
Algorithms for Air Traffic Flow Management under Stochastic
Environments

Arnab Nilim and Laurent El Ghaoui

Abstract— A major portion of the delay in the Air Traffic
Management Systems (ATMS) in US arises from the stochastic
disturbances such as convective weather. However, in the
current practice, the predicted storm zones are completely
avoided as if they are deterministic obstacles. As a result, the
current strategy is too conservative and incurs a high delay.
In this paper, we seek to reduce the system delay through
explicitly modelling the dynamic and stochastic nature of
the storms and adding recourse in the routing and the flow
management problem. We address the multi-aircraft flow man-
agement problem using a stochastic dynamic programming
algorithm, where the evolution of the weather is modelled as
a stationary Markov chain. Our solution provides a dynamic
routing strategy for “N-aircraft” that minimizes the expected
delay of the overall system while taking into consideration
the constraints obtained by the sector capacities, as well as
avoidance of conflicts among the aircraft. Our simulation
suggests that a significant improvement in delay can be
obtained by using our methods over the existing methods.

I. INTRODUCTION

Air traffic delay due to convective weather has grown
rapidly over the last few years. According to the FAA 2002,
flight delays have increased by more than 58 percent since
1995, cancellations by 68 percent. The airspace capacity
reduces drastically with the presence of convective weather.
The drastic reduction of airspace capacity interrupts traffic
flows and causes delays that ripple through the system.
Consequently, weather related delays, which are stochastic
in nature, contribute to around 80% of the total delay in
most of the years in US since 1995.

There has been a major effort to address delay in the
traffic flow management problem in the deterministic setting
[3], [1], [2], [4], where demand and capacities are con-
sidered deterministic. In these works, various traffic flow
management algorithms are proposed in order to reduce
the system delay, given that the system capacity is exactly
known. However, the major contributor of delay is weather,
which is probabilistic in nature and cannot be addressed in
this framework. In our previous work [5], we incorporated
recourse in the planning process where we addressed the
single aircraft problem using Markov decision processes
(where the weather processes is modelled as a stationary
Markov chain) and a dynamic programming algorithm. Our
approach provides a set of optimal decisions to a single
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aircraft that starts moving towards the destination along a
certain path, with the recourse option of choosing a new
path whenever new information is obtained, such that the
expected delay is minimized. As we addressed the problem
in the stochastic framework, we obtain “the best policy”.

In this paper, we extend our model for multiple aircraft.
The problem of routing under convective weather becomes
much more complex in a congested airspace because both
aircraft conflicts and traffic flow management issues must
be resolved at the same time. In this work, we provide
a dynamic routing strategy for multiple aircraft that min-
imizes the expected delay of the overall system while
satisfying the consideration of the constraints obtained by
the sector capacity, as well as avoidance of conflicts among
the aircraft. Moreover, we have used a more general weather
dynamic model where the predicted zones can have more
than two different states.

II. WEATHER UNCERTAINTY MODEL

Various weather teams (Center for Civil Force Protection
(CCFP), Integrated Terminal Weather System (ITWS) etc )
produce predictions that some zones in the airspace may be
unusable in certain time interval and their predictions are
dynamically updated at every T = 15 minutes. The later
an event is from the prediction time, the more unreliable
it becomes. It is reasonable to assume that we have a
deterministic knowledge of the weather in the time interval
of 0 − 15 minutes in future. Hence, each aircraft has a
perfect knowledge about the weather in the regions that are
15 minutes (15 times the velocity of the aircraft provides
the distance) away from it.

We discretize time as 1,2, ...,n stages according to the
weather update. Stage 1 corresponds to 0−15 minutes from
the current time, stage 2 corresponds to 15− 30 minutes
from the current time. We choose n that accommodates the
worst case routing of the aircraft. Let there be m storms
that are predicted to take place at the region K1,K2, ...Km.
For each Ki, there can be multiple outcomes. Depending on
the coverage area and the intensity of the prediction, we
allow to have different realizations. Let l is the number of
possible outcomes of the prediction in each region. For an
example, K11,K12, . . . ,K1l , are the possible outcome regions
in K1 (K1i ⊂ K1∀i < l and Kil = K1). “0” corresponds to
the situation where there is no storm in the region K1, “1”
corresponds to the state where there is a storm, but only
materialized in the region K11, and similarly “l” corresponds
to the situation where there is a storm, but only materialized
in the region K11. “l” corresponds to the worst possible



