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Abstract—In - this paper, the problem of tracking and radar systems, this information may be derived from either
managing the identity of multiple targets in a cluttered the physical attributes of an aircraft or from establishtnen
environment is discussed and applied to passive radar tracking of communication with one of the aircraft. In our previous

of aircraft. The targets are assumed to be hybrid systems. We - .
propose a filter based on joint probabilistic data association work [8], we proposed the Multiple-Target Tracking and

for target-measurement correlation combined with an identity ~ ldentity Management (MTIM) algorithm, which is a com-
management algorithm [1] and an algorithm that we have bination of the Joint Probabilistic Data Association (JHDA
developed in earlier work [2] for hybrid state estimation.  algorithm [4] in which a target's kinematic information
The Multiple-Target Tracking and Identity Management al- - (nition and velocity) is used for associating measurdsnen
gorithm, also incorporates suitable local information, when . . .
available, in a manner that decreases the uncertainty, as with targets, and the Identity 'V'a”ag_eme”t (IM) algquthm
measured by system entropy. In situations in which local for sensor networks [1]. MTIM utilizes target attribute
information is not explicitly available, a version of local information from local sensors to correctly maintain targe
information incorporation based on multiple hypothesis testing  jdentity. In [8], we assumed there were no extraneous
is included to improve identity management. The algorithm measurements.

allows us to track multiple targets, each capable of multiple . .
modes of operation, in the presence of interference which could In reality, the MTIM problem could be complicated by

be both noise in the continuous processes as well as in the form Several shortcomings in the q.uality of available inforroati
of spurious measurements. about the targets. The surveillance system may have mea-

surement errors, and may even miss measurements entirely.
In certain environments, the surveillance system may also
The multiple-target tracking problem deals with correctlymeasure extraneous signals, known as clutter. The behavior
tracking several targets given noisy sensor measurement$;the targets also adds complexity to the problem: many
the identity management problem tries to associate targetrgets may be interacting in a small spatial region, and
identities with the state estimates available. Applicatid  these interactions increase the uncertainty in what isgoein
these problems includes tracking in sensor networks [Yheasured. These issues motivate the extension of the MTIM
and multiple-aircraft tracking [3]. As an example of thealgorithm to cluttered environments.
latter, the current Air Traffic surveillance system usesadat Tracking multiple targets in clutter involves the prob-
from radar measurements to track aircraft. In spite of Eem of associating measurement data with targetsild],
substantial improvement in technology, the radar systemomputing the probability of a given measurement having
is still vulnerable to several problems, such as extraneowasiginated from a given target. To compute these data
measurements from clouds, birds and other objects, association probabilities, we propose a modified version
well as “phantom” blips [4], [5]. Another issue that posesf the JPDA algorithm which works for the large number
danger is the growing number of general aviation aircrafof measurement-target associations computationally effi-
These aircraft do not transmit their identities unlessrtheciently. Assignment algorithms have been used to choose
transponders are switched on, and even then, the transptime correct measurement-target correlations among all pos
ders may be problematic [6]. Since Air Traffic Controllerssible ones [9], [10]. However, these assignment algorithms
are instructed not to issue orders to aircraft unless they aselect measurements which are close to expected target po-
certain of their identity [7], it becomes essential thatythe sitions without considering measurement-target coilat
have access to reliable track data with identities, so thaherefore, they lose the advantages of the JPDA algorithm
they can maintain safety. which considers all possible correlations between measure
Given a radar system (or a network of sensors), iments and targets. Thus, we propose a data association
addition to the continuous state measurements, local sensdgorithm which considers measurement-target correlatio
information about identities is often available. In theeca§ and uses thextended Munkres algorithfi1], [12] in order
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to maximize the overall data association probability. Wémal  Given the above system parameters, hybrid estimation
propose the use of a Multiple Hypothesis Testing (MHTYequires estimating both the continuous state and the dis-
algorithm ([13], [14]) to correct the identities of the tatg crete state at timé from the measurement sequence up to
when targets are close and thus their identities are mixetine £ — 1 (¢ = 1,2,---). The Residual-Mean Interacting
This can be interpreted as a method of generating locKMultiple Model algorithm (RMIMM) ([2], based on [13])
information in the system when such information is nots a hybrid algorithm which computes the state estimate
explicitly available. using a weighted sum of estimates from a bank of Kalman
This paper is organized as follows: Section Il presentfilters matched to different modes of the system, and uses
the aircraft model for tracking and discusses the MTIMnformation about the mean of the residual to improve
algorithm, including the modified approximate JPDA, theestimation performance. A detailed explanation of RMIMM
extended Munkres algorithm, and MHT for local informa-is provided in [2].
tion incorporation. Section Ill presents a multiple-aéftr First, denotez(k + 1|k) as the predicted measurement
scenario simulation as demonstration of the efficacy of thef a specific target at timé& + 1 using information up to
MTIM algorithm. Finally, our conclusions are presented irtime k. Assume that the true measurement at tilne 1,

