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Abstract— A growing research topic within the automotive
industry is active safety systems. These systems aim at helping
the driver avoid or mitigate the consequences of an accident.
In this paper a collision mitigation system that performs
late braking is discussed. The brake decision is based on
estimates from tracking sensors. We use a Bayesian approach,
implementing an extended Kalman filter (EKF) and a particle
filter to solve the tracking problem. The two filters are
compared for different sensor noise distributions in a Monte
Carlo simulation study. In particular a bi-modal Gaussian
distribution is proposed to model measurement noise for
normal driving. For ideal test conditions the noise probability
density is derived from experimental data. The brake decision
is based on a statistical hypothesis test, where collision risk is
measured in terms of required acceleration to avoid collision.
The particle filter method handles this test easily. Since the
test is not analytically solvable a stochastic integration is
performed for the EKF method. Both systems perform well
in the simulation study under the assumed sensor accuracy.
The particle filter based algorithm is also implemented in a
real-time testbed and fullfilled the on-line requirements.

I. INTRODUCTION

A current trend in automotive industry is to introduce
active safety systems that avoid or mitigate collisions. One
system with a potential large positive impact on accident
statistics is forward collision avoidance systems (FCAS),
using sensors such as radar, lidar and cameras to monitor
the region in front of the vehicle. A tracking algorithm is
used to estimate the state of the objects ahead and a decision
algorithm uses the estimated states to determine any action.
We will specifically look at a system that performs late
braking to reduce the collision speed, which is referred to
as collision mitigation by braking system (CMbBS). This
type of system is discussed further in [1]. There are several
motivations for this kind of system. One is its potential
ability to affect rear-end collisions which constitute ap-
proximately 30%, see [2], of all collisions. Furthermore
human factors contribute to approximately 90% of all traffic
accidents, [3]. For reasons such as driver acceptance and
legal requirements of the system, the tracking and decision
algorithms are crucial. Current state of the art automotive
tracking algorithms use Kalman or extended Kalman filter
(EKF) due to computational cost.

In this paper we will propose a new method for colli-
sion avoidance applications based on Bayesian estimation
methods and hypothesis testing. Two tracking algortihms
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are tested. One based on EKF an one on the particle filter.
The latter method is also implemented in a real-time test
system and its real-time feasability is demonstrated in spite
of its computer intensive complexity compared to the EKF.

II. TRACKING AND VEHICLE MODELS

A. Tracking model

The general tracking model takes the form of a non-
linear state space model for the vehicle dynamics and sensor
measurements

(1a)
(1b)

Ti41 = f(xt, Ut,wt)’
Yt = h(xt) + Ct.

For our radar based CMbB system, the state vector, x; €
R™, contains relative position to the other vehicle of
potential collision risk, and relative velocity. Here both
longitudinal and lateral directions are used. Further, u; is
the known inputs from the accelerator, brake and steering
wheel. These are also present for the target vehicle, but then
un-measureable and hence treated as state noise, w;. The
measurement relation (1b) comes from radar measurements
of range, range rate and bearing. The measurement noise,
e¢, includes clutter, multi-path and multiple reflection points
in the vehicle ahead.

B. Estimation approaches

For the CMbB system the measurement noise and the
process noise (driver inputs) are not necessarily Gaussian.
Thus we need a recursive estimation method that can handle
this. In this paper we will study a general non-linear
and non-Gaussian Bayesian estimation problem. This is in
general non-tractable, but using the particle filter method
[4] (see Section IV-A) a recursive solution to the problem
is given. We will also compare with the linearized solution
using the extended Kalman filter (EKF).

C. State noise model

The classical assumption in target tracking is to assume
a Gaussian distribution for w;. In Fig 1 recorded driving
data provided by Volvo is used to make histograms of
the longitudinal component of the acceleration noise, wy.
The data is of course highly correlated in time, since the
acceleration does not fluctate rapidly. It could be used
by introducing a Markov chain based on the empirical
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data. However, for braking situations probably a distribution
based on accelerations collected close to rapid decelerations
should be used instead. A further and natural option is
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Fig. 1.
minutes.

Acceleration histogram of a vehicle driven in urban traffic for 45

to switch between different distributions depending on the
driving situation. In urban traffic one distribution is used, on
highway another one, efc. This leads to a mode dependent
distribution p,, (w;&). Here the mode can be determined
from the host vehicle speed, it may depend on the state
vector, external information from navigation and telematics
systems efc. A simple approach is to use one mode when
v < 70 km/h and another one for v > 70 km/h.

