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Abstract—This paper is motivated by a practical control One motivation for the work in this paper is inferential
problem that the output sampling rate is often limited. In  control. In this area, Lee and Morari developed a generalized
particular, for a dual-rate system in which the output sampling jnterential control scheme and discussed various optimal

period is an integer multiple of the input updating period, . .
we use a polynomial transformation technique to obtain a control problems for multirate/dual-rate systems [12];€lti

frequency-domain model. Based on this model, we propose a al- applied dual-rate modeling to Octane quality inferential
self-tuning control algorithm by minimizing output tracking control [3], [18]. However, most control algorithms reported
error criteria from directly the dual-rate input-output data,  in the area of multirate systems assume that the parameters
analyze convergence properties of the algorithm in detail in - ¢ mitirate models are known, which is usually not the
the stochastic framework, and show that the control algorithm . . .
can achieve virtually asymptotically optimal control, ensure the case. Also, most theoretical results on parameter .estlmatlon
closed-loop systems to be globally convergent and stable, and based adaptive control assume that both the estimator and
the output tracking error at the output sampling instants has the controller are updated at the same rate, e.g., the well-
the property of minimum variance. The results from simulation  known Astréom and Wittenmark self-tuning regulator (1973)
are included. [19]. These results are not suitable for the dual-rate setting.
Keywords: Multirate systems, sampled-data systems, multirate For dual-rate sampled-data control systems, we expect that
modeling, self-tuning regulator, adaptive control, convergence the control law is updated at a fast rate even if the output is
properties, least squares. sampled at a relative slow rate.

In the field of dual-rate sampled-data adaptive control,
the algorithm presented by Kannigt al. is based on a

In many industry applications, the outputs are sampled parameterized model with its AR coefficients corresponding
slower rates than the control updating rates, mostly due to the fast sampling rate and the MA coefficients to the
hardware limitation [1], [2], [3]. A typical example is the slow sampling rate [20]. Since the prediction and control
control of the bottom and top composition products of are all based on the slow sampling rate, the desired fast-rate
distillation column by acting on the reflux and vapor flowsystem performance may not be achieved. Also, Ztetraj.
rates; it is apparent that the control variables can be quickbtudied an indirect model reference multirate adaptive control
manipulated, while infrequent and delayed composition me§t7]; Mitsuaki et al. presented a least squares based self-
surements are obtained by gas chromatography [4]. In sutiming control algorithm [21]. But these algorithms handle
cases where several sample rates co-exist, it is necessarnpidy noise-free systems. Scattolini presented a gradient-based
configure a control system to achieve a desired closed-lo@plaptive control algorithm for multirate systems based on
system performance. This paper is concerned with a dualARIMA models from lifted state-space models [4]. In mul-
rate case where the output samples are at a relative slévate stochastic systems with noise, to our best knowledge,
rate, whereas the control signal is updated faster. the control problems based on model identification have not

More generally, the study of multirate systems goes badkeen fully investigated, especially the self-tuning control and
to the early 1950's. The first important work was performedts convergence properties based on multirate data directly,
by Kranc (1957) on the switch decomposition technique [Swhich are the focus of this work.
During the last decade, Al-Rahmani and Franklin studied The paper is organized as follows. In Section Il, we simply
multirate LQG/LQR optimal control [6], [7]; Chen and Qiu introduce the adaptive control scheme of dual-rate systems.
[8], Qiu and Chen [9], [10], and Safs et al. [11] studied In Section lll, using a polynomial transformation technique,
H, optimal control of multirate systems, considering theve establish the mathematical model for dual-rate systems
causality constraint. In the process control literature, ke and a least squares based self-tuning control. We prove the
al. [12], Scattolini and Schiavoni [13], Ling and Lim [14], global convergence of the control algorithm proposed in
and Shenget al. [15] studied model based predictive controlSections IV and V. In Section VI we give an illustrative
of multirate systems; Scattolini [4], Albertad al. [16], and example demonstrating the effectiveness of the algorithm
Zhanget al. [17] investigated adaptive control involving dual- proposed in the paper. Finally, we offer some concluding
rate/multirate systems. remarks in Section VII.

I. INTRODUCCTION
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Il. PROBLEM FORMULATION conceptually simple, easy to implement in digital computers,
nd practical for industry.

