change of the
plant’s operating conditions at timetk ∈ R, tk ≥ 0 such
that the plant changes its state, and requiretj < tk if j < k.
Assumption 4 requires such changes to be modeled as being
instantaneous. Changes requiring nonnegligible intervals of
time are modeled by creating a special state that is active
during the change. Letx(k) denote the value of the state
vector x for the time interval[tk, tk+1). For example, if
the plant is in statesi during the time interval[tk−1, tk),
then xi(k − 1) = 1 and xj(k − 1) = 0 for 1 ≤ j ≤ n,
j 6= i. Upon eventk, suppose the plant moves into state
sq, 1 ≤ q ≤ n, q 6= i (i.e., transitiontiq is true at timetk).
Then for the time interval[tk, tk+1), the plant is in statesq,
and this is reflected in the model by the fact thatxq(k) = 1
andxj(k) = 0 for 1 ≤ j ≤ n, j 6= n.

The model described herein is of a form similar to that
of a time-varying discrete time linear system,

x(k + 1) = A(k)x(k) + B(k)u(k), (3)

except that in this realization,k represents the occurrence
of thekth eventand is not necessarily meant to imply that a
fixed amount of time has elapsed. In this representation, the
state vectorx is defined above,u ∈ Bm

L is a vector of input
signals,A ∈ Bn×n

L is a matrix mappingA : Bn
L → Bn

L and
B ∈ Bn×m

L is a matrix mappingB : Bm
L → Bn

L.
The construction of the state matrixA is conceptually

straightforward: for a given point in time, refer to the logical
relations associated with an N2 diagram (e.g.,Tables I and
II). If the logical relations associated with statesi in the
state table are true, thenAii = 1 (true), otherwiseAii = 0
(false). If the logical relations associated with transitiontij
in the transition table are true, thenAji = 1, otherwise
Aji = 0 (observe the transposition).

Let b ∈ B and let the value ofb remain fixed over the time
interval Tk = [tk, tk+1). For a given eventk, if an element
on the main diagonalAii(k) = b, thenAii(k) = b during
the entire time intervalTk. The off-diagonal elements of
A correspond to transition activity, and these elements are
false except at the points in time corresponding to events,
tk, k = 0, 1, . . ., and at these points in time exactly one of
the off-diagonal elements ofA will be true.

Construction ofB proceeds in a similar manner and
corresponds to the applied control inputu, and the elements
of B determine under what operating conditions the input
u is permitted to affect the statex.

As an example, consider the hysteresis in the MRD
system described above in states1 (e.g., ẋ ≥ 0, z ≥ 0)
so that x(0) = [1 0 0 0]T . If ẋ and z change sign, then
the model changes state tos3 via transition A3 in the
N2 diagram. Because this plant is autonomous, the all
elements of the state input matrixB are false, and it can be
neglected without loss in this case. The state space model
representation of this event is
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0
0
1
0

 . (6)

A caveat is appropriate at this point; the representation
above uses the integers 1 and 0 to represent the Booleantrue
and false. The implied matrix multiplication is defined in a
manner consistent with Boolean operations. In the example,
for i = 1, 2, 3, 4,

xi(k + 1) = (Ai1(k) ∧ x1(k)) ∨ (Ai2(k) ∧ x2(k)) ∨
(Ai3(k) ∧ x3(k)) ∨ (Ai4(k) ∧ x4(k)). (7)

From the description above, clearly the elements in
matricesA andB are functions of more than just the event
index k. For the example provided, values of the elements
of A are given by functions of the state vectorxp = [ẋ z]T

of the physical plant. For more general cases, the values of
the elements ofA andB can be given as functions of time.
An alternative representation, omitted from this discussion,
argues that the control input enters via the functions that
determine the values of the elements ofA. In this latter
case, Eq. 3 has the form

x(k + 1) = A(k, xp, t, u)x(k). (8)

III. H IERARCHICAL N2 DIAGRAMS

Hierarchical N2 diagrams have been developed for
processor-based control of complex precision servomech-
anisms under nominal and fault conditions. Applications
include wind and seismic damping systems with certain
semi-passive actuators, wherein the plant dynamics can
change significantly with direction, distance and rate of
travel; dynamic reconfiguration, redundancy management
or graceful degradation in systems utilizing networks of
sensors and actuators; and autonomous or semi-autonomous
initialization, testing or calibration of control system com-
ponents that are not readily accessible.

To illustrate the hierarchical concept for N2 diagrams,
consider the hypothetical bubble chart state diagrams shown
in Figs. 5 and 6 for a general supervisory servo controller.
In these diagrams, although the transitions paths are shown,
their associated logical conditions are omitted without loss
in this discussion. The N2 diagrams corresponding to these
are shown in Figs. 7 and 8.

Fig. 5. Top-level bubble chart state diagram for general supervisory servo
controller.

Fig. 6. Bubble subchart state diagram for initialization state of servo
controller.

1 2 3 4 5 6

A Start t12

B Init t23 t26

C Standby t34 t35 t36

D t43 Operate t45 t46

E t53 Test t56

F Shutdn

Fig. 7. N2 diagram for top-level supervisory controller.



1 2 3 4 5 6

A s1 t12

B s2 t23 t25

C s3 t34 t35

D s4 t45 t46

E s5 t56

F s6

Fig. 8. N2 diagram for the Initialization state of the top-level supervisory
controller in Fig. 7.