outcome when K1l or the whole region K1 has been affected
by the storm. For each storm, there can be (l +1) different
outcomes. As there are m storms , the Markov chain is
a (l + 1)m state Markov chain. For l = 2, and m = 2:
[0 0]T , [1 0]T , [2 0]T , [1 0]T , [1 1]T , [1 2]T , [2 0]T , [2 1]T , and
[2 2]T form the state space. We define pi j as the probability
of the storm state to be j in the next stage if the current
state is i.

III. PROBLEM FORMULATION

We consider a two dimensional flight plan of multiple
aircraft whose nominal paths are obstructed by predicted
convective weathers. All the aircraft considered here are
in the TMA/En-route portion of their flights. Hence, the
velocities of all the aircraft considered are constant.

We use a rectangular gridding system to represent the
airspace where we consider each grid point as a way point.
There are N aircraft currently positioned at O1,O2, . . . ,ON

and the destination points of the aircraft are D1,D2, . . . ,DN

(Figure 3). Oi = [Oi(x),Oi(y)]T ∈ R2 , where Oi(x) and
Oi(y) are respectively the x and y coordinates of the origin
of aircraft i. Similarly, Di = [Di(x),Di(y)]T ∈ R2, where
Di(x) and Di(y) are respectively the x and y coordinates
of the destination of aircraft i. Without the presence of
convective weather, aircraft will try to follow the straight
line connecting the origin and the destination, if those paths
don’t result in conflicts. There is a prediction that there
can be m storms located at K1, . . . ,Km places such that
those zones might be unusable at certain time. w ∈ W are
the weather states and |W | = (l +1)m. The airspace that is
considered here is confined in f sectors, and the capacities
of the sectors are C1, . . . ,C f .

The predictions are dynamically updated with time. In
the current practice, these stochastic convective zones are
assumed to be completely unusable, and solution proceeds
as if they are deterministic constraints. As those zones were
just predicted to be of unusable with a certain probability,
it often turns out that the zones were perfectly usable. As
the routing strategies do not use these resources, airspace
resources are under-utilized, leading to congestion in the
remaining airspace through ripple effect. In our proposed
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Fig. 1. A 2-D view of the problem.

model, we will not exclude the zones which are predicted
to be unusable (with some probability) at a certain time
and we will take into consideration the fact that there will
more updates with the course of flight and recourse will

be applied accordingly. We take a less conservative route
in avoiding the bad weather zone where we take a risk in
delay to attain a better expected delay instead of avoiding
the bad weather zones deterministically. We consider the
following two schemes,

1) All of the N aircraft have the same priority.
2) Every aircraft has a different priority. Without the

loss of generality, we assume that (priority of aircraft
1)>(priority of aircraft 2)> .. . >(priority of aircraft
N).

Scheme 1: All of the N aircraft have equal priority.
At each stage (15 minutes time span, before the next

update), the storm state is assumed to stay constant. X 1 ∈
R2,X2 ∈ R2, . . . ,XN ∈ R2 represent the locations of aircraft.
If the state of the convective weather is w (as section II), we
define a state of the system as s = (w,X1, . . . ,XN) ∈ R2N+1,
which represents the positions of all the aircraft and the
storm situation . Furthermore, we define S as the set of
all possible states s. At any stage t, we want to choose
an action (the directions of all the N aircraft to follow)
from the set of allowable actions in state s, As. Actions
are the directions of all the N aircraft to follow in each
stage with different realizations of the weather. We can
obtain the action As, that is the directions of the aircraft to
follow if we calculate the points that can be reached by each
aircraft in the next 15 minutes, given their current positions.
This can be approximately calculated if we draw an annular
region with 15× vAC ± ε as radii, with a predefined angle
θ and checking which grid points fall in the region. Let,
A =∪s∈SAs. We assume that S and A do not vary with time.