The objective of this paper is to propose an algorithm to
estimate the intersample outpdtg(kg+j): j=1, 2, ---,

(¢ — 1)} based on the given dual-rate measurement data,

The focus of this paper is a class of multirate system@
— the dual-rate systems- as depicted in Figure 1, where
P. is a continuous-time process; the input(t) to P, is

ulk u(t ot kq design an adaptive controller so as to make the oujpkit
Q, Hy, UN P. bel?) Sqh 43/(' ) track a given desired outpyt (k) by minimizing the tracking
error criterion function
Fig. 1. The dual-rate system with noise J[u(k)] _ E{[yf(k + d) . yr(k + d)}2|fk_1}, (2)

produced by a zero-order hold,;, with periodh, processing
a discrete-time signal(k); the outputy.(t) of P. is sampled
by a sampleiS,;, with periodgh (¢ being a positive integer)
yielding a discrete-time signaj(kq) with period gh. The
input-output data available are [1l. M ODELING AND CONTROL ALGORITHM OF

o {u(k): k=0,1,2,---} at the fast rate, and DUAL-RATE SYSTEMS

o {y(kg): k=0,1,2,---} at the slow rate. Setting the noise to be zero in Figure 2, we assume that
Suppose that due to physical constraints, the intersamptee open-loop transfer function from(k) to y(k) takes the
outputs,y(kq + j), j = 1,2,---,q — 1, are not available, following real-rational form:
and thus we have missing output samples. Here, we refer to 2 dp(2) 2 dp(2)

{u(k),y(kq)} as thedual-rate measurement data. Pl(z)fw, or y(k)= ) u(k)  (3)

and study the properties of the closed-loop system. Here,
represents the system deldy: } is theo algebra sequence
' generated by the observations up to and including time

The adaptive control scheme we propose is shown in
Figure 2, wherey,.(k) denotes a deterministic reference inpuiW'th
or desired output signak(ig) a random noise With zero a(z) = 14arz +tagz 24 - +anz",
mean. For such a scheme to work, we can exploit an identi-

e(iq) .
Here, d denotes the system delay and! represents a unit

3&4 Comroner}l@q H, ’“_(t){ P, ve(t) San F.é}ﬂl backward shift operator at the fast ratex!u(k) = u(k—1).

b(z) = bo+ biz7t F oz 4 bz

This model in (3) is not suitable for dual-rate adaptive
y(iqy  control because it would involve the unavailable outputs
0 *J, {y(kg+j): j.: 1,2,---,(¢ — 1)}. To obtain a model that.
Intersample 4(iq + j) we can use directly on the dual-rate data, by a polynomial
Output Estimator[ * transformation techniqué?; (z) needs to be converted into a
Y1) | form so that the denominator is a polynomialzn? instead

of 2~ 1.

Fig. 2. The adaptive control schemg=£1,2,---,q— 1 . .
9 P Mg a1 For a general discussion, let the rootsadf) be z; to get

fication algorithm to produce the estimatesf the unknown n

system parameters based on the dual-rate{ddta), y(kq)}, a(z) = H(l — b,
and compute the intersample (missing) outputs by using the

estimated model and input(%). In order to feed back to the
controller a fast rate signaj;(k), representing the output N

y(k), we use the slow sampled outpytiq) everyq period, _ -l 2.2 a1 gl
giving y(0), y(q), and y(2q), etc., and use the estimated %4(2) H(l—i—zlz FEE A )
output §(iqg + j) to fill in the missing samples ig(k). In
Figure 2,ys(k) connects toy(ig) at timesk = ig, and
connects tog(ig + j) atk = ig+ 4,5 = 1,2,---,(¢ — 1).
Thus the output of the switch is a fast rate signal given by

=1
Define

i=1
Multiplying the numerator and denominator @ (z) by
¢4(2) transforms the denominator into the desired form:

