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Abstract—This paper presents a decentralized variation of The system (1) may have unstable decentralized fixed
the two-time-scale motions controller for linear time invariant  modes (DFM) [1] and therefore its internal dynamics may

systems. A method is proposed to change the structure of the be unstable. DFM’s can be classified as either being “struc-

system using discretization and generalized sampled-data hold N . "
functions, so that distinct local discrete-time controllers can tured” or “unstructured” [2], [3]. Structured DFMs, are

be applied to each input-output agent. The resultant output the modes that remain “fixed” with respect to any type
feedback decentralized periodic controller has, in fact, a linear of decentralized output feedback, e.g. nonlinear or time-
time-varying structure. Conditions under which the desired varying control. Unstructured DFM’s (UDFM) on the other
structure modification can be accomplished are given and the hand, are the modes that can be eliminated by applying
simulation results are also included. C - . . ]
appropriate time-varying controllers. Several time-varying
. INTRODUCTION decentralized controllers using vibrational feedback [4], [5],

Most of the existing results on the output feedbaci@d periodic feedback [6], [7], [8], [9] have been introduced

control of decentralized linear systems are of a descripti/@" this purpose. Systems with unstable structured DFMs
nature, i.e., they focus on the analysis of the propertié¥® not st_ablllzable Wlt_h respect to any type of nonlinear or
of such systems. Thus, the available literature in the fiel€-varying decentralized controller. _
provides a quite complete understanding of the conditions BY modifying the structure of the plant [10], sampling
under which linear systems can be controlled by means ofcg" rémove the nonzero and distinct UDFM's from the
decentralized strategy. However, few design methods exidiScrete time equivalent system for almost all sampling
and some of them involve long numerical procedures. Evét€S [3]- A discrete-time controller can then be used to
of more importance, some of them have limited applicatiofit@Pilize the system. The present development proposes a
because they cannot overcome the limitations imposed £ centralized periodic controller capable of stablhz!ng Q)
the structural properties of the plant. in the presence of unstable UDFM'’s and unstable internal

The purpose of this work is to provide a simple solutiorflynamics. The resulting control law is a modified form of
to the problem of stabilizing a controllable linear time-the controller introduced in [11] for a class of nonlinear

invariant plant with structural properties that prevent th&ySteéms. It will be shown that generalized sampled-data
use of time-invariant output feedback. hold functions (GSHF'’s) can significantly enlarge the class

Consider the output controllable system given by: of linear syste.ms to which that control law i; applicablle.
The paper is organized as follows. Section Il provides
x(t) = Ax(t) + Bu(t) ) the basic background related to the material presented
y(t) = Cx(t), later. Subsection II-A briefly overviews the fundamentals
of the two-time-scale motions (TTSM) controller and II-B
wherex(t) € R" andu(t),y(t) € R™, and assume that jntroduces the basics of GSHF's. The main development
decentralized output control is required, i.e., the controllgg presented in Section IIl. First, the model of the system
must have the structure: is sampled with GSHF’s in Subsection IlI-A. Next, Sub-
wi(t) = ki(t,y;([0,8)),  i=1,.m. ) section 111-B develops the equr?ltlons of th.e desired Qutput.
The control law appears then in Subsection III-C. Finally,
Notation: In what follows, scalars, matrices, and vectorssection I1I-D extends these results to the case of decentral-
will be denoted by means of small, capital, and boldzed control and provides conditions for the existence of
symbols, respectively. the decentralized TTSM controller for linear time-invariant
. . . __systems. An example and its simulation results are shown
This work was supported in part by the Natural Sciences and Engineer: . Usi d di
ing Research Council of Canada under grant RGPIN-262127-2003 and '} Sgctlon IV. Conclusions and comments are expressed in
part by a start-up grant from Concordia University. Section V.
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Il. PRELIMINARIES W) —
A. The two-time-scale motions controller S -
The TTSM controller presented in [11] solves the prob- Wi %% I B
lem of output tracking for multiple-input multiple-output T s S A
(MIMO) nonlinear systems in the presence of perturbations
and parameter variations. Instead of dealing with the origi-

R t
nal continuous-time system, this design method focuses on ot) WK N N
a discrete-time approximation whose state is the output of I\ MN } J
[ — t
Ts

the original system. Such approximation follows from the

repeated differentiation of the outputs of the system and

the discretization of the resulting equations which directlyig. 1. A sampled arbitrary signai(t) followed by a zero-order hold
relate inputs to the output derivatives. In order to allowZOH). generatingyv[], and multiplied by the GSHB(t) = 1+sin(77t)
the discretization of these nonlinear equations, the meth&y9enerates (Hwikl-

introduces a new time scale so that the nonlinear terms

can be rejected due to the fast motions in the closed- .

