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Abstract—In this paper, we describe fast implementations
of optical flow and geometric active contours to reliably track
flying vehicles. Given the position of the vehicle at time¢ — 1,
optical flow information is used to initially place an active
contour in the basin of attraction of a region of interest in a
given dynamical image at timet. For real-time tracking, fast
convergence of the active contour as well as rapid computation
of the optical flow are crucial. In this note, we will describe
algorithms that make fast tracking possible in this framework
using only standard computing platforms.

I. INTRODUCTION

In this paper, we consider the use of geometric active
contours in conjunction with a fast implementation of op-
tical flow for the problem of tracking the position of flying
vehicles in real-time. Tracking is a basic control problem
in which we want the output to follow or track a reference
signal, or equivalently we want to make the tracking error as
small as possible relative to some well-defined criterion (say
energy, power, peak value, etc.). In our case this amounts
to minimizing the difference between the position of an
object calculated by means of the active contour/optical flow
approach and its actual position. Even though tracking in
the presence of adisturbanceisaclassical control issue, the
problem at hand is very difficult and challenging because
of the highly uncertain nature of the disturbance.

The problem of visua tracking differs from standard
tracking problems in the sense that the feedback signal is
measured using imaging sensors. In particular, it has to be
extracted via computer vision algorithms and interpreted by
a reasoning scheme before being used in the control loop.
Furthermore, the response speed is a critical aspect. Conse-
quently, from the control point of view, we have a tracking
problem in the presence of a highly uncertain disturbance
which we want to attenuate. Note that the uncertainty is due
to the sensor noise (classical), the algorithmic component
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described above (uncertainty in extracted features, likeli-
hood of various hypotheses, etc.), and modeling uncertainty.

The capture range of active contours is limited. To
assure convergence to the desired image features (the flying
vehicles) in each frame, a reasonable initial estimate of
the contour position is thus required. We focus on using
optical flow information (i.e. the estimated velocity on the
contour) to obtain this initial estimate for each frame, and
to guarantee reliable tracking. The predicted position isthen
refined by evolving the predicted contour on each individual
image.

The computation of optical flow has proved to be an
important tool for problems arising in active vision. The
optical flow field is the velocity vector field of apparent
motion of brightness patterns in a sequence of images,
assumed to be the result of relative motion, large enough
to register a change in the spatial distribution of intensities
on the images. Note that relative motion between an object
and a camera as well as among objects in a scene being
imaged by a static camera can give rise to optical flow.

In previous implementations of optical flow ideas in this
context, one could only compute the flow in a small region
of interest if one wanted real-time tracking. Clearly, in
uncertain adversarial environments, it would be desirable to
have a more global optical flow computation in initializing
the placement of the active contour in each frame. We now
have sufficiently fast implementations of active contours
(based on level sets) as well as optical flow (based on
multigrid ideas) to precisely accomplish these goals. Full
details about the L' optical flow will appear in Alvino
et al. [1] which also has a complete set of references for
related multigrid work for the computation of optical flow.
For other approaches for using optical flow in conjunction
with deformable contours see [2] and the references therein.

Finally we aso refer the reader to recent work of Ni-
ethammer et al. [3], in which truly dynamic tracking is
performed in a level set framework, leading to a codimen-
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sion 3 flow.

The paper is organized follows. Section Il gives a back-
ground on active contours. Section |11 describes the optical
flow computation, including classical gradient descent and
multigrid. Section 1V shows simulation results. The paper
ends with some conclusions and suggestions for future
work.

I1. BACKGROUND ON ACTIVE CONTOURS

We briefly review in this section some of our work on
snakes or active contours based on ideas from curvature
driven flows and the calculus of variations. Snakes are
autonomous processes which employ image coherence in
order to track various features of interest over time. They
fit very naturaly into a control framework and indeed have
been employed in conjunction with Kalman filtering; see
[4] and the references therein. In particular, deformable
contours have the ability to conform to various object shapes
and motions. Snakes have been used for segmentation, edge
detection, shape modeling, and visual tracking.

In the classical theory of deformable contours, energy
minimization methods are used where controlled continuity
splines are alowed to move under the influence of exter-
na image dependent forces, interna forces, and certain
constraints set by the user. As is well-known there may
be a number of problems associated with this approach
such as initializations, existence of multiple minima, and
the selection of the elasticity parameters. Moreover, natural
criteria for the splitting and merging of contours (or for the
treatment of multiple contours for the tracking of multiple
objects) are not readily available in this framework.