If we decide to choose an action (the directions of all the
N aircraft to follow) a ∈ As in state s at the stage t, we pay
a cost ct(s,a), which is the sum of distances travelled by N
aircraft with the action a for a time interval of 15 minutes.
For notational simplicity, we assume that the velocities of
all the aircraft are equal (vAC). Hence, if we minimize
the expected distance travelled, we minimize the expected
delay. (Exactly the same optimization formulation holds
even if the velocities of the aircraft are different from each
other: where we need to multiply the cost functions with
appropriate multiplying factors). Furthermore, we define an
indicator function Ik j(Xk), whose value is 1 if X k is in the
sector j, and 0 otherwise. In our optimization problem, we
will like to minimize the expected sum of the distances
travelled by N aircraft, while resolving all the potential
conflicts and satisfying the sector capacity constraints. The
optimization problem can be written as,

min
a∈A

Es

(

nT

∑
t=T

ct(s,a)

)

s.t.‖X i(t,w)−X j 6=i(t,w)‖2 > r, ∀i, j ∀ t∀ w,

∑
k

Ik j ≤C j ∀ 0 ≤ j ≤ f ,

where r is the minimum permissible separation distance



between two aircraft, and ‖.‖2 is the euclidian norm.
Scheme 2: (priority of aircraft 1)>(priority of aircraft

2)> .. . >(priority of aircraft N)
This is a sequential optimization problem and the steps

are as follows,
Step 1: In this step, we assume that there is only one aircraft
in the airspace and that is aircraft 1, which has the highest
priority. The state of the optimization problem is defined as
s1 = (w,X1) ∈ S1, where w is the storm state and X1 is the
position of the aircraft 1. If we decide to choose an action
a1 ∈ As1 in state s1 at the stage t, we pay a cost c1

t (s1,a1),
which is the distance travelled by aircraft 1 with the action
a1. We optimize the following problem,

min
a1∈As1

Es1

(

nT

∑
t=T

c1
t (s1,a1)

)

If we solve this optimization problem, we obtain the optimal
policy ao

1 which provides us X1
opt(t,w), the optimal position

of aircraft 1 for all time t and for all the storm state w.
Step 2: In this step, we only consider aircraft 2, which has
the second highest priority. The state of the optimization
problem s2 = (w,X2)∈ S2. At any stage t, we want to choose
an action (the direction aircraft 2 to follow) from the set of
allowable actions in state s2, As2. Let, A2 = ∪s2∈S2As2. For
the aircraft 2, we solve the following optimization problem,

min
a2∈As2

Es2

(

nT

∑
t=T

c2
t (s2,a2)

)

‖X2(t,w)−X1
opt(t,w)‖2 > r, ∀ ∀ t ∀ w,

and obtain X2
opt(t,w).

Step 3- Step N: We keep following the same procedure till
we have solved for all N aircraft. For the Nth aircraft,which
has the lowest priority, the optimization problem is the
following,

min
aN∈AsN

EsN

(

nT

∑
t=T

cN
t (sN ,aN)

)

s.t.‖XN(t,w)−X1
opt(t,w)‖2 > r, ∀ t ∀ w,

‖XN(t,w)−X2
opt(t,w)‖2 > r, ∀ t ∀ w,

. . .

‖XN(t,w)−X (N−1)
opt (t,w)‖2 > r, ∀ t ∀ w,

∑
k

Ik j ≤C j ∀ 0 ≤ j ≤ f ,

where X1
opt , . . . ,X

(N−1)
opt are obtained from previous itera-

tions.
In both of the schemes, we look for the “best policy”.

Determining the “best policy” is to decide where to go
next given the currently available information. We consider
the set of decisions facing all of the aircraft that start
moving towards the destination along a certain path, with
the recourse option of choosing a new path whenever a new
information is obtained.

IV. MARKOV DECISION PROCESS

Let a system has the finite state space S, and the finite
action set A. Moreover, we denote by P = (Pa)a∈A the
collection of transition matrices, and by ct(it ,at) the cost
corresponding to state it and action at at time t. If we
are trying to solve the optimization problem, which is to
minimize the expected cost over a finite horizon:

min
a∈A

Ei

(

NT

∑
t=T

ct(it ,at)

)

the value function can be computed via the Bellman recur-
sion

Vt(i) = min
a∈A

(

ct(i,a)+∑
j

Pa(i, j)Vt+1( j)

)

,

which provides the optimal action at each stage [6].