D. Measurement noise model

The measurement equation for the radar involves range,
range rate and relative angle measurements to the vehicle
ahead. Similarly to the above, the range error distribution
can be modeled. A common model is to assume Gaussian
noise. However, we will extend this to a more general case.
An experiment is performed by towing a radar equipped
vehicle, which can then measure the range to the towing
vehicle under driving conditions with an almost constant
range. Data is collected using an FM-CW radar at 40 m
and constant speed 60 km/h on a Volvo S80 sedan. The
range data is correlated, probably due to some oscillations
in the rope and from internal filters in the receiver. A second
order state space model is fitted to data using the ndsid
method, [5], [6], in order to produce de-correlated range
data. This pdf range error is presented in Fig 2 together
with a Gaussian approximation.

The measurement noise from the experiment is collected
under nearly ideal circumstances. For instance, the data
was collected from behind, i.e., no aspect angle to the car,
and on a smooth test track. In many cases due to road
curvatures, uneven road surfaces and lateral movement the
measurement range distribution might be different. Also, the
exact reflection point is uncertain since the azimuth angle is
not that exact, so for medium distances, the main reflection

Range pdf, towrope: 40 [m] speed: 60[km/h]. Target vehicle: Volvo S80
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Fig. 2. Measurement range noise pdf around the nominal range r =
40 m for the target vehicle Volvo S80 sedan and an equivalent Gaussian
approximation.

point may be located on different parts of the car. Hence,
there are indications that the measurement noise pdf has a
larger variance and different shape. A bi-modal Gaussian
pdf example is presented in Fig 3. This measurement noise
model is motivated by modeling the vehicle by two point
reflectors, which is a simplified way of describing both
multi-path propagation and complex reflection geometry.
The exact appearance of the pdf will vary with many factors
such as target vehicle, sensor and traffic situation. Here
we only test a bi-modal distribution with highly separated
peaks. This is to cover many situations with different aspect
angles, where the density is due to multi-path propagation,
and multiple reflections points for instance in the rear-end,
wheel housing and rear-view mirror. More measurements
and experiments are needed to establish the empirical pdf
for different driving situations, so the proposed density
should just be an example of non-Gaussian pdf influence. In
the simulation study we will compare different assumptions
of the pdf.
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Fig. 3. Bimodal range measurement noise and Gaussian approximation
of range density pe = 0.75N(0, 0.42) + 0.25N(1.6, 0.42).
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Measured and simulated braking system
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Fig. 4. Data from a hard braking maneuver, 110-0 km/h for a Volvo V70.

IITI. STATISTICAL DECISION MAKING

Statistical decision making requires an estimate of the
distribution of x; from noisy measurements ;. The idea is
for instance to calculate the probability for impact for each
time. More on this for automotive application can be found
in [1].

A. Hypothesis testing

A general model-based statistical decision rule based on
some criterion, g(x), takes the form

Prig(z;) >0} >1-a, @

where « determines the confidence level. Hence, in (2) one
has to compute some integrals over the state-dimension to
calculate the probability, given that we know the probability
density function or an estimate thereof. Note that this is a
more flexible approach than a simple rule like g(z;) > 0,
since in (2) we use the complete a posteriori distribution
of the state vector and not only the estimate ;.

How successful the rule (2) is in mitigating a collision
depends on the chosen rule, but also on how accurately
the estimated pdf reflects the true distribution. Almost
always an analytical expression of the probability is hard
or impossible to compute. One way is to use a numerical
integration or more preferrable a stochastic integration to
compute an approximation. Here, one takes a large number
of samples xtl), 1 = 1,2,...,N from the distribution
p(x¢|yo, ---, y¢), and then
#g(x”) > 0 3

N . 3)
For the EKF a stochastic integration can be applied by
drawing samples from the Gaussian distribution around
the estimate ;. This procedure is much simpler when the
particle filter is used, since the samples, :rgz), exist internally
in the algorithm. One can simply count the number of
particles for which the inequality is satisfied. This fact
decreases the gap in computational burden between the EKF
and particle filter approaches.