In [5], we propose an active contour model to help treat
such problems. The underlying mathematics is based on
the Euclidean curve shortening evolution, which defines the
gradient direction in which a given curve is shrinking as
fast as possible relative to Euclidean arc-length, and on the
theory of conformal metrics. We multiply the Euclidean
arc-length by a conformal factor defined by the features
of interest which we want to extract, and then we compute
the corresponding gradient evolution equations. The features
which we want to capture therefore lie at the bottom of
a potential well to which the initial contour will flow.
Moreover, our model may be easily extended to extract 3D
contours based on motion by mean curvature [5], [6].

The starting point of this work is [7], [8] in which an
active contour model founded on the level set formulation of
the Euclidean curve shortening equation is proposed. More

precisely, the model is
Vv
—) +v). Q)

ov '
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Here the function ¢(z,y) depends on the given image and
is used as a “stopping term.” For example, typicaly the
term ¢(x,y) is chosen to be small near an intensity-based

edge, and so acts to stop the evolution when the contour

gets close to an edge. One may take [7], [8]

1
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where [ is the (grey-scale) image and G, is a Gaussian

(smoothing filter) filter. The function ¥(x,y,t) evolves in
(1) according to the associated level set flow for planar
curve evolution in the normal direction with speed a func-
tion of curvature which was introduced in [9], [10].

Our approach to active contours begins by noting that the
curve shortening part of this evolution, namely

ov ) \A'
o |V |div (W) ©)

is derived as a gradient flow for shrinking the perimeter
as quickly as possible. As is explained in [7], the constant
inflation term v isadded in (1) in order to keep the evolution
moving in the proper direction. This part corresponds to an
area-minimizing flow [11].

Thus we will modify the model (1) in a precise manner
dictated by length/area minimizing ideas. We change the or-
dinary arc-length function along a curve C' = (z(p), y(p))*
with parameter p given by

ds = 2+ 42) dp,

to
dsy = (x2 +y2)' 2 pdp,

where ¢(z,y) is a positive differentiable function. Then
we want to compute the corresponding gradient flow for
shortening length relative to the new metric ds.

Hence, by introducing an artificial time parameter ¢ for
the curve evolution, C' = (x(p,t), y(p,t))T, we define

/ 15 lod.

Taking the first variation of the modified length function
Ly, and using integration by parts (see [5]), we get that
, ) aC o

Lo = - / (O on N — (Vo KON,

0
where k = || Cy|| is the curvature, and N = 1O, denotes
the unit normal to the curve C. The direction in which the
L, perimeter is shrinking as fast as possible is then given
by

O = (on— (V- NN (4

This is precisely the gradient flow corresponding to the

minimizetion of the length functional L4. The level set
version of thisis

5‘\11 A4
= ¢|V¥ dv(

One expects that this evolution should attract the contour
very quickly to the feature which lies at the bottom of the
potential well described by the gradient flow (5). Asin [7],

> + Vo V. (5)
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[8], we may also add a constant inflation term, and so derive
a modified model of (1) given by

ov i vy
5 &|| VT ||(div (||V‘I’|> +v)+Ve¢-VU. (6)
(This is referred to a length/area minimizing flow in [11].)
Notice that for ¢ asin (2), V¢ will look like a doublet near
an edge. Of course, one may choose other candidates for ¢
in order to pick out other features.

We now have very fast implementations of these snake
algorithms based on a conjugate gradient approach applied
to an appropriate energy functional [12]. One may also use
level set ideas [9], [10]. Clearly, the ability of the snakes to
change topology, and quickly capture the desired features
makes them a powerful tool for visual tracking algorithms.
See [13] for more details about this.

For multiple objects in an uncertain dynamic environ-
ment, the problem is of course how to initialy place each
contour in a given frame at time ¢ to make sure that it will
flow to the desired object(s). Clearly, one may need some
other information to do this. Optical flow which provides
an approximation of the velocity vector field is therefore a
natural tool to include in such a scenario. The next part of
the note is thus devoted to a very fast implementation of
this methodology which can be used in real-time tracking.

I1l. OpPTICAL FLOW COMPUTATION

We summarize here some of the key points about our new
work on the computation of optical flow using multigrid
ideas. In Alvino et al. [1], we describe this in the more
powerful context of L' based optical flow [14] which can
track edges much better than the more classical L2 methods.
Moreover, we also give a fully Euclidean invariant version
of L' optical flow in this work. In this note, however,
we suffice to describe multigrid in the classical setting.
Multigrid methods [15], [16] have been successfully applied
to various elliptic PDE problems including those related to
optical flow. See [1] for a detailed set of references. Here
we are only interested in using this tool in conjunction with
active contours for fast tracking.

