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Abstract— The standard H2 optimal filtering problem con-
siders the estimation of a certain output based on the measured
output when the input is a zero mean white noise stochastic
process of known intensity. In this paper, the inputs are
considered to be of two types. The first type of input, as
in standard H2 optimal filtering, is a zero mean wide sense
stationary white noise, while the second type is a linear
combination of sinusoidal signals each of which has an
unknown amplitude and phase but known frequency. Under
such inputs, a generalized H2 optimal filtering problem is
formulated here. As in the standard H2 optimal filtering
problem, the generalized H2 optimal filtering problem seeks
to find a linear stable unbiased filter (called the generalized H2
optimal filter) that estimates a desired output while utilizing
the measured output such that the H2 norm of the transfer
matrix from the white noise input to the estimation error is
minimized. The analysis, design, and performance limitations
of generalized H2 optimal filters are presented here.

I. INTRODUCTION

In filtering theory, a well known problem is the Kalman
filtering problem [1], also known as the H2 optimal filtering
problem. In such a problem, one assumes that the input
to the given system is white noise of unit intensity. In
this paper, however, we assume that the inputs are of two
types. The first type of input, as in H2 optimal filtering, is
a zero mean wide sense stationary white noise, while the
second type is a linear combination of sinusoidal signals
each of which has an unknown amplitude and phase but
known frequency. Under such inputs, we seek here a stable
‘unbiased’ filter that renders the RMS norm of the error
signal as small as possible (an ‘unbiased’ filter is a filter
which, in the absence of the first type of input, renders
the steady state error zero). We call such filtering problems
generalized H2 optimal filtering problems. The correspond-
ing filters are of course termed as generalized H2 optimal
filters. If the infimum cannot be attained then we will look
at a problem of finding families of unbiased filters which
get arbitrarily close to the infimum of the RMS norm of the
error signal. We will refer to such problems as generalized
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H2 suboptimal filtering problems. After formulating such
generalized H2 optimal (suboptimal) filtering problems, we
show that these problems can be reduced to standard H2
optimal (suboptimal) filtering problems for an expanded
system constructed from the data of the given system. We
will then study the cost incurred by the additional require-
ment of rejecting a sinusoidal signal of known frequency
but unknown amplitude and phase. We will show that the
infimum of the RMS norm is not affected by the additional
requirement. In general, the solvability conditions of the
generalized H2 optimal filtering problem might be stronger
than the solvability conditions of the H2 optimal filtering
problem but for a large class of problems the solvability
conditions are identical.

The cost of unbiasedness can be expressed in terms of
the energy of the error signal. On the other hand, the cost
of rejecting a white noise input is expressed in terms of
the RMS norm of the error signal. We will see that both
the cost of rejecting a white noise input and the cost of
unbiased filters are related to the locations of the non-
minimum-phase zeros of the system. Moreover, we will
uncover a peculiar property that the cost of rejecting a
white noise input reduces when the non-minimum-phase
zeros are moved closer to the boundary of the stability
domain (imaginary axis in continuous-time and unit circle
in discrete-time) while the cost of unbiased filters increases
to infinity when the non-minimum-phase zeros are moved
closer to the boundary of the stability domain.

In what follows, the entire complex plane, the open left-
half complex plane, the imaginary axis, and the open right-
half complex plane are respectively denoted by C, C

−, C0,
and C+. Similarly, C�, C0, and C⊕, denote respectively
the set of complex numbers inside the unit circle, on the
unit circle, and outside the unit circle.