V. SOLUTION OF SCHEME 1

We propose a Markov Decision Process algorithm to
solve the traffic flow management where each of the N
aircraft has same priority. The steps of the algorithm are
as follows,

Step 1: Preliminary calculations
The state of the Markov Decision Process (MDP) for this

problem is s = (w,X1,X2, . . . ,XN) ((2N + 1) tuple vector)
and s ∈ S (defined in the section III). If we discritize the
airspace by D number of nodes, |S|= D2N(l+1)m. There are
n stages in this MDP (obtained in section II). In addition, we
need to calculate the action set A of the MDP as described
in the previous section. Once we have the set of all possible
controls, we readily obtain Pa from the weather data.

Step 2: Assigning appropriate costs
We assign costs in such a way that our algorithm provides

paths that include going through the zones in the absence
of storms while avoid it if there is a storm. Furthermore,
it should also make sure that there is no conflict among N
aircraft. We define c(w,X1, . . . ,XN ,(X1i), . . . ,(XNi)) as the
sum of all 1 ≤ k ≤ N costs obtained by aircraft k to go to
XKi from Xk.
Provision 1: Avoid if storm, otherwise take a shortcut
We introduce a function PROV1 : R4N+1 → {0,1} in order
to provide us the provision of avoiding a zone if there is a
storm, otherwise taking a shortcut.
Let the storm state w corresponds to the fact that Kw11 ⊆
K1, . . . ,KwN N ⊆ KN are the zones that will be affected by
the convective weather. We further define Kw = ∪iKwii.
If there exists a k (1 ≤ k ≤ N) such that (X ki ∈ Kw) or (
there exists a 0 ≤ λ ≤ 1 such that λX ki +(1−λ )Xk ∈ Kw,
which means that the line connecting the points X k, Xki cut
any of the predicted storm zone )
PROV1(w,X1, . . . ,XN ,X1i, . . . ,XNi) = 1,
else
PROV1(w,X1, . . . ,XN ,X1i, . . . ,XNi) = 0
endif.
Provision 2: Avoid conflict among each other



First, we introduce a function CFv1v2 : R2×R2×R2×R2 →
{0,1}, where it takes the origin and destination points of
two aircraft with velocities v1 and v2 and provides “1′′ if
they are in conflict and “0′′ otherwise. We will demonstrate
how to obtain CFv1v2(I1,F1, I2,F2), where I j is the initial
point and Fj is the final point of the aircraft j. At time t,
the positions of aircraft 1 and 2 are I1 + F1−I1

‖F1−I1‖2
v1t and

I2 + F2−I2
‖F2−I2‖2

v2t respectively. The distance between them

at time t, d(t) = ‖∆I − (∆W )t‖2, where U1 = F1−I1
‖F1−I1‖2

,

U1 = F2−I2
‖F2−I2‖2

, ∆I = I2 − I1, and ∆W = (v1U1 − v2U2).
argmint d(t) = argmint(∆I − t∆W )T (∆I − t∆W ). In order
to find the optimal time t∗ at which two aircraft come
to the closest point, we set ∂

∂ t (∆I −∆Wt)T (∆I −∆Wt) =

0. Solving this, we obtain t∗ = ∆W T ∆I
∆W T ∆W

. If t∗ < 0, the
two aircraft are diverging, hence CFv1v2(I1,F1, I2,F2) = 0.
Also, if ‖∆I + t∗∆W‖2 > r, CFv1v2(I1,F1, I2,F2) = 0, else
CFv1v2(I1,F1, I2,F2) = 1.

In this problem, as we have assumed that all
the aircraft are flying at the same speed, we can write
CF(, ., ., ., .) instead of CFv1v2(, ., ., ., .). In addition, we
introduce a function PROV2 : R4N → {0,1} that provides
us the provision of conflict avoidance.
If ∀l,k l 6= k, ‖X li −Xki‖2 > r or CF(X l ,X li,Xk,Xki) = 0,
PROV2(X1, . . . ,XN ,X1i, . . . ,XNi) = 0,
else
PROV2(X1, . . . ,XN ,X1i, . . . ,XNi) = 1
endif.
Finally, the cost function is defined as following,
if PROV1(w,X1, . . . ,XN ,X1i, . . . ,XNi) = 1 or
PROV2(X1, . . . ,XN ,X1i, . . . ,XNi) = 1,
c(w,X1, . . . ,XN ,X1i, . . . ,XNi) = A very high value,
else
c(w,X1, . . . ,XN ,X1i, . . . ,XNi) = ∑N

k=1 ‖Xki −Xk‖2

endif.
Step 3: Assigning appropriate Value function
We define Vt(s) as the value function which is the

expected minimum distance to go if the current state is
s and the current stage is t. We need to add the following
provisions in the value function in order to obtain the correct
solution.