A. Optical Flow

Visua motion in an image sequence provides crucial
information for object tracking. The computational aspects
of visual motion are well understood [17]. Optical flow
of a time-varying image sequence is the vector-valued
function that describes the spatial direction in which image
intensities are moving as time progresses. Beauchemin and
Barron survey a number of ways to compute optical flow
of a changing image [18]. Horn and Schunck described a
cost functional that ensures the resulting vector field simul-
taneously captures image intensity motion and is smooth
[19].

We recall that this functiona is constructed by combining
an optical flow constraint term, e.., with a smoothness term,

es. These terms are defined as
— // (Ipu+ Iyv + It)2 dz dy, @)
Image
and
esz// (ui—l—ufj—&—vg—l—vz) drdy, (8
Image

where I(z,y,t) is the image intensity function, » and v
are the velocity components in the = and the y directions
respectively, and subscripts denote partia derivative with
respect to the subscripted variable. The solution to Horn and
Schunck’s optical flow is a vector-valued function whose
components, u(z,y) and v(z,y), minimize the functional,

J(u,v) = e, + es . 9)

The parameter A controls tradeoff between the optical flow
constraint and the smoothness of the vector field; lower
values of X\ result in a smoother vector field.

B. Partial Differential Equations and Gradient Descent

The calculus of variations allows us to obtain partial dif-
ferential equations whose solution minimizes the functional
in equation (9). Indeed, these Euler Lagrange equations may
be computed to be

O =
O =

AIpu+ Iy + 1)1, — Au
AIzu+ Iy + 1)1, — Av,

(10)
11)

where A is the Laplacian operator.

In addition to being the partia differentia equations
whose solution minimizes equation (9), a result from
calculus of variations ensures that the right hand sides
of equations (10) and (11) are aso infinite dimensional
gradients which tell us the direction to perturb « and
v respectively to most quickly maximize the functional.
Therefore, by perturbing « and v in the direction opposite
to this, we guarantee local decrease in the cost functional.
Since equations (10) and (11) are elliptic second-order
partial differential equations, we can use gradient descent
to minimize equation (9).

Although the previous discussion is continuous in time
and spatial variables, this can be applied to discretely-
sampled sequences of images, both in spatial and temporal
variables. The spatially sampled points form a grid. This
is convenient for implementation. To represent al spatial
derivatives in the image interior, we use centra difference
approximations. To represent temporal derivatives, we use
one-sided difference approximations between image frames.
We use Neumann conditions on the boundaries of the
images.

The gradient descent algorithm yields new estimates u’
and v’ from the old estimates, % and v, by the equations,

@ = a—vy(MLu+ILv+ L), —Vu) (12)
v = -y (AIpu+ Lo+ L)L, — V), (13)
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where v is the gradient descent perturbation parameter. For
more details on computing optimal values for ~ based on
the image sequence, we refer the reader to [1].

C. Multigrid Computation

Gradient descent methods are inefficient at determining
the solution to a partial differential equation when the
discrete grid samples are fine as compared to the coarse
scale structure of the solution. Multigrid methods are well
known in the numerical analysis literature as being efficient
at solving partia differential equations whose solutions have
such smooth structure [16], [15]. Multigrid methods exploit
the coarse scale structure of the solution by computing the
solution on a coarser grid, where the number of computa
tions is smaller.

We implemented multigrid by restructuring equa
tions (10) and (11) in the form of a linear operator on
and v, defined by,

L1(u,v) = MIpu+ Iv)I, — Au (14

Lo(u,v) = ANIzu + Iyv)I, — Av. (15)

Now, it is easily seen that Egs. (10) and (11) can be
rewritten as the vector equation,

ot =1 2z |

The multigrid agorithm is then described as follows.
Starting out with a guess solution (4, ©), we use the gradient
descent equations as described in Egs. (12) and (13) for
v, iterations to refine this guess to be closer to the actual
solution.

We then compute the residual on the refined guess,

_ ﬁl(ﬁaﬁ) _ _)\Itjm
T La(a,0) “ALI, |-
Note that r is a pair of images, which are stored as values
on an origina grid. We then smooth and downsample the
residua, r, to obtain r, the residual on a coarser grid. Next,

we solve for the functions on the coarse grid, f; and g,
which satisfy the equation,

[ Gt ],

where L. and Lo are the coarse scale versions of the
operators £1 and £;. We then obtain corrected guesses by
adding the refined guess solution to f and g, the interpol ated
original grid versions of f; and gc. This gives us corrected
guesses,

(16)

(17)

e =

(18)

(19)
(20)

U+ f
= 0+4g.

