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Abstract— This paper proposes an LMI approach to the
robust order reduction problem. The technique can be applied
for quadratically stable linear systems with polytopic uncer-
tainties. Bounds on the magnitude of the model approximation
error are characterized in terms of both the H2 and H∞
norms. Numerical examples are used to show the potential of
the proposed approach.

I. I NTRODUCTION

The problem of model reduction has been largely studied
in these last four decades. Different techniques and different
measures for the approximation error were studied and
many numerically reliable results are now available in the
literature. See for instance [1] for a brief presentation of the
main types of techniques and corresponding references. The
key idea is to approximate a given high order (possibly un-
certain) system by a reduced order nominal model such that
an upper bound on the approximation error is guaranteed
to be small enough.

More recently, the LMI framework has been considered
to approach the model reduction problem for uncertain
systems [2], [3]. Among the main motivations to use the
LMI framework we could mention the flexibility it offers
to cope with mixed problems and uncertain models [5]
and also the existence of reliable tools that are available
to numerically solve LMI problems. Unfortunately, the
existing LMI based conditions for model reduction have an
additional rank constraint [6] or are expressed in terms of
bilinear matrix inequalities [4], [7] destroying the convexity
[8], [9].

In this paper we propose a convex LMI characterization
to the order reduction problem. The reduced order model
is determined by solving an LMI optimization problem
in which an upper bound on theH2 or H∞ norm of
the approximation error is minimized. We first propose a
solution to the full order case (approximate model) and then
extend it to the reduced order case without rank constraints.

The rest of this paper is organized as follows. Section II
states the problem of concern. Sections III and IV present
some preliminary results regarding the parameterization
of the model to be determined as well as the precise
upper bounds on theH2 andH∞ norms to be minimized.
The main result is then presented in Section V where is
determined a reduced order model in a numerical tractable
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way. Numerical examples are presented in Section VI and
Section VII ends the paper.

II. STATEMENT OF THE PROBLEM

Consider the system

S :
{

ẋ = Ax + Bu
y = Cx + Du

(1)

wherex ∈ Rn denotes the state,u ∈ Rnu the input vector,
y ∈ Rny the output vector,A, B,C, D are real matrices of
compatible dimensions. To represent some system dynamics
and parameters that are not precisely known or are difficult
to be exactly modelled, suppose the matrices of the system
S can take any value in a given polytopeΠ as indicated
below [5]:

Π = Co
{[

Ai Bi

Ci Di

]
, i = 1, . . . , q

}
(2)

whereCo{·} refers to the convex hull of{·}. For conve-
nience, we may alternatively represent the uncertain system
S by the notationS ∈ S where the setS is as follows:

S :=
{
S in (1) :

[
A B
C D

]
∈ Π

}
(3)

Also, we assume that systemS is quadratically stable,
i.e.

∃ P = P ′ : P > 0, A′iP + PAi < 0, i = 1, . . . , q

Then, the problem of concern in this paper is to design
a fixed model of given ordernf ≤ n

M :
{

ẋf = Afxf + Bfu
yf = Cfxf + Dfu

(4)

where xf ∈ Rnf denotes the state of the model and
Af , Bf , Cf , Df are real matrices of compatible dimensions
to be determined such that the model approximation error
is as small as possible.

The mismatch between systemS and modelM can
be represented as the output of the following augmented
system hereafter referred to as error system.

T (S,M) :
{

ẋa = Aaxa + Bau
e = Caxa + Dau

(5)

wheree := y − yf is error signal and

Aa =
[

A 0
0 Af

]
, Ba =

[
B
Bf

]
, xa :=

[
x
xf

]
,

Ca =
[

C −Cf

]
, Da = D −Df .

The magnitude of the error signal may be measured
in several ways. In this paper, we consider the following
definitions.



Definition 2.1: (H2 norm) The H2 norm of system
T (S,M) is given by

‖T (S,M)‖2 := sup
S∈S

‖e‖2 (6)

whereu is an unitary impulse,xa(0) = 0 andDa = 0. 2

If the input signalu is a white noise with zero mean
value and unitary power density spectra, we may interpret
the H2 norm as

‖T (S,M)‖22 := sup
S∈S

ε(e′e)

whereε(e′e) denotes the mathematical expectation of the
random variablee′e.

Alternatively, supposingxa(0) = 0 the greatest energy
gain that can be obtained from input signalsu ∈ L2 to
the outpute corresponds to theH∞ norm of the uncertain
systemT (S,M) leading to the following definition.

Definition 2.2: (H∞ norm) The H∞ norm of system
T (S,M) is given by

‖T (S,M)‖∞ := sup
S∈S, u∈L2

‖e‖2
‖u‖2 (7)

where L2 denotes the space of square integrable vector
functions on[0,∞). 2

The following two sections introduce the foundations for
the model reduction design. To be precise, we propose con-
vex characterizations of the full order model approximation
problem (i.e.nf = n) in the H2 (Section III) andH∞
(Section IV) settings.

III. G UARANTEED H2 ERROR BOUND

Suppose that modelM has full order, i.e.nf = n.
Then, we can compute a bound on theH2 norm of system
T (S,M) by the following standard result from the LMI
theory and observability grammian [5].