Provision 1: Reach the destination points
The value function should have boundary conditions such

that we obtain a complete path (path stating at the origin and
ending at the destination) as a solution. For the destination
points D1, . . . ,DN , the conditions below would guarantee
that the solution will provide a complete path.
For any state weather state w and the last stage n,
if {X1 = D1}, . . . ,{XN = DN}
Vn(w,X1, . . . ,XN) = 0,
else
Vn(w,X1, . . . ,XN) = a very high value
endif.
Provision 2: Direct cost at the end of the flight
We assign the boundary values to the value function for the
states which corresponds to the aircraft locations that are

less than 15vAC apart from the destination points. Let the
state corresponds to the aircraft location of X 1, . . . ,XN and
(‖(X i −Di‖2 ≤ 15vAC ∀i) and the stage t > 1.
If (w corresponds to the storm state such that no storm zone
intersects the straight line {λX k +(1−λ )Dk and 0≤ λ ≤ 1}
)
Vt(w,X1, . . . ,XN) = ∑k ‖Xk −Dk‖2, for any t > 1,
else
Vt(w,X1, . . . ,XN) = ∞
endif.
Provision 3: Sector Capacity
In order to ensure that the total number of aircraft in a sector
at any time does not exceed the sector capacity, we assign
value function appropriately. For a state s = (w,X 1, . . . ,XN),
if there exists at least one j such that ∑k Ik j > C j, then
Vt = ∞.

Step 4: Implementing the recursive equations
The recursive equation that solves the problem is as

follows,

Vt(s) = min
a∈A

{c(s,a)+∑
s′

Pa(s,s′)Vt+1(s
′)}.

We use the backward dynamic programming technique to
solve these equations. We start with the final stage and
go back iteratively to the first stage and obtain solutions
for every stage and for every state. At the first stage, the
solution is readily obtained as we know the current state.
The aircraft will continue flying according to the solution
until a new update is obtained. At the next stage, we will
receive a new update, which corresponds to a new state. As
we have already calculated all the optimal control for all
possible states, we just check the vector V2(.) and obtain
the control. The aircraft will proceed in this way till they
reach the destination points (checking the vector Vn(.)). In
this way, we compute a routing strategy that provides the
minimum expected delay.

VI. SOLUTION OF SCHEME 2

In this scheme, we assume that (priority of aircraft
1)>(priority of aircraft 2)> .. . >(priority of aircraft N) (as
described in the section III).

Step 1: Optimal route for aircraft 1
In this step, we find the optimal route for aircraft 1, which

has the highest priority. In a sense, we assume that there is
no aircraft in the airspace. The MDP state s1 = (w,X1)∈R3

and s1 ∈ S1 (defined in the section III). We discretize the
airspace and time in a same way as described in section V
and section II, which yields |S1|= D2(l +1)m, and n stages
in this MDP. Actions of this MDP are the directions of
aircraft 1 to follow in each stage with different realizations
of the weather. As described in section V, we obtain the
action a1, that is the directions of aircraft 1 to follow if
we calculate the points that can be reached by aircraft 1 in
the next 15 minutes, given its current position. We define
c1(w,X1,X1i) as the cost to go if the aircraft 1 goes from
X1 to X1i in a stage. For assigning the appropriate value, we



only need to add provision 1 (calculation of which is same
as described in section V: step 2: provision 1). As there
is only one aircraft, there is no need to add the provision
for conflict avoidance. The value function for the MDP is
defined as V 1

t (s1), which is the expected minimum distance
to go if the current state is s1 and the current stage is t.
In the value function, we add the the first two provisions
(the calculation is same as described in section V: step
4: provision 1and 2 ). As there is no other aircraft in the
airspace, we do not need to add any provision that require
satisfying the sector capacities. Once we have assigned all
the boundary values properly, we can solve the following
recursion,