loop system. The realization error is then defined as tHé- Plant restructure using GSHF's

difference between the output of the discrete approximation ~gnsider a zero-order hold with the sampling periad

and the d.esired output. .The methoq uses the realizatifs s are functions with period’, that are multiplied
error to drive the control input dynamics which, due t0 thginear time-invariant by the output of the zero-order hold so
time scale, evolve faster than the output dynamics. ThUg, ¢ the sampled signal is not constant during the sampling
the _closed—loop system is cpmposed of a fast and a Sl%riod, i.e., if a GSHRH(t) is applied to the signali(t),
motion subsystems—fast-motion subsystem and slow-motigRe resulting linear time-invariant sampled signal is then
subsystem, respectively. _ given by u(t) = ¢(t)a[k], wheredk] is a signal sampled

One limitation of the TTSM controller presented in [11] att = kT, and¢(¢) is the sampled-data hold function which
is that_it was developed for systems with stable interng| ¢ ihe property tha(t) = ¢(¢ +T.) (refer to the example
dynamics. o _ _in Fig. 1). )

Another limitation appears after the repeated differentia- Let (C, Aq, Bq) denote the discrete-time system with

tion of the outputs of the system. In order to clarify this, - . . .
consider a system with the following structure: nput 1 obtained by sampling the input of the system

(C, A, B) with the GSHF’s¢(t) and sampling period’.
{x(t) = f(x(¢)) + g(x(t))u(?) The matricesd, and B, are given by:

y(t) = h(x(t)), T,

Ad = 6ATS By = fO

_ , eATs=t) Be(t)dt.
and relative degrees, . .. a,,, with respect to each output.

A direct relationship between tThe Inputs= [“_17"_"“m]T It is important to note that different choices @f(t)
and the outpuy = [y1,...,y,|" derivatives is given by:  generate different matriceB,. Consequently, under some
y*(t) = h*(x(t)) + g* (x(t))u(t), (3) conditions the functiom(¢) can be chosen so that the matrix
, By has the desired structure [12], [13]. One can achieve
with: T more flexibility in the design of the matri®3, by using

_ [dmn @) dYrym(t)

yi(t) = - > different sampling functions;(t) for each control input
dt dgem (see Fig. 2) so that:
In the particular case of the linear systems of the form
(1), h* andg* are given by: ui(t) = ¢it[k], kTs <t < (k+1)T;
[ C1140£l
W - foriem={1,...,m}.
o : In this case, the discrete-time system matrices are given
[ Cm A% by:
B a;—1
; CIA B Ad = €ATS Bd = [bdla ey bdm] s (4)
g = : )
cnA®m~1B T, ATt
- _ ] Ny
wherec; is thei-th row of the output matrixC. bq; = /0 € big;(t)dt. ®)

As presented in [11], the TTSM controller is only suited
to systems for whichg* is invertible. However, for linear  In fact, the only constraint in the design &f; is that
time-invariant systems and under some conditions, the usach of its columns, must belong to the controllable
of GSHF’s can relax this restriction, as shown next. subspace ofA4, b;).
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Fig. 2. Closed-loop system with feedback applied through zero-order holds and the GHKifj's. . ¢, (t) at the inputsu; ... um

I1l. THE TTSM CONTROLLER FOR LINEAR ¢;(t) for the input channek;(t), i € m, provides more
TIME-INVARIANT SYSTEMS flexibility on the design ofB;. Accordingly:

A. Equations of the sampled system

Consider the system (1) and |ét be its controllable _
space. Ifad; € C,i € m such thaid; / c;, then the matrix Where®(t) = diag[¢1(t), ..., dm(t)].
B, can be chosen such that none of the rows of: Note that:

G2 CBy (6)

u(t) = @(t)ulk],

7lirno | Ba(Ts)|| < const < oo
is zero, implying that the system given by the triple , - , _
(C, Ag, Bg) has a relative degree equal to 1 with respecelmd’ by Cayley-Hamilton theoren®3; can be rewritten as:

to all of its outputs. The following procedure applies to 7. [ o
systems that satisfy these conditions. By :i/ Z%(TS _ t)Aj B®(t)dt

The control law design starts with deriving an expression Ts Jo =0
for the output-dynamics in discrete time. To this end, we do
not differentiate the output as the original TTSM methodvherey; (T —t), j € Z*, are functions off, — ¢.
proposed in [11] does. Instead, we first obtain the exact Next, ®(¢) can be chosen in such a way that the matrix
discrete-time representation of the original system: G is invertible or, furthermore, diagonal.