_ () ¢e(2) _ 27B(2)

ys(k). Due to the periodic switch, the fast rate sigpalk) hi(z) = a(z)pe(z) 1 alz) “)
can be expressed as or
_ —d
) - { yia),  k=ig al2)y(k) = =~ B(z)u(k) 5)
! 9(ig + ), k=z‘q+j,j=1,2,-~-,(q—1)(. with
To summarize, the dual-rate adaptive control scheme uses a(z) = lT4arz "+az 24 a2z ™,
a fast single-rate controller and a periodic switch. It is ((z) = ﬂo+ﬁ1z‘1+Bgz‘2+~-~+ﬁqnz‘q”.
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Equation (4) is the frequency-domain model for the dual-rate Let é(kq) be the estimate of at current timekq. We
system and it has the advantage that the denominator ipeopose the self-tuning control algorithm for the dual-rate
polynomial of z—¢; arising from here is a recursive equationsystem in (9) as follows:

using only slowly sampled outputs. The control algorithm -

we propose later for dual-rate systems will be based on this Olkg) = G(kq — )+ Plkg)y (Z{:q —d)
model which does not involve the unavailable intersample [y(ka) — ¢! (kg — d)0(kq — q)], (10)
Next, we derive an adaptive control algorithm based onp-1(1..y = pP~1(kg— ) + o(kq — d)o (kg — d). (12
the model discussed in (5). Define the parameter vettor é( ? _ ]i 4= 4) R CP; - ): (kg - )7k ( T)
and information vectop(k) as (V := gn +n + 1) (kq) = [as(kq) -+ dn(kq) Bolkq) - Bon( q()] )
13
0= n "TERN, . .
[ ez an fo fr Ban] Based on (8), the control law is given by
pk—d) =[-y(k—q) —ylk—-2q) --- —ylk—qn) o (kq + 5)0(kq) = yr(kq + d + j). (14)
ulk—d) ulk—d—1) - wk—d—qn)]’ eRY. The control signaki(kq + j), j =0,1,---,(¢g — 1), in (14)
may be obtained from the following recursive equation
Notice thatd contains all parameters in the model in (4) to be 1
estimated, ang(k—d) uses only available dual-rate data — if wkq+j) = ——Iy-(kqg+d+7)
k is an integer multiple of;, theny(k — d) contains only the 50(
past measurement outputs (slow rate) and inputs (fast rate). “L o
Substituting the polynomials(z) and3(z) into (5) leads to + Z ai(kq)y(kq +d+j —iq)
the following regression equation: =1
y(k) = 7 ( — )b, (6) - Zﬁz kgJukg +j =) (15)

Here, a difficulty arises’ in that on the intenfély, kg + q),
o except forj = g — d, the expression on the right-hand side
y(k +d) = ¢~ (k)6 of (15) contains the future missing outpuigkq + j1) if
= d+j—iq > 0, and the past missing outpujékq — j-)
= —d — j+1ig > 0 andj, is not an integer multiple of
q. In fact, only whenj = ¢ — d, the control termu(kq + 7)

or

Let y,.(k) be a desired output signal, define the outpuiff
tracking error

Ek+d) =y(k+d) —y.-(k+d). does not involve the missi?g outputs, and can be generated
by w(kq+q—d) = k

If the control signak:(k) is chosen according to the equation ulkg +q—d) ﬁo( q) Btk T O

yr(k +d) = ¢T(k)0, then the tracking erro€(k + d)

approaches zero finally. For stochastic systems, based on the Z & (kq)y(kq+ q —iq)

model in (6), introducing a disturbance tenrtk), we have i=1
ng

y(k) = ¢* (k — d)f +v(k), (7) — > Bilka)u(kq + q — d — i)]. (16)

So it is impossible to cempute the control law by (15) and
where {v(k)} is assumed to be a zero-mean random whitg, reajize the algorithm in (10)-(15). Our solution is based
noise sequence. Létbe the estimate of unknown parameteign the adaptive control scheme stated in Section 2: These

vector 0, then j(k + d) = (k)0 is the best output ynknown outputsy(kq -+ ) in (15) are replaced by their
prediction, which is computed by the intersample OUtpUéStlmatGSg(kq—i—j) Hence,

estimator in Figure 2, then replacirigby 6 and minimizing

the criterion function in (2) yield the control law of the form: u(kqg+j) = (1 " [yr(kq+d+7) +
R 50

yr(k +d) = ¢ (k)0. ®)
N . Zaz kq)y(kq +d +j —iq)
Replacingk in (7) by kq gives

y(ka) = " (kg — )0+ v(kq), © S Gikautka -9 D)
i=1
where J=0,1, =1 A q—d
pkg—d) = [~ylkg—q) -+ —y(kq—qn) To initialize the control algorithm in (10)-(13), (16) and
u(kq —d) --- u(kq—d—qn)]". (17), we takeP(0) = poI with p, normally a large positive
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number and/ an identity matrix of appropriate dimension, In order to study the output tracking performance of the
and é(o) = f,, some small real vector (e.gé(o) = algorithm, the following lemma is required.