All proofs are omitted in this conference version of the
paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

Let us consider a system model,

� :
⎧⎨
⎩

σ x = Ax + B1u1 + B2u2,

y = Cx + D1u1 + D2u2,

z = Ex + F1u1 + F2u2,

(1)

where σ is an operator indicating the time derivative d
dt for

continuous-time systems and a forward unit time shift for
discrete-time systems. Also, x ∈ Rn is the state, y ∈ Rp is
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Fig. 1. General block diagram of filtering for �.

the measured output, and z ∈ R
q is the desired output signal

to be estimated. The input u1 ∈ R
m
1 is assumed to be a zero

mean wide sense stationary white noise of unit intensity.
On the other hand, the input u2 ∈ R

m
2 is assumed to be a

linear combination of sinusoidal signals each of which has
an unknown amplitude and phase but known frequency, and
thus can be modeled by

�a : σ xa = Sxa, u2 = Caxa, (2)

where xa ∈ Rna for some na . We consider a general proper
filter of the form,

� f :
{

σξ = Lξ + My
ẑ = Nξ + Py

(3)

which is assumed to be internally stable. Sometimes, we
seek a family of filters parameterized in a positive parameter
ε. In that case, a family of filters is described by

�ε
f :

{
σξ = Lεξ + Mε y
ẑ = Nεξ + Pε y,

(4)

where Lε , Mε , Nε , and Pε are matrices parameterized in
a positive parameter ε. Our interest here lies in estimating
the desired output signal z while using only the measured
output y but not the input u. As usual, let ẑ be the estimate
of z as given by a filter, and let ez be the estimation error,
defined by ez = z − ẑ, as depicted in Figure 1. Before
we formulate the specific problems of our interest, we first
define what we mean by unbiased filters in this generalized
setting.

Definition II.1 Consider a continuous- or discrete-time sys-
tem � as given in (1) where the input u1 is a zero mean
wide sense stationary white noise, while u2 is generated by a
linear exosystem given in (2). We say a linear stable strictly
proper (or proper) filter (3) is (generalized) unbiased if, in
the absence of the input u1, the estimation error ez decays
asymptotically to zero for all possible initial conditions of the
given system (1) and the filter (3), and for all input signals
u2. Equivalently, a filter is unbiased if, in the absence of the
input u1, the estimation error ez decays asymptotically to
zero for all possible initial conditions of the exosystem (2),
the given system (1), and the filter (3).

Remark II.2 The above definition, whenever u2 = 0,
reduces to the familiar notion of unbiasedness of filters.

Before the next problem, let us recall the standard defini-
tion of the RMS norm of a stochastic process. In continuous
time, we have:

‖w‖2
RMS = lim

T →∞ E
1

T

∫ T

0
‖w(t)‖2 dt,

where E denotes the expectation under the assumption
that the signal w(t) is a stochastic process with bounded
variance. In discrete time, we have:

‖w‖2
RMS = lim

T →∞ E
1

T

T∑
k=0

‖w(k)‖2,

We are now ready to define formally the following gener-
alized optimal filtering problem under white noise input.

Problem II.3 Consider a continuous- or discrete-time sys-
tem � as given in (1) where the input u1 is a zero mean
wide sense stationary white noise of unit intensity, and u2
is the output of an exosystem as given in (2). Then, the
generalized optimal filtering problem under white noise
input is defined as follows: Find, whenever it exists, a linear
stable strictly proper (or proper) filter such that

(i) (Generalized unbiasedness) the estimation error ez ,
in the absence of the input u1, decays asymptotically
to zero for all possible finite initial values of the
exosystem (2), the given system (1), and the filter
(3), and

(ii) (Performance) the RMS norm of the error signal,
namely ‖ez‖RMS, is as small as possible.

We can now define the generalized optimal filtering
performance under white noise input associated with the
above generalized optimal filtering problem.

Definition II.4 For the continuous- or discrete-time system
� given in (1) where the input u1 is a zero mean wide sense
stationary white noise of unit intensity, and u2 is the output of
an exosystem as given in (2), the infimum of the RMS norm
of the error signal ez over the set of all linear stable strictly
proper (or proper) unbiased filters is called the generalized
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Fig. 2. General block diagram of filtering for �0

optimal filtering performance under white noise input via
linear stable strictly proper (or proper) filters, and is denoted
by γ ∗

g,sp (or γ ∗
g,p).