Section V. z(k + 1), conditioned on the measurement sequence up to
k (Z*), is normally distributed. Then, thealidation gateis
I[l. MULTIPLE-TARGET TRACKING AND IDENTITY defined as:

MANAGEMENT (MTIM) ALGORITHM IN CLUTTER ~ _
(MTIM) Verr(7) = (elrlk + DTSk + Dr(k+1) <42} (3)

In this section, we consider the problem of associating a . .
P g erer(k+1) = z(k+ 1) — 2(k + 1|k) is the residual,

time series of measurements to the tracking and managi o _ , .
k + 1) is its covariance, andy is a design parameter

of identity of one or more aircraft in the presence of clutte hich determi the si f th lidati te. At h
We model the dynamics of an aircraft as a stochastjy 'ch determines the size ot the validation gate. eac
e k + 1, all measurements that lie insidé. () are

. ; . : . . im
linear hybri m with discrete-tim ntin - . . .
dyre12mic>;t') d syste th discrete-time  continuous Stat%onsmered valid possibilities. The problem of associatin

each validated measurement with an appropriate target or
zk+1) = Ajz(k)+w,k) ) identifying it as clutter and discarding it is known as data
(k) = Cja(k) +v;(k) association.

. ) The MTIM algorithm approaches this problem using
and a Markov transition model of the discrete state (Mod§)a three main blocks shown in Figure 1 at each time

given by: step. The first stage iData Association which consists

Plj(k+1)|i(k)] = H;; ijeM=1{12-- N} (2 of match@ng incoming measurements to the targets. Given
state estimates of’ targets from the previous time step

wherez € R™ and z € RP are the state and the outputand L measurements from the current time step, Ersta
respectively. M is the set of discrete states, or modesAssociationblock is used to generate anx 7' matrix of
The termsw and v are respectively the mode-dependentassociation probabilities. Entries in this matrix represhe
uncorrelated, white Gaussian process noise and measupesbability of a given measurement having originated from
ment noise with zero means and covarianégsand ;. ~ a given target. Th@racking/Hybrid State Estimatioblock
H,; is the Markov mode transition probability from modeof MTIM performs the tracking ofl’ targets in parallel.
i to modej. This hybrid model is useful for tracking a At time k, the tracking algorithm for each target takes as
maneuvering aircraft since the trajectory of an aircraft igput the hybrid state estimate from the previous time step
composed of straight lines and circular arcs depending dn-1 and a single measurement from the current timéhe
the flight mode of the aircraft. For example, if a single lineameasurement input comes from the Data Association block.
(or nonlinear) continuous model is used for aircraft tragki The hybrid state estimate comprises position and velocity
the process noise covariance in the model has to be largegigtimates, their covariances, and a flight mode estimate. Th
order to account for model inaccuracy. This large procesgutput of the Tracking/Hybrid State Estimation block is the
noise covariance leads to poor state estimates. Hybrwybrid state estimate at time. The Identity Management
models with multiple modes that represent the flight regimeglock takes as input the belief matrix from timie— 1
(flight modes) of an aircraft could represent the dynamicghose entries represent the probability that a given target
of the aircraft more accurately than one continuous modéhas given identity, and thé x T' association probability
and thus each continuous model could have a small procg®atrix. This block maintains identity information over &m
noise covariance that would give accurate state estimatgiven information about the interaction betwegrtargets.
The flight mode changes of an aircraft depend on the pilotBhis information is stored in & x T identity belief matrix
input which is usually unknown to the surveillance systemB(k), wherek is the current time step. The matrix is doubly
This unknown pilot's input makes the flight mode changestochastic; that iSZiT:1 Bij(k) =1, for j € {1,...,T}
of an aircraft nondeterministic and can be modelled as and Zjll B;i(k) =1, for i € {1,...,T}. The evolution
finite Markov process [15]. of this belief matrix is governed by & x T" mixing matrix
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M (k), which stores interaction information for a single timeThe mode estimatg:(k — 1) from the previous time step is
step.M;; (k) represents the probability that targeat time  used to obtain a single continuous state predictiOe)k—1)
k — 1 has become target at time k. The belief matrix is and a single residual covarian§ék). Because the predicted
updated according to the equation [1]: state is assumed to have a Gaussian distribution, the state
prediction is the mean (center) of the validation gate of the
B(k) = B(k — 1)M(k) ) target, while the residual covariance is the covariance of
The Identity Management stage outputs the belief matrix &te validation gateS(k) is also supposed to be used to
time k. The following sections discuss each structural blockletermine the size of the validation gate, according to (3).
and the algorithms used to implement the stages in detaidowever, when a target changes modes (starts a maneuver),
the Kalman filter overestimates its confidence in its state
Data Association estimate, which results in a smallg(k) than is appropriate.
Tr acki ng/ Hybr i d Often, the measurement of the maneuvering target does not
State Estimation fall inside its validation gate; as a result, the size of the