Referring to the top-level N2 diagram in Fig. 7, the
supervisory controller activity begins upon entrance to
the Start state in position A1. Upon completion of any
necessary activity in this state, the model then moves
to the initialization state in grid location B2 once the
conditions for transitiont12 to become active are satisfied.
The initialization state, however, is actually a superstate, or
a parent state, in that it has six substates, shown in Figs. 6
and 8. Upon entering the initialization state in grid location
B2 in the top-level N2 diagram in Fig. 7, controller activity
immediately passes to the Power On state in grid location
A1 of the N2 diagram shown in Fig. 8. When activity in the
Initialization N2 diagram is completed, which is equivalent
to the model reaching the Exit state in grid location F6 in
Fig. 8, controller activity immediately returns to the parent
diagram in Fig. 7. In many ways, this is similar to a software
subroutine being called by a parent routine. Upon returning
to the parent N2 diagram, the controller evaluates the results
of the activity performed in the initialization state, and either
transition t23 or t26 is activated, moving the model into
Standby or Shutdown, respectively.

The advantages of the hierarchical structure outlined
above are, in many ways, similar to those put forth for
writing subroutines, following the rules of so-called struc-
tured programming. The controller can be structured into
smaller pieces, and with each piece being of a tractable
size (e.g., able to fit on a single sheet of paper is often
a good rule) and complexity. More importantly, each of
these pieces can be verified independently with regard to
qualitative characteristics discussed in the next section, such
as performance and reachability.

IV. A B ASIS FORQUALITATIVE RESULTS

At this point, a constructive approach for relating a spe-
cialized state space realization to the classical N2 diagram
and associated state charts has been demonstrated. The
appeal of the state space representation is that classical
controls concepts like stability, reachability and detectability
are readily formulated in a rigorous manner. The latter two
concepts are of particular interest in discrete event control
designs for operational mode and fault management. They
provide a means of assessing whether a system can get into
and out of operational modes as required, and also whether

TABLE III

TRUTH TABLE FOR LOGICAL XOR FUNCTION

Command Feedback Error

0 0 0
0 1 1
1 0 1
1 1 0

one can determine or observe what conditions triggered a
particular response from the controller.

The motivation for the above approach is driven by
the need to analytically assess (as opposed to experimen-
tally test) complex discrete event systems. For numerous
systems, exhaustive testing of a supervisory controller is
prohibitively expensive from a cost and schedule point of
view. Even more importantly, testing of failure mechanisms
is often too dangerous or damaging, and so the designer falls
back on simulation and analysis, because exhaustive testing
is not practical or desirable. Simulation, however, is often
just as complicated as the design itself, and constructing
an exhaustive simulation for all possible configurations of
states and transition firing patterns is sufficiently costly and
complex that one continues to search for an alternative
means of assessing a discrete event controls design. The
mathematical state space model formulation presented in
this paper is intended to suggest such an alternative by
providing a basis for analytical determination of many
standard classical controller properties such as stability,
reachability, detectability, disturbance rejection and so forth.
The model proposed herein, however, is sufficiently rich and
interesting that it requires mathematical adaptation to obtain
the analogues of many classical controls results. Some of
the adaptations being pursued are presented below.

A. Features of Using Boolean Operators

The state space model defined herein utilizes Boolean
operators∧ (logical and) and ∨ (logical or) instead of
multiplication and addition, and the field of real numbers R
is replaced withBL = 0, 1, where0 denotes logicalfalse
and1 denotes logicaltrue. An immediate feature that arises
is that no inverse exists for the∨ operator. This is somewhat
analogous to losing the mathematical ability to subtract.
Given that feedback control has a long history of using
subtraction to generate error signals at feedback junctions,
the question arises of how to generate an error signal for
the Boolean representation being discussed. One potential
solution is to use the logical exclusive or operation (xor),
which has the truth table shown in Table III. Observe that
when the command and feedback signals differ, the error
signal has a value of 1, and is 0 otherwise. A discrete event
controller could be designed to act whenever the error signal
is true. Clearly, this can be extended to the case where the
command, feedback and error signals are vectors as opposed
to scalars.



B. Reachability

A major question asked of discrete event control designs
is whether there exist states that cannot be entered under
any conditions, and correspondingly, whether there are
states that once entered, cannot be left. These questions are
addressed by the concept ofreachability. Using the state
space model form presented in this paper, an exhaustive
simulation can be constructed to determine the answer.
A more elegant mathematical solution is sought, however,
building upon the similarity of the discrete event state
equation in Eq. 3 to the discrete time, time-varying state
equation. The reachability results for the discrete time case,
although widespread (e.g., [8], must be modified to work
with the Boolean framework of this model.

V. CONCLUSION

The specialized state space realization provides a foun-
dation for mathematically analyzing qualitative properties
of the discrete event system. Of specific interest are the
classical ideas of stability, reachability and observability
similar to those of linear discrete time time-varying systems,
and stability and performance criteria. The generation of
analytical qualitative results is a key potential feature of the
paradigm because rigorous validation of the discrete event
controller design is then possible. In particular, the concept
of reachability could be developed into a means of analyzing
whether a plant can get into and out of operational modes

as required without the necessity of conducting exhaustive
(and potentially damaging in the case of faults and failures)
simulations or tests.
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