The generalized optimal filtering problem under white
noise input can be given a deterministic interpretation since
the RMS norm of the error signal ez is equal to the H2
norm of the transfer matrix from the input u1 to the error
ez . Thus, we can interpret the generalized optimal filtering
problem under white noise input as the generalized H2
optimal filtering problem, and similarly γ ∗

g,sp (or γ ∗
g,p) as

the generalized H2 optimal filtering performance via linear
stable strictly proper (or proper) filters.

Clearly, if the generalized H2 optimal filtering problem
is not solvable, we can define the generalized suboptimal
filtering problem as follows.

Problem II.5 Consider a continuous- or discrete-time sys-
tem � as given in (1) where the input u1 is a zero mean
wide sense stationary white noise of unit intensity, and u2
is the output of an exosystem as given in (2). Then, the
generalized suboptimal filtering problem under white
noise input is defined as follows: Find, whenever it exists,
a family of linear stable strictly proper (or proper) filters
parameterized in positive ε such that

(i) (Generalized unbiasedness) for any given filter in
the family, the estimation error ez , in the absence of
the input u1, decays asymptotically to zero for all
possible finite initial values of the exosystem (2), the
given system (1), and the filter (3), and

(ii) (Performance) the RMS norm of the error signal,
namely ‖ez‖RMS, approaches γ ∗

g,sp (or γ ∗
g,p) as ε tends

to zero.

Whenever the input u2 is set to zero, the generalized H2
optimal filtering problem for the given system � reduces
to the celebrated H2 optimal filtering problem (Kalman
filtering problem) for a system �0 given by

�0 :
⎧⎨
⎩

σ x = Ax + B1u1,

y = Cx + D1u1,

z = Ex + F1u1.

(5)

The block diagram of filtering for the system �0 is depicted
in Figure 2. Also, in this case, we denote the infimum of the
RMS norm of the error signal over all the linear unbiased
stable filters for the system �0 by γ ∗

sp or γ ∗
p depending on

whether we use strictly proper or proper filters.

III. PERFORMANCE, EXISTENCE AND UNIQUENESS

CONDITIONS

We need to investigate several issues pertaining to gen-
eralized H2 optimal (suboptimal) filtering. These issues
include computing the generalized H2 optimal filtering
performance γ ∗

g,sp (or γ ∗
g,p), and developing the existence

and uniqueness conditions for the generalized H2 optimal
(suboptimal) filters. To do so, we form an expanded system
�̃ as

�̃ :
⎧⎨
⎩

σ x̄ = Aex̄ + Beu1,

y = Cex̄ + D1u1,

z = Eex̄ + F1u1,

(6)

where

Ae =
(

A B2Ca

0 S

)
, Be =

(
B1
0

)
,

Ce = (
C D2Ca

)
, Ee = (

E F2Ca
)
. (7)

The general filtering block diagram for the expanded sys-
tem �̃ is given in Figure 3. We also need the following
assumption.

Assumption III.1 The matrix pair (Ce, Ae) is detectable.

We have the following results.

Theorem III.2 Consider the filtering block diagram of Fig-
ure 1 for the system � given in (1), the filter � f given in
(3), and the exosystem �a given in (2). Let the pair (C, A)

be detectable. Also, consider the filtering block diagram of
Figure 3 for the expanded system �̃ given in (6) and the filter
� f given in (3). Let Assumption III.1 be satisfied. Then, the
following two statements are equivalent:

(i) The filter � f is a proper (or strictly proper) general-
ized H2 optimal filter for �.

(ii) The filter � f is a proper (or strictly proper) H2 optimal
filter for �̃.

Moreover, γ ∗
g,sp (or γ ∗

g,p) equals the infimum of the RMS
norm of the estimation error signal ẽz as depicted in the
block diagram of Figure 3 over all unbiased strictly proper
(or proper) stable filters.