———
—_—_—

Hybrid state estimtes

. ce—- . validation gate must be increased. This increase is oltaine
State Prediction L___' I dentity Managenent ) s R . .
by increasing the state covariangevith an additional term
i that compensates for the additional uncertainty about the
Measurements  n state predictions, residual covariances maneuvering target. ThIS addlmonal term is relgted to the
_l l state velocity estimaté according to the expression
r—-——————"== |- _2a-T 2~ AT
Measur ement Val i dat i on/ I Local Information Sewtra = T00" + V701U, (8)
| Associ ati on | . Incoporation . ) ) ) .
—— T _—— r —-- _l ------- where is obtained by rotating by 9¢° in the counter-
clockwise direction. The effective residual covariarfteis
Measur enent assignnents M xing matrix Local |nfornation then equa| to
l l l S/ =5+ Semtra- (9)
State Estimate Update | * Belief Matrix Update| Since S..1q IS positive definite, the region covered by the
. ' validation gate created froi is larger than that created by

S, as shown in Figure 2. In this figure, the smaller ellipse
is the validation gate as determined By while the larger
ellipse is that determined bg’. The extended validation
A. State Prediction gate is longer in the cross-track direction to account for
tge likelihood of targets maneuvering to either side of
their expected track. The constantsand v are chosen

Fig. 1. MTIM Block Diagram (single time step)

The State Prediction step, which generates an estimate

the state at timeé based only on the outputs of MTIM at B .
time k—1, is carried out for each of tHE targets in parallel. empirically to ensure that maneuvers are extremely umnlikel
This is done using the RMIMM algorithm. The detailsto lead to measurements outside validation gates; the-cross

that follow refer to the procedure used for a single targef/ack termv is chosen to be larger than the along-track term

This stage takes as input the continuous state estimafes! N€ additional ternb,.., is related to velocity because
#;(k — 1|k — 1), covariancesP;(k — 1|k — 1), and mode €T0rs in track due to a maneuver will be directly related to
1 H 1 )

probabilitiesy; (k — 1), which is a measure of how probablethe velocity of the target. Thus, the outputs from the first

it is that the system is in modé wherei refers to the bltock are state predictipmt(k|k - 1'), res/idual covariance
mode of the target. The output of the block is a predictiory. (¥), @nd effective residual covarianc'(k) for targett.

of the state and its covariance at tifevithout information  1here arel’” sets of outputs, one set for each target. The
from time k. First. RMIMM combines the state estimateseffective residual covariancé” is used for measurement
from the different modes, resulting in new initial states/alidation only.

