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Abstract— This paper presents a decentralized variation of
the two-time-scale motions controller for linear time invariant
systems. A method is proposed to change the structure of the
system using discretization and generalized sampled-data hold
functions, so that distinct local discrete-time controllers can
be applied to each input-output agent. The resultant output
feedback decentralized periodic controller has, in fact, a linear
time-varying structure. Conditions under which the desired
structure modification can be accomplished are given and the
simulation results are also included.

I. I NTRODUCTION

Most of the existing results on the output feedback
control of decentralized linear systems are of a descriptive
nature, i.e., they focus on the analysis of the properties
of such systems. Thus, the available literature in the field
provides a quite complete understanding of the conditions
under which linear systems can be controlled by means of a
decentralized strategy. However, few design methods exist
and some of them involve long numerical procedures. Even
of more importance, some of them have limited application
because they cannot overcome the limitations imposed by
the structural properties of the plant.

The purpose of this work is to provide a simple solution
to the problem of stabilizing a controllable linear time-
invariant plant with structural properties that prevent the
use of time-invariant output feedback.

Consider the output controllable system given by:
{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t),

(1)

wherex(t) ∈ Rn and u(t),y(t) ∈ Rm, and assume that
decentralized output control is required, i.e., the controller
must have the structure:

ui(t) = ki(t, yi([0, t))), i = 1, ..m. (2)

Notation: In what follows, scalars, matrices, and vectors
will be denoted by means of small, capital, and bold
symbols, respectively.
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The system (1) may have unstable decentralized fixed
modes (DFM) [1] and therefore its internal dynamics may
be unstable. DFM’s can be classified as either being “struc-
tured” or “unstructured” [2], [3]. Structured DFMs, are
the modes that remain “fixed” with respect to any type
of decentralized output feedback, e.g. nonlinear or time-
varying control. Unstructured DFM’s (UDFM) on the other
hand, are the modes that can be eliminated by applying
appropriate time-varying controllers. Several time-varying
decentralized controllers using vibrational feedback [4], [5],
and periodic feedback [6], [7], [8], [9] have been introduced
for this purpose. Systems with unstable structured DFMs
are not stabilizable with respect to any type of nonlinear or
time-varying decentralized controller.

By modifying the structure of the plant [10], sampling
can remove the nonzero and distinct UDFM’s from the
discrete time equivalent system for almost all sampling
rates [3]. A discrete-time controller can then be used to
stabilize the system. The present development proposes a
decentralized periodic controller capable of stabilizing (1)
in the presence of unstable UDFM’s and unstable internal
dynamics. The resulting control law is a modified form of
the controller introduced in [11] for a class of nonlinear
systems. It will be shown that generalized sampled-data
hold functions (GSHF’s) can significantly enlarge the class
of linear systems to which that control law is applicable.

The paper is organized as follows. Section II provides
the basic background related to the material presented
later. Subsection II-A briefly overviews the fundamentals
of the two-time-scale motions (TTSM) controller and II-B
introduces the basics of GSHF’s. The main development
is presented in Section III. First, the model of the system
is sampled with GSHF’s in Subsection III-A. Next, Sub-
section III-B develops the equations of the desired output.
The control law appears then in Subsection III-C. Finally,
Section III-D extends these results to the case of decentral-
ized control and provides conditions for the existence of
the decentralized TTSM controller for linear time-invariant
systems. An example and its simulation results are shown
in Section IV. Conclusions and comments are expressed in
Section V.



II. PRELIMINARIES

A. The two-time-scale motions controller

The TTSM controller presented in [11] solves the prob-
lem of output tracking for multiple-input multiple-output
(MIMO) nonlinear systems in the presence of perturbations
and parameter variations. Instead of dealing with the origi-
nal continuous-time system, this design method focuses on
a discrete-time approximation whose state is the output of
the original system. Such approximation follows from the
repeated differentiation of the outputs of the system and
the discretization of the resulting equations which directly
relate inputs to the output derivatives. In order to allow
the discretization of these nonlinear equations, the method
introduces a new time scale so that the nonlinear terms
can be rejected due to the fast motions in the closed-
loop system. The realization error is then defined as the
difference between the output of the discrete approximation
and the desired output. The method uses the realization
error to drive the control input dynamics which, due to the
time scale, evolve faster than the output dynamics. Thus,
the closed-loop system is composed of a fast and a slow
motion subsystems–fast-motion subsystem and slow-motion
subsystem, respectively.