<>

>

Finally, we refine (i, v) afina time with gradient descent
for v, iterations to obtain the output of atwo grid correction
method.

Fig. 1.
corresponding optical flow computed with multigrid (right).

Image from 200 by 200 pixel rotating sphere sequence (left) and

Since equation (18) is of the same form as equation (16),
it should be solved with similar difficulty. However, equa-
tion (18) exists on a coarser grid where there are less grid
points, allowing us to solve it more efficiently with gradient
descent. Since using gradient descent alone on the original
grid level takes the most time to obtain the coarse scale part
of the solution, we gain efficiency by obtaining the coarse
scale part of the solution on the coarser grid, where there
are less computations to be done. Optical flow using Horn
and Schunk’s method has adequate coarse scale structure
due to its smoothing term.

We will now explain the logical connection of this two
grid correction method to multigrid correction. Note that
since equation (18) is of the same form as equation (16), we
can choose to solve equation (18) by coarsifying its residual
and making a coarse scale correction in the same way we
solved for the solution to the original equation. Since, this
will result in yet another equation of the same form to
be solved, we can implement this algorithm recursively,
making as many coarse grid correction steps as necessary,
until the resulting linear equation becomes easy to solve
exactly. This, in essence, is the multigrid correction method
as applied to optical flow.

The values of v; and vy control how accurate the solu-
tions will be. By virtue of v, corresponding to the final gra-
dient descent iterations, it is generally more important than
vy, as it is responsible for al of the fine scale information
obtained after the coarse scale correction. Finaly, in our
experiments we downsampled by factors of 2 in each spatial
dimension. For more details of the described methods, see
[1].

Figure 1 shows a single image from the rotating sphere
sequence obtained from the Computer Vision Research
Group at the Department of Computer Science at the
University of Otago, New Zealand. It also shows the corre-
sponding optical flow vector field for a moderate value of
the smoothness constant, A\. The image sequence consists
of 200 by 200 pixel images.

Figure 2 shows a computational comparison on the ro-
tating sphere sequence. Multigrid increased the efficiency
significantly and in fact in our preliminary code converges
about an order of magnitude faster than conventional gradi-
ent descent. We believe that for larger image sequences,
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Fig. 2. Error for gradient descent and multigrid calculation of optical
flow on two images of the rotating sphere sequence as a function of time.
The horizontal line signifies minimum error values.

the savings can be greater. In this experiment, for the
multgrid error curve, we enforced the condition vy = vy
for simplicity although this is not necessary and dightly
faster computation times might be reached by adjusting v
and v, appropriately.

IV. SIMULATIONS

We have tested our algorithms on some simulated aircraft
data. We give one such example here. In Figure 3, we show
an example of our algorithm capturing an aircraft on four
representative slices of a 250 time-point temporal sequence
of a “fly-by” data. We should note that the aircraft was
automatically captured in al 250 frames. In Figure 4, we
render the entire trajectory (time being represented as athird
“gpatial” dimension in the rendering). The flat plane-like
structure is the rendering of the horizon (boundary of earth
of sky.)

V. CONCLUSIONS AND FUTURE RESEARCH

In this note, we proposed a straightforward combination
of active contours and optical flow for fast visual tracking.
With fast conjugate-gradient based implementations for
active contours and multi-grid optical flow, we have reached
tracking speeds of about 30 128 x 128 frames per second
on a standard PC.

There are a number of other paradigms that we plan to
test related to active contour tracking. Indeed, snakes may
be naturally combined with Bayesian estimation in which
the active contour serves as a prior model of the possible
shapes and motions of the features of interest which we
want to track [20]. Filtering then comes in by adding a
dynamic system model to the prior and sensor models in
this Bayesian framework.

Fig. 3. Four dlices of aircraft captured by tracking algorithm from 250
slice temporal sequence.

Fig. 4. Trajectory of airplane as captured by active contours and optical
flow.

Upon assumption of Gaussian distributions, one may ap-
ply the Kalman filter. For multi-modal distributions, particle
filters emerge (these are called CONDENSATION filters in
the computer vision literature; see [4] and the references
therein). Particle filtering is a Monte Carlo methodology
that is used for nonlinear and non-Gaussian sequential
signal processing. These filters are based on the notion of
factored sampling which generates a random variable from
a distribution which approximates the posterior. Thisis used
to search for objectsin the image. However, this approach is
problematic becauseit is till too computationally expensive
for real-time tracking, which our flying-vehicle applications
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demand. [21] N. Paragios and R. Deriche, “Geodesic active regions: a new frame-

; o i - ; work to deal with frame partiton problems in computer vision,”

I.:I nally, global st_ansucal mformanoh may aISD be pUt mtp Journal of Visual Communication and Image Representation, vol. 13,
active contours as in [21], _[22].. We will consider using this pp. 249-268, 2002.

approach for vehicle tracking in some future work. [22] S. Haker, G. Sapiro, and A. Tannenbaum, “Knowledge-based seg-

mentation of SAR images,” |EEE Transactions on Image Processing,

val. 9, pp. 298-302, 2000.
ACKNOWLEDGEMENTS

This research was partialy supported by grants from
NSF, AFOSR, MURI, ARO, MRI-HEL, and an STTR
through Georgia Tech.