@o(k—1|k—1) and covariancesy;(k—1|k—1). These are g \easurement Validation/Association

input to a set of Kalman filters, one for each mode, without

measurement inputs. The outputs of the Kalman filters are 1hUS, the measurements are tested in validation gates

state predictions defined in (3) withS(k) replaced with the effective residual
covarianceS’ (k). The Joint Probabilistic Data Association
zi(klk — 1) = Asioi(k — 1]k — 1), (5)  (JPDA) algorithm can be used to chodBemeasurements

and generate & x T mixing matrix M (k). However, in
order to deal with many targets in clutter with good accu-
Pi(k|k — 1) = A; Ppi(k — 1|k — 1)AT +Q;,  (6) racy, in this section, we develop a Modified Approximate
JPDA (MAJPDA) to generate the mixing matrix.

The Approximate JPDA (AJPDA) algorithm is a com-
Si(k) = C;iP;(k|k — 1)CT + Ry, (7) putationally abbreviated version of JPDA [16]. Denote
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Fig. 2. Validation gates determined by the original residt@lariance
S and the effective residual covariansé which accounts for the maneu-
vering uncertainty of a target.

sums of the association probability matrix computed by
AJPDA might not be equal to 1, as in the case of JPDA.
Thus, the accuracy of AJPDA might not be good enough
for certain situations. To correct this and improve the
performance of data association, we propose a Modified
Approximate JPDA (MAJPDA) algorithm, which uses the
Sinkhorn algorithm ([17], [8]) to make the association
probability matrix/3(k) doubly stochastic (Step 1-b). There-
fore, MAJPDA keeps the essential characteristics of JPDA,
and thus outperforms AJPDA, with far less computational
complexity than JPDA, for tracking many targets in clutter.
Because there can be more measurements than targets in
a cluttered environment, there is a need to choose a subset
of the full association probability matrix as the mixing
matrix, which should be a square matrix [1]. The MAJPDA
algorithm entails both the determination of the assoaiatio
probability matrix and the doubly stochastic, square ngxin

the Gaussian probability density function of the residuamatrix. In the no-clutter case, the mixing matrix is nothing

Nlzj(k); 2 (k|k — 1), S*(k)] asG,(k) wherez!(k|k — 1)
denotes the predicted measurement for targetith an
associated residual covariansé. Thus,G,.(k) is propor-

more than the doubly stochastic form of the association
probability matrix. However, for a cluttered environmeifit,
there arel. measurements, then the association probability

tional to the Gaussian likelihood function that representsatrix hasL rows andZ’(< L) columns. The mixing matrix

the closeness between targedind measurement We let

Py(k) = Z Gji(k), Prj(k):=Y Gu(k)  (10)

Then the association probability is defined as [16]
Gji(k)
Py (k) + Prj(k) — Gj(k) + ¢

Bje(k) = 11)

M (k) must still haveT’ rows andZ’ columns. To choos&

of the L rows, we use the extended Munkres algorithm [12],
which is an assignment algorithm which chooses the set of
T numbers with maximum sum from all sets 8fnumbers
taken from aT x T matrix such that the numbers cover
every row and every column [11]. Bourgeois and Lassalle
extended this algorithm to rectangular matrices [12]. Thus
for a L x T matrix, with L. > T, the extended Munkres

Thus, (11) puts more weight on the target which does natigorithm picksT" elements from the matrix with maximum

fall into the validation gates of any other targetds a bias

sum so that these numbers covgrdistinct rows and all

term set to 0 in most cases, including in this paper. Thef the T' columns (Step 2). This extension lends itself to

data association algorithm can be described as follows:
Algorithm 1: Data Association
o Given: validated measurementsz;(k) (j =
{1,---,L}) and targetst (t € {1,---,T}) where
L>T.
1) Modified Approximate JPDA (MAJPDA)
a) Compute thd. x T' association probability ma-
trix 3'(k) = [8;,(k)] using (11).
b) Scaling: Find5(k) = SI(5'(k)) such that
Zle B+ = 1 and Zthl Bjt = 1 where the

operatorS1 represents the Sinkhorn scaling pro-

cess.