Pr{g(x:) >0} =

B. The CMbB decision rule

In this paper we will study a CMbB system, which
performs maximum braking when a collision is becoming
imminent, i.e., when a brake maneuver close to or exceeding
the vehicles handling limits is needed to reach a zero speed
at impact. We will introduce a very simple brake criteria to
test the decision idea. We do this by calculating the required
acceleration to obtain a zero velocity at a possible impact.
Suppose at time ¢ = t; the relative position and speed to
the object ahead is given by py and vg. Denote the host
vehicle acceleration by u; = apes (input signal) and the
target vehicle acceleration by a,;. We consider both of
these accelerations to be constant from time ¢ > ¢y and
denote the relative acceleration by a = apost — Qopj. In the
following analysis an ideal brake system is used for simplic-
ity. For a high relative velocity the error of neglecting brake
system characteristics can be compensated by adjusting the
threshold in (7). The collision speed, v¢ at the collision time
t¢, can be calculated as v¢ = vy +a- (t¢ — tp). The relative
time to zero collision speed, v® = 0, is hence

=1 —tg = ——. (4)
a

For a simple motion model the zero velocity impact can be
obtained using the relative acceleration solved from

a-(t—1ty)?
0:po+v(t)-(t7to)+%, )
2
using (4). Hence, one obtains a = —2%, which yield the
host required acceleration

2

v,
Ghost = Gobj — @ = Aobj — U (6)

2po”
For constant velocity case, i.e., ao; = 0, the risk metric
simplifies further and the hypothesis test will be according
to

2

v,
Pri—-—2 < >1-a, 7
r{ o0 an} a @)

where a;j, is the acceleration threshold for when we con-
sider an accident to be imminent.

C. Brake system model

To calculate the collision speed the brake system charac-
teristics need to be known. A complete brake system model
is very complex. However looking at overall vehicle per-
formance a simple yet accurate description can be obtained
using a first order system for the acceleration. Fig 4 shows
measurement data from 10 brake maneuvers with a Volvo
V70 and a first order approximation The measurements
were performed on warm and dry asphalt. For the simulated
data a first order system was used with transfer function

B S/k‘g—‘rl’

with k1 = 11 and ko = 7 chosen such that the system rise
time is 0.3 s and the stationary value is 11 m/s*, Comparing

Gbrake (5) (8)
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traveled distance after 2 seconds we find that the difference
is less than 1 m which is sufficient for our purposes. More
information on typical brake system behavior can be found
in [7].

IV. BAYESIAN ESTIMATION

Consider the state-space model

(9a)
(9b)

xt+l = f($t7utawt)7
yr = h(w) + ey,

where z; € R" denotes the state of the system, u; the input
signal and y; the observation at time ¢. The process noise
w; and measurement noise e; are assumed independent with
densities p,,, and p., respectively. Let Y; = {y;}!_, be the
set of observations until present time.

The Bayesian estimation problem is given by, [8],

p(xi|Ye) = /

P(ye|we)p(we|Ye—1)

Pyl Yeo1) 7
where p(z;41]Y;) is the prediction density and p(x:|Y;)
the filtering density. The problem is is in general not
analytically solvable.

P($t+1|xt)P($t|Yt)d$t» (10a)

n

p(ae]Yy) =

(10b)

A. PFarticle filter

To solve the non-tractable Bayesian estimation problem
in an on-line application without using linearization or
Gaussian assumptions, sequential Monte Carlo methods, or
particle filters, could be used. Here only a brief description
of the theory is given. For more details we refer to [9],
[4], [10], [11]. The particle filter method provides an
approximative Bayesian solution to (10) by approximating
the probability density p(x¢|Y;) by a large set of IV particles
{x{"}V,, where each particle has an assigned relative
weight, %(z , such that all weights sum to unity. The location
and weight of each particle reflect the value of the density
in the region of the state space. The likelihood p(y:|x:) is
calculated from (9) yielding

Yt = p(Ye|we) = pe, (Ye — h(xy)). (1D

By introducing a resampling step as in [10] problems with
divergence can be handled. This is referred to as sampling
importance resampling (SIR), and is summarized in Alg 1.

Alg I (Sampling Importance Resampling (SIR)):
1. Generate N samples {x(()l)}fvzl from p(zo).

2. Compute 'y,fi) = pe(y:|2;") and normalize, i.e.,

N S L

3. Generate a new set {xii*)}ﬁvzl by resampling with
replacement N times from {x@}ﬁil, with probability
70 = Priz =2}, |

4. Prediction: mgfﬁl = f(xi”),ut,wgl)), i=1,...,N
using different noise realizations wt(“.

5. Increase ¢ and iterate to step 2.

The decision criterion (7) can easily be evaluated for the
particle filter since the particles, xy) reflects the location
and distribution of the states. Hence, the particle filter is
well suited for statistical decision making.