V 1
t (s1) = min

a1∈A1
{c1(s1,a1)+∑

s′1

Pa(s1,s
′
1)V

1
t+1(s

′
1)},

and we obtain the solution of the recursion which provides
us X1

opt(t,w).
Step 2−N: Optimal route for aircraft 2−N
We follow the same procedure in the next steps, except

we add the provisions that prohibit conflicts and satisfy the
sector capacity constraints. In the the second step, we add
the conflict avoidance provision in the cost function, where
X1

opt(t,w) ∀ t ∀w are considered “NO-GO” zones. We use
the same procedure described in section V: step 3: provision
2, where we assign high cost for violating these constraints.
In each iteration, we keep a record of Ik j and assign a very
a high value to the value function if the sector capacity
constraints are violated. When we solve the appropriate re-
cursion, these additional features will guarantee the conflict
avoidance and satisfy the sector capacity constraints. For
the Nth aircraft, which has the lowest priority, the provision
2 for cost function will be as follows, if ∀1 ≤ k ≤ N − 1,
‖XNi −Xki‖2 > r or CF(XN ,XNi,Xk

opt ,X
ki
opt) = 0,

PROV N
2 (XN ,XNi) = 0,

else
PROV N

2 (XN ,XNi) = 1
endif.
The cost function will be defined in the same way (section
V) using these two provisions. Also, V N

t (.) is very high
for the states which violates the sector capacity constraints.
With this provisions in the cost and value functions, we can
solve the recursion and obtain optimal strategy for all of the
N aircraft that minimize the delay, given the above priority
scheme. This scheme avoids combinatorial explosion as
|S1 = |S2| = . . . = |SN | = D2(l +1)m. On the other hand, as
this is a more constrained optimization problem, it yields
higher delays than the scheme 1.

VII. SIMULATION

In this section, we discuss the results of the implemen-
tation of both algorithms in various scenarios involving
dynamic routing and traffic flow management of multiple
aircraft under uncertainty.

We have implemented both algorithms in MATLAB and
we ran our experiment on a standard PC. In the first exper-

iment, there are two aircraft with origins at O1 = [0,96]T ,
and O2 = [0,−96]T , and destinations at D1 = [312,−96]T

and D2 = [312,96]T (all the units in n.mi.). The velocities of
the aircraft are 480 n.mi/hour. There is a prediction of a con-
vective weather. The storm zone is a rectangle whose corner
points are [168,96]T , [168,−96]T , [192,−96]T , [192,96]T ,
which may obstruct the nominal flight path of the aircraft.
Moreover, there is a critical airspace within this zone which
will definitely be affected if the the storm takes place.
The critical zone is assumed a rectangle with corner points
[168,60]T , [168,−60]T , [192,−60]T , [192,60]T (the shaded
zone in figure 2). We assume that the weather information of
the portion of the airspace that can be reached in 15 minutes
is deterministic and the probability of the storm propagates
in a Markovian fashion with time. Also, the minimum
separation distance between two aircraft, r = 5(n.mi) in this
example. The weather update is received once every 15
minutes. We discritize the time in 15 minutes time intervals
(stages). We define “0” as the state when there is no storm,
“1” as the state when only the critical zone is affected by
the storm, and “2” as the state when the whole predicted
zone has been affected by the storm. The prediction matrix
is a follows,

P =

(

0.4 0.4 0.2
0.33 0.33 0.33
0.33 0.33 0.33

)

.

P(i + 1, j + 1) corresponds to the probability that the
storm state will be j in the next stage, if the current storm
state is i; i.e., P(2,1) = 0.3 means that the probability that
the storm state will be 1 (no storm) in the next stage is
0.3 given the current storm state is 0 (only critical zone is
affected by the storm).
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Fig. 2. Routing of two aircraft.