processing the data association probability matrix oulyyut
MAJPDA. TheT numbers chosen by the extended Munkres
algorithm constitute:*(k), which are thel' measurements
assigned to th& targets to maximize the sum of association
probabilities. The assignment of measurements to targets i
a one-to-one correspondence between measurejnant
targett; that is, j is a function oft and vice-versa. The

T rows of 5(k) representing these measurements form a
T x T matrix. The doubly stochastic form of this matrix is
the mixing matrixM (k) (Step 3). The mixing matrix and
measurement assignments are then passed to the Belief Ma-
rix Update and State Estimate Update blocks respectively.
The State Estimate Update block propagates the continuous

2) Assignment (extended Munkres algorithm): Find atate, its covariance, and mode probabilities to tim@he

permutationlI such that
maxiy(¢) ZtT:1 5H(t)t
subjectto 1<¢<T, 1<II(t) <L
i # j = (i) # I1(j)
3) Mixing matrix: M(k) = SI(Buwy) for t €
{1,---,T}.

Belief Matrix Update blocks updates the belief matrix from
time k — 1 to time k using (4).

C. Local information incorporation

Local information is useful only if its use results in
the uncertainty of the belief matrix being reduced, where
uncertainty is measured as entrof@hannon Information

Step 1-a computes association probabilities between tf#]. Entropy of the belief matrix is defined as a measure of
validated measurements and the targets. However, colurstatistical uncertainty of the probability density of thken-
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0.31 diagonal element of the mixing matrix is below a threshold,

025 s Kk+1) which we treat as a design parameter. The local information
0.2l g 5 comes from applying the MHT algorithm on track estimates
L Rk Rk - for two time steps. This information is useful in the sitoati
015 \ /Zb(k) 2 (k1) portrayed in Figure 3. In this figure, two aircraft cross

0.1} z_(k) °%° 2 (k1) perpendicularly at timek. Their estimated positions are
005, K(k-1) / gﬂ% d marked with x’s, while the radar measurements are marked
) with o’s. The expressioit? (/) denotes the state estimate for

distance |[km]

or

005, Aircraft A R(k+1) targett at timel. The measurements (k), z(k), zc(k:+1),'
andz4(k+1) are indexed by letters to reflect that of possibly
047 0 o1 02 03 many choices, two measurements were chosen by MAJPDA

distance [km] at each time step to correspond to the two targets. Aircraft
Fig. 3. State estimates (x) and measurements (o) for a twaaircr A starts -at the bOttom Ieft- attime—1 and moves to the top
exa.mp;le. The solid arrows denote the direction of movementeofatgets. ”ght at timek + 1, while Aircraft B starts at the top left and
The dotted lines do not denote distances, they give the asisochetween moves to the bottom right. The assumption is that aircraft
the labels and the points. A(or B) is Target 1(respectively, 2) with absolute certgiat
time k—1. That is, the belief matribB(k —1) is the identity

1 0 .
tity of the 7" targets. From our earlier work [8], it has been[ 0 1 } . At time k, the two targets are close together

shown that local information that identifies one or moreand almost equally likely to be associated with each of two
targets with absolute certainty can always be incorporategheasurements. Assume the mixing matki&(k), and thus
since such information will never increase entropy. In thi . . .| 051 049
paper, an additional source of possible local ir?(/)rmatioﬁqe belief matrix5 (k) = B(k—1)M (k), is 0.49 0.51
is presented. This set is automatically generated whenewirtime k. At time & + 1, the aircraft have diverged, and
targets interact and the entropy increases significantly. the validation gates of the two aircraft no longer intersect
Thus, the mixing matrix/ (k + 1) from MAJPDA is the
03 03 identity, and the belief matrib@(k + 1) = B(k)M (k +

0250 Ry o2t Re1) . .51 . .
Aicret B , Alcraft B . 1) remains at 051049 | "o vAIPDA algorithm
02 @ 2w 0.49 0.51
o Y L e cannot differentiate between the two measurements at time

01 2, k; as a result, uncertainty in the belief matrix is essemtiall

distance [km]
o
=
distance [km]