One limitation of the TTSM controller presented in [11]
is that it was developed for systems with stable internal
dynamics.

Another limitation appears after the repeated differentia-
tion of the outputs of the system. In order to clarify this,
consider a system with the following structure:{

ẋ(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(x(t)),

and relative degreesα1, . . . αm with respect to each output.
A direct relationship between the inputsu = [u1, . . . , um]T

and the outputy = [y1, . . . , ym]T derivatives is given by:

y∗(t) = h∗(x(t)) + g∗(x(t))u(t), (3)

with:

y∗(t) =
[
dα1y1(t)

dtα1
. . .

dαmym(t)
dtαm

]T

.

In the particular case of the linear systems of the form
(1), h∗ andg∗ are given by:

h∗ =




c1A
α1

...
cmAαm




g∗ =




c1A
α1−1B
...

cmAαm−1B


 ,

whereci is the i-th row of the output matrixC.
As presented in [11], the TTSM controller is only suited

to systems for whichg∗ is invertible. However, for linear
time-invariant systems and under some conditions, the use
of GSHF’s can relax this restriction, as shown next.
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Fig. 1. A sampled arbitrary signalw(t) followed by a zero-order hold
(ZOH), generatingw[k], and multiplied by the GSHFφ(t) = 1+sin( 2π

Ts
t)

to generateφ(t)w[k].

B. Plant restructure using GSHF’s

Consider a zero-order hold with the sampling periodTs.
GSHF’s are functions with periodTs that are multiplied
linear time-invariant by the output of the zero-order hold so
that the sampled signal is not constant during the sampling
period, i.e., if a GSHFφ(t) is applied to the signal̃u(t),
the resulting linear time-invariant sampled signal is then
given by u(t) = φ(t)ũ[k], whereũ[k] is a signal sampled
at t = kT , andφ(t) is the sampled-data hold function which
has the property thatφ(t) = φ(t+Ts) (refer to the example
in Fig. 1).

Let (C, Ad, Bd) denote the discrete-time system with
input ũ obtained by sampling the input of the system
(C, A,B) with the GSHF’sφ(t) and sampling periodTs.
The matricesAd andBd are given by:

Ad = eATs Bd =
∫ Ts

0
eA(Ts−t)Bφ(t)dt.

It is important to note that different choices ofφ(t)
generate different matricesBd. Consequently, under some
conditions the functionφ(t) can be chosen so that the matrix
Bd has the desired structure [12], [13]. One can achieve
more flexibility in the design of the matrixBd by using
different sampling functionsφi(t) for each control input
(see Fig. 2) so that:

ui(t) = φiũi[k], kTs ≤ t < (k + 1)Ts

for i ∈ m̄ = {1, . . . , m}.
In this case, the discrete-time system matrices are given

by:

Ad = eATs Bd = [bd1, . . . ,bdm] , (4)

bdi =
∫ Ts

0

eA(Ts−t)biφi(t)dt. (5)

In fact, the only constraint in the design ofBd is that
each of its columnsbdi must belong to the controllable
subspace of(A,bi).
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Fig. 2. Closed-loop system with feedback applied through zero-order holds and the GSHF’sφ1(t) . . . φm(t) at the inputsu1 . . . um

III. T HE TTSM CONTROLLER FOR LINEAR

TIME-INVARIANT SYSTEMS

A. Equations of the sampled system

Consider the system (1) and letC be its controllable
space. If∃di ∈ C, i ∈ m̄ such thatdi 6⊥ ci, then the matrix
Bd can be chosen such that none of the rows of:

G , CBd (6)

is zero, implying that the system given by the triple
(C, Ad, Bd) has a relative degree equal to 1 with respect
to all of its outputs. The following procedure applies to
systems that satisfy these conditions.

The control law design starts with deriving an expression
for the output-dynamics in discrete time. To this end, we do
not differentiate the output as the original TTSM method
proposed in [11] does. Instead, we first obtain the exact
discrete-time representation of the original system:

x[k] =eATsx[k − 1]

+ Ts

[
1
Ts

∫ Ts

0

eA(Ts−t)BΦ(t)dt

]
ũ[k − 1]

=Adx[k − 1] + TsB̃dũ[k − 1].