REFERENCES

[1] C. V. Alvino, C. Curry, A. Tannenbaum, and A. Yezzi, “Multigrid
methods for L!-based optical flow computation,” Georgia Institute
of Technology, School of Electrical and Computer Engineering,
Tech. Rep., 2003, to be submitted to |IEEE Transactions on Image
Processing.

[2] N. Peterfreund, “The velocity snake: deformable contour for tracking
in spatio-velocity space,” Computer Vision and Image Understanding,
vol. 73, no. 3, pp. 346356, 1998.

[3] M. Niethammer and A. Tannenbaum, “Dynamic level sets for visua
tracking,” Georgia Ingtitute of Technology, School of Electrical and
Computer Engineering, Tech. Rep., 2003, to be submitted to |IEEE
Transactions on Automatic Control.

[4] A. Blake and M. Isard, Active Contours. Springer-Verlag, 1998.

[5] S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi,
“Conformal curvature flows: from phase transitions to active vision,”
Archive for Rational Mechanics and Analysis, vol. 134, pp. 275-301,
1996, a short version of this paper has appeared in the Proceedings
of ICCV, June 1995.

[6] A. Tannenbaum, “Three snippets of curve evolution theory in
computer vision,” Mathematical and Computer Modelling Journal,
vol. 24, pp. 103-119, 1996.

[7] V. Caselles, F. Catte, T. Coll, and F. Dibos, “A geometric model
for active contours in image processing,” Numerische Mathematik,
vol. 66, pp. 1-31, 1993.

[8] R. Malladi, J. Sethian, and B. Vermuri, “Shape modelling with front
propagation: a level set approach,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 17, pp. 158-175, 1995.

[9] S. J. Osher and J. A. Sethian, “Front propagation with curvature de-
pendent speed: Algorithms based on Hamilton-Jacobi formulations,”
Journal of Computational Physics, vol. 79, pp. 1249, 1988.

[10] J. A. Sethian, “Curvature and the evolution of fronts,” Communica-
tions in Mathematical Physics, vol. 101, pp. 487—499, 1985.

[11] Y. Lauziere, K. Siddigi, A. Tannenbaum, and S. Zucker, “Area and
length minimizing flows for segmentation,” |EEE Transactions on
Image Processing, vol. 7, pp. 433-444, 1998.

[12] A. Yezzi and A. Tannenbaum, “4D active surfaces for cardiac analy-
sis” in Proceedings of the Conference on Medical Image Computing
and Computer-Assisted Intervention, 2002, pp. 667-673.

[13] A. Tannenbaum and A. Yezzi, The Confluence of Vision and Control,
ser. Lecture Notes in Control and Information Sciences.  Springer-
Verlag, 1998, vol. 237, ch. Visual tracking, active vision, and gradient
flows.

[14] A. Kumar, A. Tannenbaum, and G. Balas, “Optica flow: a curve
evolution approach,” |EEE Transactions on Image Processing, vol. 5,
pp. 598611, 1996.

[15] A. Brandt, “Multi-level adaptive solutions to boundary value prob-
lems,” Mathematics of Computation, vol. 31, pp. 333-390, 1977.

[16] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial. SIAM Publications, 2000.

[17] E. C. Hildreth, “ Computations underlying the measurement of visual
motion,” Artificial Intelligence, vol. 23, pp. 309-354, 1984.

[18] S. S. Beauchemin and J. L. Barron, “The computation of optical
flow,” ACM Computing Surveys, vol. 27, pp. 433467, 1995.

[19] B. K. P. Horn and B. G. Schunck, “Determining optical flow,”
Artificial Intelligence, vol. 17, pp. 185-203, 1981.

[20] D. Terzopoulos and R. Szeliski, Active Vision. MIT Press, 1992,
ch. Tracking with Kalman Snakes, pp. 3-20.

3446



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP06.5
	Page0: 3441
	Page1: 3442
	Page2: 3443
	Page3: 3444
	Page4: 3445
	Page5: 3446