005 X(k-1) 2 maximum. This uncertainty remains even after the aircraft
o 0 separate. However, from the dynamics of the two aircraft,
005 Aircraft A Bt) gl Afcratta Rke1)

it is clear that neither aircraft can execute & 90Qrn in
02 03 one time step. Thus, the only possible outcome is that
aircraft A(B) remains associated with Target 1(2) and this

02 03 %1

01 01
distance [km] distance [km]

03 (a) 03 (0) yields a belief matrix equal to the identity matrix, which
0% prcratt B Rt OB prcratt B Rk has minimum entrOpyI
o : e WW The MHT algorithm is utilized to obtain a lower entropy
g o £ 015 709 2D belief matrix than MAJPDA and standard Belief Matrix
§ fu 4 2 (1) Updates can achieve. This algorithm is discussed in detail i
s 0% 8 005 Heed TN [4], [14]. Given initial conditionsi' (k—1) andi?(k—1), as
—0.0: Aircraft A Rke1) _O_OZ Aircrat A Rk well as measuremer:'@(k)ﬂ 2(k), ze(k+1), andzd(k—i-.l),
there are four possible target-measurement matchings that

-0. . . . .
PRI b1 PRI can occur; these are illustrated in Figure 4. Figure 4(a)

©) (d) refers to the outcome chosen by MAJPDA, since Target 1
is assumed to have gone through measuremegyits and
l;ig-dé!- (a)-(df): Possible joifnthevents in I\4Ir-]|T.dThe dscla_lid av(;eggenote z.(k + 1). Each plot in Figure 4 is a joint event made up
the direction of movement of the targets. e dotted linesx enote H H
distances, they give the association between the labelshangoints. of fou_r e\,/ents represelnt-ed by the line segments in the p|0t.
e likelihood of the joint event that each target chooses
The likelihood of the joint t that h target ch

Without using extra sensors to get attribute informatioffS P&ir of measurements is the product of these individual
about the targets to correct target identities, we propose gvents. Th_e result is four I|I§eI|hoods for the four joint ate
use the Multiple Hypothesis Testing (MHT) algorithm to gefPOrtrayed in the plots of Figure 4.
local (attribute) information about interacting target$e To determine belief, one is only interested in whether
reason for using MHT is that it covers all possible targeTarget 1 reaches the expected position of Aircraft A at
identity hypotheses. MHT is used only when the minimuntime k£ + 1 or not. Thus, the sum of the likelihoods from
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Figure 4(a) and (c) is the likelihood that Target 1(2) rersainradar screen including the entire flight data, but without
identified as Aircraft A(B); let this quantity be denotéd. the trajectories explicitly indicated. This gives us anaide
The sum of the likelihoods from Figure 4(b) and (d) is theof the clutter density, as well as how unclear the system
likelihood that the targets swap identities; let this qitgnt is, especially when the aircraft come close to each other.
be denoted._,. Because a 90turn in one time step is not Figure 5(center) displays the actual and estimated pasitio
allowed in the dynamic models of the aircraft,.; = 0. of four aircraft following symmetric paths that first con-
The doubly stochastic version of the matrixverge, then maneuver around a common point, and finally
Ly L diverge. The dashed lines with dots as markers are the noisy
L, L measurements from the targets. The solid lines with markers
two aircraft between time steps — 1 and k + 1. This a5 shown in the legend are the estimated positions found
matrix, a two-step mixing matrix, is denoted Bk + 1).  py MTIM. The fainter dots interspersed throughout the plot
For the example presenteli(k + 1) is the identity. Thus, are clutter points. Aircraft A, B, C, and D fly with constant
the belief matrix determined by MHT at time + 1 is  yelocity of 200 m/s. All turns are executed3t/sec. Target
B'(k+1) = B(k—1)I(k+1) = LLll LLill . The tracking is accsratg eﬁcedpt ;Ord ?vershdoot whenhaircraft
. . . . L ' start turning. Indeed, the dashed lines depicting the noisy
resulting belief matrixB’(k +1) is the identity, which has measurements are not clearly visible because the solid line
lower entropy than .thEB(k + 1) from the standgrd MTIM epicting estimated target positions match them almost
model. The local information can thus be InCOrpor""te‘ixactly. Figure 5(bottom) displays the evolution of theddel

through the Belief Matrix Update block of MTIM. trix in graphical form. The plots, from top to bottom,