Hence, we have:

y[k] =CAdx[k − 1]

+ TsC

[
1
Ts

∫ Ts

0

eA(Ts−t)BΦ(t)dt

]
ũ[k − 1]

=CAdx[k − 1] + TsCB̃dũ[k − 1],

(7)

where:

B̃d =
1
Ts

∫ Ts

0

eA(Ts−t)BΦ(t)dt

=
1
Ts

∫ Ts

0



∞∑

j=0

(Ts − t)j

j!
Aj


 BΦ(t)dt,

(8)

andΦ(t) is a matrix of sampling functions. In terms of de-
centralized systems, the introduction of individual GSHF’s

φi(t) for the input channelui(t), i ∈ m̄, provides more
flexibility on the design ofBd. Accordingly:

u(t) = Φ(t)ũ[k],

whereΦ(t) = diag[φ1(t), . . . , φm(t)].
Note that:

lim
Ts→0

‖B̃d(Ts)‖ ≤ const < ∞

and, by Cayley-Hamilton theorem,̃Bd can be rewritten as:

B̃d =
1
Ts

∫ Ts

0



∞∑

j=0

ψj(Ts − t)Aj


 BΦ(t)dt

whereψj(Ts − t), j ∈ Z+, are functions ofTs − t.
Next, Φ(t) can be chosen in such a way that the matrix

G is invertible or, furthermore, diagonal.
The equations of the resulting linear time-invariant sam-

pled system (7) can be expressed as:

y[k] =CeATsx[k − 1] + TsCB̃dũ[k − 1]

=C (I + M)x[k − 1] + TsCB̃dũ[k − 1]
=y[k − 1]

+ Ts

{
CMx[k − 1] + CB̃dũ[k − 1]

}
,

(9)

where the matricesAd and Bd are given by (4) and (8),
respectively, and the matrixM given by:

M =
∞∑

j=1

T j−1
s

j!
Aj ,

which has the property that:

lim
Ts→0

M = A

If the functions φi(t), i ∈ m̄ are chosen such that
the matrix G given by (6) is invertible, the feedback
transformation:

ũ[k] = TsG
−1v[k] (10)



with v = [vi, . . . , vm]T , applied to (9) yields:

y[k] = y[k − 1] + Ts {CMx[k − 1] + v[k − 1]} . (11)

Thus, (11) can be decoupled into individual components
yi[k], i ∈ m̄, as:

yi[k] = yi[k − 1] + Ts {ciMx[k − 1] + vi[k − 1]} . (12)

B. Desired output equations

Assume that the desired outputs of the system are given
by the stable transfer functions:

Y ∗
i (s)

Ri(s)
=

θi

s + θi
, i ∈ m̄ (13)

where Y ∗
i (s) is the i-th desired output,Ri(s) is the i-th

reference signal, andθi > 0, i ∈ m̄, are design parameters
that determine the settling time and damping ratio.

Ideally the outputsyi(t) of the system should exactly
match those given by the differential equations correspond-
ing to (13), i.e.:

ẏ∗i (t) = −θi {y∗i (t)− ri(t)} , i ∈ m̄.

From (13), thei-th desired pulse transfer function is:

H∗
i (z) =

z − 1
z

Z
{

θi

s(s + θi)

}

=
1− e−θiTs

z − e−θiTs
, i ∈ m̄.

(14)

If H∗
i (z) given above governs the actual output, then

yi[k] is given by:

yi[k] =e−θiTsyi[k − 1] + ri[k − 1]
(
1− e−θiTs

)

=yi[k − 1]

+ Ts

(
1− e−θiTs

Ts

)
(ri[k − 1]− yi[k − 1])

,Fi[k], i ∈ m̄,

(15)

which definesFi[k] as thei-th desired output in terms of
the values of the previous samples of thei-th actual output
and reference.

C. The control law

Define the realization error as:

eF
i [k] ,Fi[k]− yi[k]

=Ts

(
1− e−θiTs

Ts

)
(ri[k − 1]− yi[k − 1])

− TsciMx[k − 1]− Tsvi[k − 1], i ∈ m̄,

and the control input as:

vi[k] = vi[k − 1] + λi(Ts)eF
i [k], i ∈ m̄, (16)

whereλi 6= 0 andλ̃i 6= 0 are constants that satisfyλi(Ts) =
T−1

s λ̃i.