1076 10=¢ ... 107%T). Notice that the parameter Lemma 1:The following inequality holds:

estimated is updated every (fast) samples, namely, at the

slow rate; so is the covariance matifix in between the slow f: oY (iq — d)P(iq)¢(iq — d)
samples, we simply hold unchanged. Thus, every tinteis < {In|P~1(iq)|}c
updated, we have new input samples and one new output

< oo, as., foranyec>1,

sample. o where|- | is the matrix determinant. (If°~1(0)] is too small,
It is easy to see that by defining we then begin the summation at sofe i, > 1 instead of

, = 1.

L(kg) = Plkq)p(kq - d) izl

P(kq — q)p(kq — d) Theorem 1:For the dual-rate system in (9) and the adap-
= T 4= 9vig , tive control algorithm in (10)-(13), (16) and (17), assume that
L+ ¢ (kq — d)P(kq — q)p(kg = d) the noise sequenci(k)} satisfies the following conditions

the covariance matri¥ can be updated as follows: [22]:
P(kq) = [I — L(kq)¢" (kq — d)|P(kq — q). (A1) E[v(k)|Fe-1] =0, as;
IV. THE OUTPUT TRACKING PERFORMANCE (A2)  E[*(k)|Fr_1] = 02(k) <02 < 00, as.;

We assume thafv(k),F,} is a martingale difference . 1< - )
sequence defined on a probability spgée F, P}, where (43) hglsupgzv (i) < 0y <o, as.
{Fx} is the o algebra sequence generated fy(k)}, i.e., T Vst
Fie = o(v(k),v(k—1),v(k~2),---) [22]. We shall prove the That is, {y(k)} is an independent random noise sequence
main results of this paper by formulating a martingale procesgith zero mean and bounded variance. The system delay
and by using stochastic process theory and the martinggle< ; is known, and the control law is given by (16) and
convergence theorem (Lemma D.5.3 in [22]). (17). Then the adaptive control algorithm proposed ensures
Let us introduce some notation first. L&t be a square that the output tracking error at the output sampling instants
matrix; the symbolsA,..[X] and A\yin[X] represent the pas the property of minimum variance, i.e.,
maximum and minimum eigenvalues of, respectively;
;[ X] represent theéth eigenvalue ofX. For g(k) > 0, we
write f(k) = O(g(k)) if there exists a consta@t, > 0 such 1)

k
[
that[f (k)| < dmg(k). =

> lye(iq) — y(iq) + v(ig)]* < oo,

fim L
k—oo [IHT(]{JQ)](’ P

Define a.s., for anyc> 1.
kq) = tr[P~1(kq)]. k
rita) = k) 2 lim S lylia) — ylia) +olig) =0, as
It follows easily that koo K
k
k 1
N ) . L C N .12 < 52
rlhe) = -+ S llptia — d)|>. 3)  limsup o EE{[W(ZCI) Y (iq)]|Fig—1} < 03,
=1 a.s. "

From here we get
Since single-rate systems belong to a special class of dual-

r(kq) = r(kq—q)+ [lo(kq—d)|?, rate systems witly = 1, the results in Theorems 1 still hold
r(kq) = M[PTYO]+ NP )] +--- for single-rate systems.
FAN[PTH(?)] v T
< NP (k)] . THE MISSING OUTPUT ESTIMATION
I[P~ kq)] = MP®NAP @) AN[PTH)] From (1) and (9), we have
< NPk
s urlha) = ylka) = " (kg — )6+ o(ka), (19)
= yslhg+j) = Glkg+3j), j=1,2,+,g—1. (20)
and
B From Figure 2 and (5), all missing output estimaggskq +
I[P~ (kq)| < Nlnr(kg), (18) ) can be obtained by
or s
N 2 “Blkg, 2) .
_ k = —"u(k 21
[P~ (kg = O(nr(kg)). bha+ D) = kg, 2t @)
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where « Sincewv(k) is an unpredicted white noise, the average
tracking error approaches zero, i.e.,