. m
: Becau;e thgrg is no guarantee that automatgd MHT,IOCQQW the probability that any aircraft is identified with
information will improve the entropy of the belief matrix

o : o 4 , ' targets one through four, respectively. From this figure,
it is only incorporated if this local information decreaseﬁt is clear that the belief matrix is unchanged while the

gntropy. .Th|s automated local information and identityaloc :r\ircraft are distant from and not interacting with each othe
|nformat|_on are both handled by t.he Incorporate I‘Oca\/Vhen paths cross, the belief matrix is changed significantly
Information block of the MTIM algorithm. only if the measurements for both targets happen to nearly
[1l. APPLICATION OFMTIM TO MULTIPLE AIRCRAFT  coincide. For example, at time 30, targets 1 and 2 nearly
FLYING IN CLUTTERED ENVIRONMENT COinCide, Ieading to the belief that both targets 1 and 2

are nearly 0.5 Aircraft A and 0.5 Aircraft B. However,

. One .Of many  scenarios w_here muIt_|pIe aircraft %he automated MHT local information generated by this
interacting in a cluttered environment is_presented bGff\teraction restores the belief matrix to nearly identityhee
low to demonstrate the efficacy of the MTIM algorithm y

. . following time step. At time 30, targets 3 and 4 also interact
in clutter. Measurement points are assumed to be made ; ; . i

. o with equally drastic loss of identity between Aircraft C and
available every 5 seconds. Measurement covariaRdes

(100)2 0 D. Again, the local information restores the belief matrix
0 (100)2 , which means the standard deviationat the following time step. At time 32, targets 1 and 3

of position error is100m in both dimensions. Process interact, with similar jump in belief matrix entropy follad

represents the mixing matrix for the

L 0.001 0 . . by belief matrix restoration from local information. Tatge
hoise Is set to be{ 0 0.001 ] for straight flight 2 and 4 also interact in the same fashion at time 32. The
10 0 ) scenario depicted in Figure 5 establishes the efficacy of the
and 0 10 for turning mode. The above constantsyy 1w algorithm in clutter.

are realistic values for aircraft in clutter and are taken
from [18]. Clutter is uniformly distributed in space and
Poisson distributed in number; the density of clutter point We have developed a Multiple-Target Tracking and Iden-
is 0.5 10~° clutter points per square meter, @5 points tity Management algorithm in a cluttered environment,
per square kilometer. The validation gate parametés which can track and manage identities of multiple maneu-
set to 9.2, which would correspond to & onfidence vering targets simultaneously. This algorithm is composed
level if residual covarianceS were used. The effective of three different blocks: Data Association, Tracking/Idyb
residual covariances’ that is actually used is determined State Estimation, and Identity Management. For data asso-
with system constants andv set to 3 and 6, respectively. ciation, we have proposed a Modified Approximate Joint
The threshold for initiating MHT is set to 0.75. In the Probability Density (MAJPDA) algorithm which can han-
example, the target 1 is initially identified as Aircraft A,dle many targets with low computational complexity, yet
2 as B, and so on. possessing the main advantages of the standard JPDA algo-
The example shown in Figure 5 is an extreme (acrobaticithm. For tracking multiple-maneuvering targets, we used
not realistic for air traffic, but nonetheless interestingthe Residual-Mean Interacting Multiple Model (RMIMM)
scenario where four aircraft fly at each other directly andlgorithm which gives better estimation performance than
maneuver; this example is useful in understanding théMM by using the mean of the residual computed by indi-
capabilities of MTIM. Figure 5 (top) shows a shot of thevidual Kalman filter. For identity management, we extended
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the algorithm developed by the authors earlier work in [8]
to account for clutter.
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Snapshot of planes in clutter
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Fig. 5. Measurement points with clutter (top), aircraftecpries (center)
and accompanying belief matrix plot (bottom).
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