In order to see how the control law defined by (16) allow
us to attain the control objectiveeF

i [k] = 0, note that the
closed-loop system is given by (12) and:

vi[k] =
(
1− λ̃i

)
vi[k − 1]− λ̃i

Ts
ciMx[k − 1]

+
λ̃i

Ts

(
1− e−θTs

)
(ri[k − 1]− yi[k − 1]) ,

(17)

for i ∈ m̄.
These last equations show that, for small enough values

of Ts, the closed-loop system consists of a slow motion
subsystem with state variablesyi, i ∈ m̄, and a fast motion
subsystem with state variablesvi, i ∈ m̄,. From (17),
the characteristic polynomials of the fast-motion subsystem
read asPi = z − 1 + λ̃i, i ∈ m̄. Therefore, in order
to stabilize (12) (17), one must choose the parameters
λ̃i, i ∈ m̄, such that these polynomials are stable. If
these polynomials are stable, then the fast-motion subsystem
achieves a quasi-steady state response at which:

vi[k + 1] = vi[k] ∀k > kf , i ∈ m̄,

for somekf > 0. The values of these steady-state variables
are given by:

vss
i =

1− e−θTs

Ts
(ri[k − 1]− yi[k − 1])− ciMx[k − 1]

Ts
,

which, once substituted into (12) (17), show that the desired
output (15) is attained. A full proof of the stability of the
closed-loop system is given in [11].

Remark 1:The stability of (12) (17) depends strongly
on the choices ofTs and Bd because the location of the
approximate DFM’s, defined in [14], and transmission zeros
in the open-loop sampled system is a function of these two
parameters.

D. Application to decentralized control

For the TTSM controller to be decentralized, the matrix
G must be diagonal. This requirement is satisfied only if
the matricesB andC present certain properties, which are
studied next.

Let the matrixC have rankm; then, the matrixC† ∈
Rn×m, the right pseudoinverse ofC, is such thatCC† =
Im. Let alsodi be thei-th column ofC† and letbi be the
i-th column ofB. Assume that fori ∈ m̄ the controllable
subspace of(A,bi), denoted byCi, is not empty. Then the
next theorem provides necessary and sufficient conditions
for the existence of a decentralized TTSM controller for
(1).

Theorem 1:There exists a TTSM decentralized stabiliz-
ing controller for the linear time-invariant system (1) if and
only if:

i) di ∈ Ci, i ∈ m̄, and
ii) there are m̄ constantsai, i ∈ m̄, defining Bd =

[a1d1, . . . amdm], such that zero dynamics of the
discrete-time system(C,Ad, Bd) are stable,

wheredi andCi are given above.



Proof: We separately prove sufficiency and necessity.
Sufficiency:

i) If di ∈ Ci then, from the results in [13], there exist
GSHF’sφi(t), i ∈ m̄, such that:

aidi =
∫ Ts

0

eA(Ts−τ)biφi(τ)dτ

for any constantai. Consequently, the matrixBd can
be designed as:

Bd = [a1d1, . . . , amdm],

implying that:

G = CBd

= C[d1, . . . ,dm]diag[a1, . . . , am]
= CC†diag[a1, . . . , am]
= diag[a1, . . . , am].

the feedback transformation (10) becomes:

ũi[k] =
1
ai

vi[k], i ∈ m̄.

Since the signalvi[k] depends only onyi andri, i ∈ m̄,
the controller is decoupled as:

ui(t) =
φ(t)
ai

vi[k], kTs ≤ t < (k + 1)Ts, (18)

for i ∈ m̄, and the resulting TTSM controller becomes
decentralized.

ii) If there are constantsai such that zero dynamics of the
discrete-time system(C, Ad, Bd) are stable and ify[k]
in (11) is kept bounded through proper design ofv[k],
then the state of (1) is bounded as well; in fact, the
state of the zero dynamics tends to 0 and so doeF

i [k],
i ∈ m̄. Therefore, the TTSM controller achieves output
tracking.

Necessity:

i) Evidently, if di 6∈ Ci, i ∈ m̄, then there is no matrix
Bd such thatG is diagonal and the controls cannot be
decoupled as in (18).

ii) If there are no constantsai such that zero dynamics
of the discrete-time system(C, Ad, Bd) are stable then
the internal dynamic state would evolve uncontrolled
and eventually would result in an unstable closed-loop
system.

IV. EXAMPLE

Consider the plant described by the matrices:

A =
1

100




1 5 0

1 10 −1

0 −5 1


 ,

0 10 20 30 40 50

−15

−10

−5

0

5

(a)

y 1

0 10 20 30 40 50

−12

−10

−8

−6

−4

−2

0

2

(b)

y 2
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−1.5

−1

−0.5

0

0.5

1

1.5

u 1

(c)
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(d)

u 2

Fig. 3. Response of the system to the nonzero initial condition and zero
input. (a) The output signaly1(t); (b) the output signaly2(t); (c) the input
signalu1(t); (d) the input signalu2(t).