Theorem III.3 Consider the filtering block diagram of Fig-
ure 1 where � f is replaced by �ε

f as given in (4), and where
the system � is given in (1), and the exosystem �a is as
given in (2). Let the pair (C, A) be detectable. Also, consider
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Fig. 3. General block diagram of filtering for �̃

the filtering block diagram of Figure 3 where � f is replaced
by �ε

f as given in (4), and where the expanded system �̃ is
as given in (6). Let Assumption III.1 be satisfied by �̃. Then,
the following two statements are equivalent:

(i) The family of filters �ε
f is a family of proper (or

strictly proper) generalized H2 suboptimal filters for
�.

(ii) The family of filters �ε
f is a family of proper (or

strictly proper) H2 suboptimal filters for �̃.

The above development needs the pair (Ce, Ae) be de-
tectable. It turns out that this can be weakened by requiring
that (C, A) be detectable and that Assumption III.4 is
satisfied.

Assumption III.4 For all λ ∈ C with Re λ ≥ 0 (for
continuous-time systems) or |λ| ≥ 1 (for discrete-time
systems) we have:

rank

⎛
⎝λI − A −B2Ca

0 λI − S
C D2Ca

⎞
⎠ = rank

⎛
⎜⎜⎝

λI − A −B2Ca

0 λI − S
C D2Ca

E F2Ca

⎞
⎟⎟⎠ .

IV. DEPENDENCE OF PERFORMANCE, EXISTENCE AND

UNIQUENESS CONDITIONS ON THE INPUT u2

As discussed in the previous section, various aspects of
the generalized H2 optimal filtering problem for the given
system � are tantamount to the corresponding aspects of
the H2 optimal filtering for the expanded system �̃ that
incorporates the given system � and the exosystem �a

that models the input signal u2. Since the generalized H2
optimal filtering has an additional requirement of rejecting
the input u2 (unbiased requirement) over and above the
requirement of H2 optimal filtering (namely, minimizing the
RMS value of the estimation error signal), in this section
we ask ourselves two fundamental questions:

(i) How does the performance of generalized H2 optimal
filtering for � differs from the performance of H2
optimal filtering for �0?

(ii) How do the solvability conditions of generalized
H2 optimal filtering problem for � differ from the
solvability conditions of H2 optimal filtering problem
for �0?

Theorems IV.1 and IV.2 answer these questions.

Theorem IV.1 Consider the generalized H2 optimal filter-
ing problem as defined in Problem II.3 for the system � of
(1) along with the associated exosystem �a of (2) whose
performance is indicated by γ ∗

g,sp or γ ∗
g,p depending upon

whether the class of strictly proper or proper filters are
used. Also, consider the H2 optimal filtering problem for
the system �0 of (5) whose performance is indicated by γ ∗

sp
or γ ∗

p depending upon whether the class of strictly proper
or proper filters are used. Then, under Assumption III.1, we
have

γ ∗
g,sp = γ ∗

sp and γ ∗
g,p = γ ∗

p .

Theorem IV.2 Consider the generalized H2 optimal filter-
ing problem as defined in Problem II.3 for the system �

of (1) along with the associated exosystem �a of (2). Let
Assumption III.1 be satisfied. Also, consider the H2 optimal
filtering problem for the system �0 of (5). We have the
following statements:

(i) For the case when F2 = 0, the generalized H2 optimal
filtering problem for the system � along with the
associated exosystem �a is solvable via strictly proper
filters if and only if the H2 optimal filtering problem
for �0 is solvable via strictly proper filters.

(ii) For the case when F2 = 0 and additionally D2 = 0,
the generalized H2 optimal filtering problem for the
system � along with the associated exosystem �a is
solvable via proper filters if and only if the H2 optimal
filtering problem for �0 is solvable via proper filters.

There are examples showing that Theorem IV.2 does not
hold if F2 	= 0.

V. PERFORMANCE LIMITATIONS OF GENERALIZED H2
OPTIMAL FILTERING DUE TO THE STRUCTURAL

PROPERTIES OF A SYSTEM

Performance limitations of generalized H2 optimal fil-
tering due to the structural properties of a system can be
studied in two respects. One can first study the dependence
of γ ∗

g,sp or γ ∗
g,p on the structural properties of a system.