AT The equations of the resulting linear time-invariant sam-
x[k] =™ x[k — 1] pled system (7) can be expressed as:

+ T Ti / " eA(TSt)Bé(t)dt] afk — 1] y[k] =CeATsx[k — 1] + T,C Bgu[k — 1]
e —C (I + M)x[k — 1] + T.CByiik — 1]
=Agx[k — 1] + Ts Bk — 1]. k1] 9)

Hence, we have:

y[k] =CAgx[k — 1] + T {CMxlk 1] + CBgalk 1]}

where the matricesl; and B, are given by (4) and (8),

I
+ 1.0 | / A= Bo(t)dt | alk — 1] (7) respectively, and the matrix/ given by:
s JO
~ 00 i1
=CAgx[k — 1] + T,CByi[k — 1], M= %Aa‘,
where: =
_ Ts which has the property that:
By Ti / A=) BP(t)dt propery
5 J0 lim M =A
T 00 (8) Ts—0
LS B ) pe
T, )y Z j! (t)dt, If the functions ¢;(t), i € m are chosen such that
j=0

the matrix G given by (6) is invertible, the feedback
and®(t) is a matrix of sampling functions. In terms of de-transformation:
centralized systems, the introduction of individual GSHF’s alk] = T.G~'v[k] (20)
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with v = [v;,...,v,,]7, applied to (9) yields:

ylk = ylk — 1] + T, {CMx[k — 1] + v[k —1]}. (11)

Thus, (11) can be decoupled into individual components

yilk], i € m, as:
yilk] = yilk — 1) + Ts {c; Mx[k — 1] + vi[k — 1]} . (12)

B. Desired output equations

In order to see how the control law defined by (16) allow
us to attain the control objective'[k] = 0, note that the
closed-loop system is given by (12) and:
wlk) = (1= %) wlk— 1) - %ciMx[k )

° 17

P2 (e (k- 1] - il - 1)),

S

for ¢ € m.

Assume that the desired outputs of the system are givenThese last equations show that, for small enough values

by the stable transfer functions:

Yir(s) _ 6 ;
Ri(s) <

s + 91 ’
where Y;*(s) is the i-th desired outputR;(s) is the i-th

7 (13)

reference signal, ané; > 0, ¢ € m, are design parameters

that determine the settling time and damping ratio.

of T, the closed-loop system consists of a slow motion
subsystem with state variablgs i € m, and a fast motion
subsystem with state variables, ¢ € m,. From (17),
the characteristic polynomials of the fast-motion subsystem
read asP, = z — 1+ \;, i € m. Therefore, in order
to stabilize (12) (17), one must choose the parameters

Ai, © € m, such that these polynomials are stable. If

these polynomials are stable, then the fast-motion subsystem

Ideally the outputsy;(t) of the system should exactly g_chieves a quasi-steady state response at which:

match those given by the differential equations correspon

ing to (13), i.e.:
Ui (8) = =0 {yi (t) —ri(D)},
From (13), thei-th desired pulse transfer function is:

16 =2

1 — e 0T

= 1E M.
z— e 0iTs’

i € M.

(14)

If H(z)
y;[k] is given by:

yilk] =e 0Ty, [k — 1] + ik — 1] (1 — e %)

=Y; [k‘ — 1]
— 0T 15
2 () k-1 - w1y
éFl[k]v i €m,

which definesF;[k] as thei-th desired output in terms of

the values of the previous samples of thih actual output
and reference.
C. The control law
Define the realization error as:
el [k] 2F;[k] — yi[k]

Z zn(l‘iwn)mw—u—%m—m

— TgCiMXI:k — 1] — T;”Ui[k — 1], 1€ ’ﬁ'L,
and the control input as:
vilk] = vilk — 1]+ X(Ts)el [k], ie€m, (16)

where); # 0 and)\; # 0 are constants that satisky(T) =

given above governs the actual output, then

vilk + 1) =vlk] Vk>ky, i€m,
for somek; > 0. The values of these steady-state variables
are given by:

—0T,
ss _ 1—e

c; Mxlk —1
Ui T(Ti[k*ﬂ*yi[kfl])*$a
which, once substituted into (12) (17), show that the desired
output (15) is attained. A full proof of the stability of the
closed-loop system is given in [11].
Remark 1:The stability of (12) (17) depends strongly
on the choices ofl; and B, because the location of the
approximate DFM’s, defined in [14], and transmission zeros
in the open-loop sampled system is a function of these two
parameters.

D. Application to decentralized control

For the TTSM controller to be decentralized, the matrix
G must be diagonal. This requirement is satisfied only if
the matricesB and C present certain properties, which are
studied next.

Let the matrixC' have rankm; then, the matrixCt €
R™*™ the right pseudoinverse @, is such thatCCT =
I,,. Let alsod; be thei-th column ofCT and letb; be the
i-th column of B. Assume that for € m the controllable
subspace of A, b;), denoted byC;, is not empty. Then the
next theorem provides necessary and sufficient conditions
for the existence of a decentralized TTSM controller for
Q).