In this scenario, we implemented both of our strategies
(scheme 1 and 2) and compared their performances with
the traditional strategy (TS) where the convective zone is
avoided as if it is a deterministic obstacle while avoiding
conflicts. We define “ Delay Measure (DMA

i )” as the extra
flight path required by aircraft i in a strategy A in excess
of the nominal flight path (which is the Euclidean distance
between the origin and the destination; 366.34 (n.mi.) in this
problem); DMA

i j = DMA
i +DMA

j . Furthermore, we introduce

a performance metric “Improvement Measure (IMA/B
i )” of

Strategy ‘A’ over ‘B’, which is the percentage of the



maximum possible improvement gained for aircraft i by
using strategy ‘A’ instead of using strategy ‘B’; IMA/B

i =

100× DMB
i −DMA

i
DMB

i
, and IMA/B

i j = 100×
DMB

i j−DMA
i j

DMB
i j

. Higher IM

corresponds to better delay. In TS, if we resolve the conflict,
aircraft 1 and 2 follow paths with a length of 455.12n.mi).
DMT S

1 = DMT S
2 = 455.12− 366.34 = 88.78, and DMT S

12 =
DMT S

1 +DMT S
2 = 177.56.

Using the scheme 1, where both aircraft have equal
priority, aircraft 1 and 2 will initially follow a path with
an angle of 30.960 and −30.960 respectively till they get
the next update. Both of them will avoid the storm zone
when there is a storm and take a direct route if there is
no storm and the solution of the strategy is conflict free.
In this way, both the aircraft follow a flight path that yield
a expected delay of 398.67 (n.mi.). DM1

1 = DM1
2 = 32.33,

IM1/T S
1 = IM1/T S

2 = IM1/T S
12 = 100× 88.78−32.33

74.78 = 63.58%.
Similarly if we use scheme 2, where aircraft 1 has higher
priority over the aircraft 2, aircraft 1 and 2 initially fly at
an angle −36.860 and 53.130 till they get the next update.
Similar to the scheme 1, both of them will avoid the storm
zone when there is a storm and take a direct route if there
is no storm and the solution of the strategy is conflict free.
The expected distance travelled by the aircraft are 382.08
(n.mi.) and 426.24(n.mi.) respectively; IM2/T S

1 = 78.95%,
IM2/T S

2 = 40.18%, and IM2/T S
12 = 56.76%. The summary of

the result is presented in I. We observe that we obtain a

IM of Scheme 1 over TS IM of Scheme 2 over TS
Aircraft 1 56.71% 78.95 %
Aircraft 2 67.72% 40.18%

System 63.03 % 56.76%
TABLE I

IMPROVEMENT COMPARISONS

better system delay in case of scheme 1. However, in real
life, depending upon the aircraft type, size, and hub and
spoke network, it might be more reasonable to prioritize
the routing strategy. Moreover, the computation time for
scheme 2 is 8.31 seconds, which is much faster than the
computation time for scheme 1 (7.46 minutes). We can
avoid a combinatorial explosion in case of scheme 2 and
can handle large number of aircraft. There is no significant
computation cost in adding an extra aircraft. In order to
illustrate this point, if we add one more aircraft in the
system with O3 = [0,0]T and D3 = [360,0]T (figure 3), our
algorithm gives the routing strategy for aircraft 3 with an
additional 4.84 secs. Aircraft 3 should have an initial angle
of 14.0360, which yields IM2/T S

3 = 34.62% (for aircraft 3)

and IM2/T S
123 = 51.23% (for the system). In addition, we

ran an experiment for the same weather prediction where
a platoon of aircraft are positioned at O1 = [48,48]T , O2 =
[24,24]T , and O3 = [0,0]T . The destination point for all of
the them is [360,0T ] and (priority of aircraft 1)>(priority
of aircraft 2)>(priority of aircraft 3). Initial vector provided
by our algorithms for the aircraft are 33.610, 36.650, and
38.650. The system level IM obtained by using scheme 2
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Fig. 3. Routing of three aircraft.

over TS is 58.35% (figure 4).
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Fig. 4. Routing of a platoon of aircraft.

VIII. CONCLUSION

We provide a traffic flow management tool that can assist
the Air Traffic Controllers and the Airline Dispatchers in
managing traffic flow dynamically and routing multiple
aircraft under weather uncertainty. Our proposed strategies
deliver a less circuitous route for an aircraft whose nominal
path is potentially obstructed by weather. Moreover, they
inhibit the overloading of aircraft in the neighboring sectors
of the predicted storm zones, thus the ripple effect of delay
due to convective weather is restricted. As a result, our
algorithms provide a traffic flow management scheme that
minimizes the expected delay of the system.
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