&(kQ7 Z) = 1+ dl(kQ)Z_q + 4+ &n(kq)z_qn7
Blkg,2) = Bolkq)+ Bui(ka)z"" + - + Byn(kq)z ™", , 1 -, : .
. A A o lim ——- Z[yf(z) — (i) —v(@))* =0, as.,
O(kq) = [ du(kq) dao(kq) - an(kq) k—oo [In k¢ £~
Bo(ka) Pi(kq) - Banl(kq) |- for any ¢ > 1. Or
The output estimateg(kq + j) can also be computed from
the recursive equation: hm 2 Z y(i (@2 =0, as.
glkq+7) + Z & (kq)g(kq + 5 — iq) In order to av0|d generating(k) with too large magni-
i=1 tudes, for a given small positivg if |5y (kq)| < e, we take
ng_ Bo(kq) = sgn[Bo(kq)]e, where the sign function is defined
= Bilkqu(kq—d+j—i), j=0,1, -+, ¢—1. (22) by
i=0 sen(z) — 1, >0,
Or & ~ 10 z<0.
Gkq+7) = @ (kq+ j)0(kq), j=1,2,---,q—1, VI. EXAMPLE
where Assume that the discrete system model with pefied 2 s
. , . , . ) takes the following form
¢kq+j) = [-g(ka—aq+j) —9(ka—2q+j) - » » »
~(kq —qn + ) ulkq—d+ j) Pu(s) = 0B Al 43097

a(z)  1—1.60z"1+0.80z2’

Take gh = 4 s andgh = 8 s, i.e.,q = 2 and q = 4,
respectively. Use{v(k)} as a white noise sequence with
zero mean and varianeg’ = 1.002. We apply the adaptive
control algorithm in Section 3 to this system, and the results

ulkg—d+j—1) - U(kQ*d*Fj*q’fl)]T.

Comparing (17) with (22), we find that the missing intersam-
ple output estimateg(kq + j), j = 1,2,---, ¢ — 1, equal
the desired outputg, (kg + j7), SO we have

yr(kq+3) = Gkq+7) = @T (kq+ j)0(kq), (23) with different ¢ are shown in Figures 3 and 4, wheyék)
okq+7) = [-yolkq—q+j) —yr(kq—2q+j) --- represents the system output, (k) denotes the desired
output, and

—Yr(kq —qn +3j) u(kq —d+j) 4
wkq—d+j—1) - ulkg—d+j—qn)]T.  y-(400i +5) = (-=1)°2, i =0,1,2,---; j =1,2,---,400.

Itis easy to understand that the unknown intersample outputigure 5 is the simulated results in terms of tAstrom-
y(kq + j) are replaced by the desired outpuigkq + j)  Wittenmark self-tuning regulator (STR).

in that our goal is to make(k) track (k). Hence, com-  From Figures 3-5, it is clear that our control law is supe-
bining (16) with (23) generates the control signal sequenagor to that of theAstrom-Wittenmark self-tuning regulator,

{u(kq +j), j = 0,1,---,q — 1} based on the parameterbut whenq is too large, the output tracking performance
estimatesf(kq) obtained. Thus, the following theorem isdegrades.
easily established.

Theorem 2:For the dual-rate system in (9) and the adap- : ‘ T y
tive control algorithm in (10)-(13), (16) and (17), assume  2[/7 7" o anan
the conditions of Theorem 1 hold, the open-loop system | \‘ \ — \ |
v, |
(b(2)/a(z)) is minimum phase, and the reference inpuk) ! | | ) |
is bounded, i.e., g 03] ‘ | | | |
. of 1
(A)  [y(B)] <5, < 0. $osf | | | | | | ]
Then the adaptive control algorithm proposed ensures the -1f \‘ \‘ \ |
closed-loop system to be globally convergent and stable with =151 \ \ \ | |
probability 1; in mathematical terms: -2r Y A el W
« The input and output variables are uniformly bounded, 0 500 1000 1500 2000 2500 3000
ie., K
1 k Fig. 3. yr(k) andy(k) versusk (¢ = 2)
hllcnji Z Z i)+ 32 (i) + yF(i)] < oo, as.
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VIlI. CONCLUSIONS

(18]

A least squares based control algorithm for dual-rate syg9]
tems is presented; the algorithm uses only slow-rate output

; 0
measurement data and generates a relative fast-rate conEro]I

signal. Convergence performance of the proposed algorithm
is analyzed in detail in the stochastic framework. The algd?ll
rithm achieves the desired control performance under certgiyy,
conditions. The algorithm is also applied to a simulated
system successfully, and the simulated results verify tH&3l

theoretical findings. The control method for the case ¢

is currently being studied in the stochastic framework.

[24]

[25]
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