B =




0 20

10 20

0 0


 C =

[
2 0 0

0 1 0

]
.

This system has relative degree 1 with an unstable UDFM
at s = 0.01; thus, continuous-time output control cannot
stabilize it. If a zero-order hold with, for example,Ts =
1sec samples the system, this UDFM becomes an unstable
open-loop transmission zero atz = 1.01 and the matrix
G is invertible but not diagonal. Notice that the sampling
period can be large because the poles of the plant are small,
i.e., the eigenvalues ofA are{0, 0.01, 0.11}.

If instead of the zero-order hold, the GSHF’s:

φ1(t) = −23.89t + 11.74 φ2(t) = −11.65t + 5.76

are used, the discrete-time equivalent system will be repre-
sented by the following matrices:

Ad =




1.0103 0.0529 −0.0003

0.0106 1.1057 −0.0106

−0.0003 −0.0529 1.0103




Bd =

[
1 0 −1

0 1 −1

]T

Cd =

[
2 0 0

0 1 0

]
.

The associated TTSM controller is decentralized because,
as desired, the matrixG = diag[1, 2] is diagonal. Moreover,
for the above choice ofBd, the sampled system has stable
zero dynamics because the only transmission zero is located
at z = 0.9995 and, as expected, the system does not have
any DFM.

Fig. 3 gives the input and output signals for the closed-
loop system response to nonzero initial conditionsy(0) =
[1, 1,−2]T and zero reference signalr[k] = 0, ∀k, when the
controller parameters areθ1 = 0.1, θ2 = 0.3, λ̃1 = 0.75,
and λ̃1 = 0.5. Figs. 3(a) and 3(b) show the output signals
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Fig. 4. Response of the closed-loop system due to step input and zero
initial conditions. (a) The output signaly1(t); (b) the output signaly2(t);
(c) the input signalu1(t); (d) the input signalu2(t).

y1(t) and y2(t), respectively. Figs. 3(c) and 3(d) give the
input signalsu1(t) andu2(t), respectively.

Fig. 4 gives the input and output signals for the closed-
loop system subject to zero initial conditions and a step
referencer[k] = [10,−1]T at t = 1sec with the controller
parameters given above. Figs. 4(a) and 4(b) give the output
signalsy1(t) andy2(t), respectively. Figs. 4(c) and 4(d) give
the input signalsu1(t) andu2(t), respectively. The dashed
lines in Figs. 4(a) and 4(b) represent the reference signal.

It can be seen from the simulations that the magnitude of
the intersampling ripple in the output depends on the magni-
tude of the control input. This implies that in transient state
the intersampling ripple will be present and in steady-state
it will remain in the output signals only if the control inputs
do not approach zero ast increases [15]. A good choice of
sampled-data hold function can significantly improve the
performance of the controller [16], [17] by reducing the
amplitude of the intersampling swing. Measurement and
system noise are additional matters of concern originated by
such large state ripple. Given the flexibility in the design of
the GSHF’s, one can improve the closed-loop robustness by
choosing functions that provide more tolerance with respect
to those disturbances [12].

V. CONCLUSIONS

The combination of the TTSM controller and GSHF’s
conveys advantages as well as disadvantages. On one hand,
the lack of robustness of GSHF’s sacrifices the insensitivity
to parameter variations of the TTSM controller. On the other
hand, the class of linear time-invariant systems to which this
type of controller is applicable is significantly enlarged.

One important point that requires consideration is the
selection of the sampling rate.Ts must be selected small
enough to satisfy the requirements of the TTSM control
but also as big as possible in order to reduce the magnitude

of the GSHF’s. Large GSHF’s would lead to large control
inputs and large state swings that in many applications may
not be tolerable. Since the GSHF’s are not uniquely deter-
mined for a desired discrete-time system, the designer must
look for the functionsφi with minimum magnitude that
satisfy (4)–like those proposed in [16] [17]. The designer
must also take additional criteria into account [12] when
noise-rejection is required. Since these improvements have
proven feasible, the results presented here can be extended
to provide better performance and robustness. Therefore,
the proposed controller can be applied to a broad class of
decentralized control problems.
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