Theorem 1:There exists a TTSM decentralized stabiliz-
ing controller for the linear time-invariant system (1) if and
only if;

i) d; €C;, 1 €m, and

i) there arem constantsa;, i € m, defining By =
[a1dy,...amdy], such that zero dynamics of the
discrete-time systenfC, Ay, By) are stable,

whered; and(C; are given above.
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Proof: We separately prove sufficiency and necessity ° 2
Sufficiency: 0 eeeeerorreneed -
i) If d; € C; then, from the results in [13], there exist -o-° o
GSHF's ¢;(t), i € m, such that: -10 -8
-10
Ts -15 -12

a;d; = /O eA(Ts f‘r)bi¢i(7—)d7 o 10 20 @ 30 40 50 o 10 20 ® 30 40 50
for any constant;. Consequently, the matri®,; can s .
be designed as: 1 y
0.5 0.5
Bd = [aldl, ey CLmdm}7 s o W/VWWW/VWWWW— =N o
-05 -05
implying that: 1; o

G — CBd 0o 10 20 (C) 30 40 50 0 10 20 (d) 30 40 50

dq,...,d,,|di e
C[ 3’ ’ m’} 1ag[a1, » Gm Fig. 3. Response of the system to the nonzero initial condition and zero
CC'diaglaq, . .., an] input. () The output signal; (¢); (b) the output signayz (¢); (c) the input
signaluy (t); (d) the input signaks (¢).

= diagfai,...,amn].
the feedback transformation (10) becomes: 0 20
! B=|1w0 2| c=|>""
ui[k]:a—ivi[k], i€ m. = o1 0l

0 0

This system has relative degree 1 with an unstable UDFM
at s = 0.01; thus, continuous-time output control cannot
stabilize it. If a zero-order hold with, for examplé; =
1sec samples the system, this UDFM becomes an unstable
for i € m, and the resulting TTSM controller becomesOp(.en'.IOOp _transm|SS|on ~2ero at= 1'.01 and the matnx_
decentralized. G is invertible but not diagonal. Notice that the sampling

i) If there are constants; such that zero dynamics of the period can be large because the poles of the plant are small,

discrete-time systertC, A,4, B,) are stable and iff[%] .e., the eigenvalues ol are {0, 0.0, 0.11}. .
in (11) is kept bounded through proper designvl, If instead of the zero-order hold, the GSHF's:
then the state of (1) is bounded as well; in fact, the ¢, (t) = —23.89t + 11.74 ¢o(t) = —11.65¢ + 5.76
state of the zero dynamics tends to 0 and sed@],
i € m. Therefore, the TTSM controller achieves outpu

Since the signad; [k] depends only op; andr;, i € m,
the controller is decoupled as:

Ui[k]a KT, <t < (k + 1)Tsa (18)

%

are used, the discrete-time equivalent system will be repre-
sented by the following matrices:

tracking.
Necessity: 1.0103  0.0529 —0.0003
i) Evidently, if d; € C;, i € m, then there is no matrix Ay = 0.0106 1.1057 —0.0106

By such that’ is diagonal and the controls cannot be
decoupled as in (18). —0.0003 —0.0529 1.0103
ii) If there are no constants; such that zero dynamics 10 -11% 2 0 0
of the discrete-time systeqt’, A, B;) are stable then By = 1 Cq= [
the internal dynamic state would evolve uncontrolled 0 1 -1 0 10
and eventually would result in an unstable closed-loop The associated TTSM controller is decentralized because,
system. as desired, the matri¢ = diag[1, 2] is diagonal. Moreover,
m for the above choice oB,, the sampled system has stable
zero dynamics because the only transmission zero is located

IV. EXAMPLE at z = 0.9995 and, as expected, the system does not have
- - o any DFM.
Consider the plant described by the matrices: Fig. 3 gives the input and output signals for the closed-
1 5 0 loop system response to nonzero initial conditigri) =
_ 1]y 10 -1 [1,1,—2]" and zero reference signellk] = 0, Vk, when the
100 ’ controller parameters ay = 0.1, 6, = 0.3, A\; = 0.75,
0 -5 1 and \; = 0.5. Figs. 3(a) and 3(b) show the output signals
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of the GSHF’s. Large GSHF’s would lead to large control
inputs and large state swings that in many applications may
not be tolerable. Since the GSHF’s are not uniquely deter-
mined for a desired discrete-time system, the designer must
look for the functionsg; with minimum magnitude that
i satisfy (4)-like those proposed in [16] [17]. The designer
°o 10 2 @ % 40 50 o 10 2 (b)3° 4 %0 must also take additional criteria into account [12] when
noise-rejection is required. Since these improvements have
5 proven feasible, the results presented here can be extended
to provide better performance and robustness. Therefore,
the proposed controller can be applied to a broad class of

s'e o decentralized control problems.
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