B. Extended Kalman filter

The Bayesian recursions in Section IV do not in general
have an analytical solution. For the special case of linear
dynamics, linear measurements and Gaussian noise there
exist a solution, which is retrieved by the Kalman filter, [12].
For many non-linear problems the noise assumptions are
such that a linearized solution will be a good approximation.
This is the idea behind the EKF, [13], where the model
is linearized around the previous estimate. The time- and
measurement update for the EKF are give by

j:tJrl\t = f(jjt\tvut)a (12a)
Py = B P FE + GiQGE,

By = Tepp—1 + Ke(ye — (Zep-1)),

Pt|t = Pt|t—1 - KthPﬂt—h (12b)

K= Pt|t71HtT(HtPt\t71HtT + Ry)7H,
with linearized matrices and covariances

Ft = vmf(xt”zt:i:t“,lv Ht = vzh(xt)‘zt:i"ﬂt,y (13)
Qt = COV(’LUt), Rt = COV(@t). (14)

When a multi-modal Gaussian measurement pdf is used

M
et € > piN(pi, 07), (15)
i=1

where N(u,0%) denotes a Gaussian density with mean (u)
and covariance (o'2), the measurement update equation must
be modified as

By = Bype—1 + Ki(ye — h(Zp-1) —m), (16)
where m = Zf\il pipi. If the measurement pdf is not know
analytically, the approximation using a single Gaussian pdf
introduces a bias (since m = 0).

The decision criterion (7) is not analytically solvable
when the state variables are considered Gaussian. By
sampling the position and velocity distribution around the
estimates a Monte Carlo integration technique can solve the
decision criterion. Hence, part of the computational burden
present in the particle filter is introduce in this step for the
EKF method.

V. SIMULATIONS AND TESTS

In a simulation study we compare the traditionally EKF
tracking filter with the particle filter using the previously
described decision rule for braking. We also test the real-
time performance in a hardware collision avoidance test
platform.
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A. Model

To simplify analysis of the system performance for dif-
ferent noise distributions, we consider a single scenario.
The scenario to be studied is one where the target object
is not moving and the vehicle with the CMbB system is
approaching with constant velocity (60 km/h).

Consider the state vector with relative position p and
velocity v for the z- and y-direction, where the sensor
measures relative distance, azimuth and relative speed.

T
Ty = (p:v Py Vg Uy) (17)
The tracking model with sample time 7' is then
T+l — Fxt + Gﬂ)t (183)
Yr = h(ze) + e, (18b)
10 T 0 T2/2 0
o 1 0 T _| o T1%)2
F= 0 0 1 0 G = T 0 ’ (19)
0 0 0 1 0 T
hz))= (¢ ]| = arctan(py /pz) (20)
7 m(mvz + pyvy)

The process noise, w;, and measurement noise, e;, are
assumed to be independent white noise.

B. Scenario

We consider two main models for the measurement sen-
sor. In the first we use the measured range distribution from
Fig 2, based on measurements collected from experimental
data on a Volvo S80. We conclude that the range density is
narrow and not as bimodal as expected. This is probably due
to the ideal circumstances in the experiment as described
in Section II-D. We are also interested in other driving
situations. Hence the second model of the measurement
range noise is a bi-modal Gaussian, i.e.,

er € piN(u1,07) + poN(p2,03), @21)

where N(u,0%) denotes a Gaussian density with mean (u)
and covariance (02). A sample of e; belongs to one of
the distributions, with probability p;. The values are given
in Table I. Here p; = 0.75 and ps = 0.25 since the
rear-end of the vehicle is assumed to have a larger radar
cross section. The motivation for studying the bi-modal
distribution is discussed in Section II-D. Here two different
parameterizations are presented to investigate the influence.

The range rate and azimuth were found to to be well
approximated by Gaussian distributions, with o; = 0.2 and
o, = 0.01.

We use a longitudinal acceleration process noise, () =
0.5/T, to model driving behavior and model imperfections.

A simple brake system model according to (8) is used
in the simulations, with parameters k; and ko chosen to
give a brake system rise-time of 300 ms and a maximum

deceleration of 9.8 m/s®>. The somewhat lower maximum
deceleration (compared to section II) is due to the fact that
the test track exhibit optimal frictional conditions.

The brake decision is based on a hypothesis test on the
expected required acceleration according to (7). We have
chosen the acceleration threshold to a;, = —8 m/s? and
the confidence level to o = 0.05. For the SIR approach the
hypothesis is evaluated for each particle.

We perform 1000 Monte Carlo (MC) simulations for
both SIR and EKF. In the particle filter we use N = 5000
particles and the same amount of samples in the stochastic
integration for the EKF.