As revealed by Theorem IV.1 γ ∗
g,sp = γ ∗

sp and γ ∗
g,p = γ ∗

p
where γ ∗

sp and γ ∗
p are the H2 optimal performance measures

for the system �0 of (5). Both γ ∗
sp or γ ∗

p have been studied
in a recent paper [2]. For continuous-time systems, they
can be decomposed into two parts, one arising due to non-
left invertible dynamics and the other due to unstable zero
dynamics (i.e. the dynamics dictated by the invariant zeros



in the open right half plane) of the subsystem characterized
by (A, B, C, D). The part that is contributed by the unstable
zero dynamics to γ ∗

sp and γ ∗
p tends to zero as the open

right half plane invariant zeros move towards the imaginary
axis, and in the same way it increases as the open right
half plane invariant zeros move away from the imaginary
axis. If the subsystem characterized by (A, B, C, D) is left-
invertible and has no unstable zero dynamics, both γ ∗

sp
and γ ∗

p equal zero. Similarly, for discrete-time systems,
both γ ∗

sp and γ ∗
p can be decomposed into two parts, one

arising due to unstable zero dynamics (i.e. the dynamics
dictated by the invariant zeros outside the unit circle) and
the other due to the non-left invertible dynamics as well as
the dynamics dictated by the infinite zero structure of order
greater than or equal to one of the subsystem characterized
by (A, B, C, D). The part that is contributed by the unstable
zero dynamics to γ ∗

sp and γ ∗
p tends to zero as the invariant

zeros outside the unit circle move towards the unit circle,
and in the same way it increases as the invariant zeros
outside the unit circle move away from the unit circle.

One can also define the performance measure associated
with the unbiased requirement and then examine its depen-
dence on the structural properties of the given system as
pursued next.

A. Performance limitations of unbiased filtering

In this subsection, we will define the performance mea-
sure associated with the unbiased requirement and then
examine its dependence on the structural properties of the
given system. The performance measure due to unbiased-
ness can be considered as the energy of the estimation error
signal under the condition that u1 is zero. Thus, consider
the filtering block diagram of Figure 1 for the system �

given in (1), the filter � f given in (3), and the exosystem
�a given in (2). By combining the given system � and the
exosystem �a together, we form the expanded system �̃ as
in (6) except we set there u1 = 0, i.e., let⎧⎨

⎩
σ x̄ = Aex̄,

y = Cex̄,

z = Eex̄,

(8)

where the matrix triple (Ae, Ce, Ee) is as in (7). Whenever
the unbiased requirement is satisfied by the filter � f ,
since the error ez then is an energy signal, we can define
the unbiasedness performance measure J g as follows: For
continuous-time systems,

J g(x̄0, ξ0,� f ) =
∫ ∞

0
ez(t)

′ez(t) dt,

and for discrete-time systems,

J g(x̄0, ξ0,� f ) =
∞∑

i=0

ez(i)
′ez(i).

In the above equations,

x̄ =
(

x
xa

)
, x̄0 = x̄(0), ξ0 = ξ(0).

Clearly, the performance measure due to the unbiasedness
depends on the filter used. Our aim here is to study it when
� f has the strictly proper CSS architecture as given by

�g
sp :

{
σξ = (Ae − K Ce)ξ + K y, ξ(0) = ξ0 ∈ Rn+na ,

ẑ = Eeξ,
(9)

where K is the filter gain. Then, the dynamics of the error
ez , in the absence of input signal u1 (as we assumed), is
then given by{

σe = (Ae − K Ce)e, e(0) = e0 = (x̄0 − ξ0) ∈ Rn+na ,

ez = Eee.
(10)