C. Simulation results

The different simulations from the Monte Carlo study
are summarized in Table I together with tracking and CMbB
system performance. Three different cases were considered.
In case I and II two different bi-modal Gaussian range
distributions were used and in case III the empirical range
distribution from Fig 2 were used. All other values were the
same for all the simulation cases. For non-Gaussian range
distributions such as the bimodal-Gaussian proposed for the
measurement noise, the SIR method increases estimation
performance (position RMSE) slightly. The mean difference
in collision speed is basically not affected, however the
EKF has a somewhat larger collision speed variance, but
probably insignificant. The result is under the assumptions
of quite accurate range rate and azimuth measurements and
a high measurement update rate, f = 1/7" = 20 Hz. Hence,
for systems that do not measure the relative speed more
significant differences are expected.

D. Hardware and real-time issues

In the simulations presented in Section V-A the entire
algorithm was implemented in standard MATLAB code.
However, the ultimate goal with the particle filter based
approach is to incorporate the algorithm and test the idea
in an on-line application in a collision avoidance system.
In Fig 5 the test system is shown mounted inside the test
vehicle. The test platform uses dSpace hardware (equipped

Fig. 5. The collision avoidance hardware in the test vehicle.

with a 1 GHz power PC) together with Simulink and
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[Case|Filter | Range pdf pe,

|RMSE (pos) [m][RMSE (vel) [m/s]|Coll.speed [m/s][o Coll.speed [m/s] ]

I [ SIR [ 0.75N(0,0.4%) + 0.25N(1.6,0.4%) 0.11 0.29 -6.59 0.51

I |EKF | 0.75N(0,0.4%) + 0.25N(1.6,0.4%) 0.16 0.29 -6.61 0.53

I [ SIR | 0.75N(0,0.2%) 4 0.25N(1, 0.4%) 0.08 0.29 -6.56 0.49

11 |EKF | 0.75N(0,0.2%) + 0.25N(1,0.4%) 0.11 0.29 -6.56 0.51

I | SIR Empirical (Fig 2) 0.06 0.29 6.52 0.47

Il | EKF Empirical (Fig 2) 0.06 0.29 -6.52 0.47
TABLE T

RESULTS FROM 1000 MONTE CARLO SIMULATIONS AND DIFFERENT CASES.

Real-Time Workshop (RTW). Hence, the algorithm must
be written in C-code and MATLAB/MEX functions for
Simulink. The entire environment is then compiled using the
RTW-compiler to the dedicated hardware platform. In Fig 6
the Simulink diagram is shown for the underlying MEX
C-code functions, i.e., the particle filter and the decision
making algorithm. These are incorporated in the testbed
using the RTW-compiler. The entire algorithm runs faster
then real-time on the dedicated hardware, with 7' = 0.05 s
and N = 5000 particles.

To Workspace
Scope2

Measurements  Unit Delay o

To Workspace3

Scoped

v

To Workspace2

Fig. 6. MATLAB Simulink diagram of the CMbBS model used to
generate RTW-code for the dedicated hardware.

VI. CONCLUSIONS

We have implemented a decision rule in a CMbB system
for late braking using a hypothesis test based on estimates
of the relative longitudinal dynamics. Both an EKF and a
particle filter were evaluated for different noise assumptions.
For non-Gaussian range distributions such as the bimodal-
Gaussian proposed for the measurement noise, the SIR
method increases estimation performance slightly. However,
the range error is in the order of decimeters for all tested
scenarios, so the mean difference in collision speed is
basically not affected. The EKF has a somewhat larger
collision speed variance, but probably insignificant. The
result is under the assumption of quite accurate range rate
and azimuth measurements, and a moderate process noise.
Hence, a greater difference might occur if for instance the
range rate is not measured or if more maneuverability, i.e.,
larger process noise is considered.

The computational cost of the EKF method is somewhat
smaller than for the SIR, but rather close. This is due to the
fact that the EKF uses a stochastic integration to calculate
the probability of collision. So for a decision rule like (2) a

particle filter approach might be preferable. It should also
be kept in mind that the scenario studied here is very simple
(from a tracking sense), for more complex scenarios with
maneuvering target and tracking platform the difference
between the methods may be larger. Also the particle filter
method is more flexible, so if a more complex state-space
model is used, linearization errors in the dynamical model
can be avoided.

In the simulation study the simulations for both the SIR
and EKF approach were run faster than real-time on an
ordinary desk-top computer. The particle filter was also
implemented in the Volvo testbed hardware (used in vehicle
tests) using the MATLAB Simulink RTW compiler. The
tracking filter and decision algorithm executed faster than
the real-time constraint, 7 = 0.05, using N = 5000
particles for the tracking model described earlier.

The authors would like to thank Volvo Car, Sweden, especially Fredrik
Lundholm and Lena Westervall for providing measurement data and a

hardware platform to test the algorithm on.
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