We can then define the infimum of J g(x̄0, ξ0,�
g
sp) over all

possible filter gains subject to the constraint (10), and de-
note such an infimum by J ∗g(x̄0, ξ0,�

g
sp). We can compute

J ∗g(x̄0, ξ0,�
g
sp) as follows. Consider an auxiliary system,

�aux :
⎧⎨
⎩

σ xaux = Aexaux + Bauxv,

yaux = Cexaux,

zaux = Eexaux,

(11)

where Baux = x̄0 − ξ0 and v is an unknown white noise
input. Then, in view of Theorem III.2, we have the fol-
lowing result. Whenever we refer to γ ∗

sp(A, B, C, D, E, F),
we mean by it γ ∗

sp associated with the H2 optimal filtering
problem characterized by the sextuple (A, B, C, D, E, F)

Lemma V.1 Consider the generalized H2 optimal filtering
problem as defined in Problem II.3 for the system � of (1)
along with the associated exosystem �a of (2). Let Assump-
tion III.1 be satisfied. Also, consider the strictly proper filter
�g

sp given in (9). Let �aux be as in (11). Then the infimum
of the performance measure due to the unbiasedness is given
by

J ∗g(x̄0, ξ0,�
g
sp) = (γ ∗

sp(Ae, Baux , Ce, 0, Ee, 0))2.

We note that the initial condition x̄0 of the given system
is usually unknown, while one can set the initial condition
ξ0 of the filter as one likes. As before, this suggests that
one can generate an average performance measure for the
unbiasedness requirement. Let ei , i = 1, · · · , n, form a
basis for the state space of �. Also, fi , i = 1, · · · , na ,
form a basis for the state space of �a . Moreover, assume
that one always sets the initial condition ξ0 of the filter
to zero. Then, we can define a new average performance
measure for the unbiasedness requirement while utilizing a
strictly proper filter of CSS architecture as

J̃ g(�,�a,�g
sp) = J̃ g

1 (�,�a,�g
sp) + J̃ g

2 (�,�a,�g
sp) (12)

where

J̃ g
1 (�,�a,�g

sp) =
n∑

i=1

J g(

(
ei

0

)
, 0,�g

sp),

and

J̃ g
2 (�,�a ,�g

sp) =
na∑

i=1

J g(

(
0
fi

)
, 0,�g

sp).



To study the limitations imposed by the given system on
J̃ g(�,�a ,�g

sp), we can define

J̃ ∗g(�,�a,�g
sp)

as the infimum over all possible filter gains K subject
to the constraint (10). Once again it is straightforward to
show that J̃ ∗g(�,�a ,�g

sp) is also related to the H2 optimal
performance of an appropriately defined auxiliary system.
Let

�̃aux :
⎧⎨
⎩

σ x̃aux = Aex̃aux + Iv,

ỹaux = Cex̃aux,

z̃aux = Eex̃aux,

(13)

where v is an unknown white noise input. We have the
following result.

Lemma V.2 Consider the generalized H2 optimal filtering
problem as defined in Problem II.3 for the system � of (1)
along with the associated exosystem �a of (2). Let Assump-
tion III.1 be satisfied. Also, consider the strictly proper filter
�g

sp given in (9). Let �aux be as in (13). Then the infimum
of the average performance measure due to the unbiasedness
is given by

J̃ ∗g(�,�a,�g
sp) = (γ ∗

sp(Ae, I, Ce, 0, Ee, 0))2.

In an expanded version of the paper, a lower bound for
J̃ ∗g(�,�a,�g

sp) has been computed, i.e. it is shown that

J̃ ∗g(�,�a,�g
sp) ≥ 2 Re zi

|zi |2�
where zi is any unstable invariant zero (non-minimum phase
invariant zero) of the system characterized by (A, B, C, D).
Also, � depends on (A, B, C, D), however it is always
greater than a number α for some α > 0. This implies
that the infimum of the average performance measure due
to the unbiased requirement, namely J̃ ∗g(�,�a,�g

sp) (as
defined in (12)), tends to infinity as any of the unstable
invariant zeros (non-minimum phase invariant zeros) of the
subsystem characterized by (A, B, C, D) tends towards the
origin.
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