Lemma 3.1:Consider the error systemT (S,M) with
Da = D −Df = 0. Suppose there exist a modelM with
nf = n and symmetric matricesP and W of appropriate
dimensions satisfying the following optimization problem
for all S ∈ S.

min
M,P,W

trace(W ) :
{

P > 0, W −B′
aPBa > 0,

A′aP + PAa + C ′aCa < 0.
(8)

Then,T (S,M) is quadratically stable and the following
holds:

inf
M
‖T (S,M)‖22 < trace(W ), ∀ S ∈ S. (9)

2

Remark 3.1:As Aa is block diagonal, observe that the
quadratic stability ofT (S,M) is equivalent to the quadratic
stability of both S ∈ S and M. Moreover, if the class
of systemsS contains only one element, i.e. the nominal
model, thentrace(W ) can be done arbitrarily small with
the choiceAf = A, Bf = B, Cf = C, Df = D. 2

To devise a convex formulation of Lemma 3.1, consider
the notation below:

P =
[

S T
T ′ R

]
, N =

[
In 0n

In −TR−1

]
,

Q = TR−1T ′, S = S′, R = R′,
(10)

whereS, T,R ∈ Rn×n are matrices to be determined. We
assume in this paper thatT is non-singular. As the matrix
inequalities in this paper are strict, this assumption may be
done without loss of generality by using small perturbation
arguments.

Keeping in mind that the matrixN is nonsingular, the
conditions in (8) are equivalent to

NPN ′ > 0, N(A′aP + PAa + C ′aCa)N ′ < 0,

W −B′
aPN ′(NPN ′)−1NPBa > 0.

Using the Schur complement and some straightforward
algebraic manipulations the above inequalities can be
rewritten as

Ψ :=




Ψ1 Ψ2 −Am C ′

? Ψ3 C ′ + C ′m
? ? −Iny


 < 0,

Ψw :=




W ? ?
SB + Bm S ?
(S −Q)B S −Q S −Q


 > 0,

(11)

where ? denotes the symmetric block outside the main
diagonal andΨ1 = SA+A′S, Ψ2 = SA+A′(S−Q), Ψ3 =
(S−Q)A+A′(S−Q), with Am, Bm, Cm being related to
the matrices of the modelM through the following change
of variables

Am = TAfR−1T ′, Bm = TBf , Cm = CfR−1T ′. (12)

Observe that the above relations are reversible, i.e. with
Q = TR−1T ′ we get

Af = T−1AmQ−1T,
Bf = T−1Bm,
Cf = CmQ−1T,

(13)

and the Lyapunov matrixP takes the form

P =
[

S T
T ′ T ′Q−1T

]
(14)

From above analysis, we obtain the following theorem.

Theorem 3.1:Consider the systemS ∈ S, the model
M and its parameterization as defined in (13) and (14),
whereT is any nonsingular matrix. AssumeDf = D = 0.
Suppose there exist matricesW,S, Q, Am, Bm, Cm solving
the following convex optimization problem for allS ∈ S.

min
W,S,Q,Am,Bm,Cm

trace(W ) : Ψ < 0, Ψw > 0. (15)

ThenM is quadratically stable and theH2 norm of the
model approximation error satisfies (9). 2



Proof. The first part of the proof follows directly from
the equivalence between

{Ψ < 0, Ψw > 0}
and

{A′aP + PAa + C ′aCa < 0, W −B′
aPBa > 0, P > 0}

through the parameterization defined in (13) and (14). Then,
the upper bound (9) follows from Lemma 3.1. ¥

Corollary 3.1: Suppose thatS has only one element and
Df = D. Then, trace(W ) in Theorem 3.1 is arbitrarily
small with Am = Ψ2 + C ′(C + Cm). 2

Proof. To show thattrace(W ) becomes arbitrarily small
whenever we can chooseAm = Ψ2 + C ′(C + Cm), notice
that with this choiceΨ < 0 becomes equivalent toΨ1 < 0
and Ψ3 < 0. Next consider the choiceT = −Q, Cm =
−C, Bm = −SB. As S − Q > 0, choose in additionQ
such thatS −Q becomes arbitrarily close to zero.

Thus within an arbitrary small error tolerance we get
S = Q, Af = Q−1Am = A, Bf = −Q−1Bm = B,
Cf = −Cm = C. Finally observe thatΨw becomes
arbitrarily close to a block diagonal matrix which allows
in turn trace(W ) to be arbitrarily small. ¥

Lemma 3.1 is defined in terms of the inequalities asso-
ciated with the observability grammian. This lemma could
be alternatively represented by means of the controllability
grammian leading to the following optimization problem:

min
M, P, W,
∀ S ∈ S

trace(W ) :

{
P > 0, W − CaPC ′a > 0,

AaP + PA′a + BaB′
a < 0,

(16)

whereP andW are symmetric matrices.
The same quadratic stability properties ofT (S,M) and

the upper bound (9) hold for Lemma 3.1 with (16) instead
of (8). As a result, Theorem 3.1 can be recast in accordance
with (16) by using the dual system, i.e. the expressions in
(11) are redefined withA = A′, B = C ′ and C = B′

and to get a coherent notation also replaceAm, Bm, Cm

by A′m, C ′m, B′
m, respectively. These change of variables in

(11) correspond to the parameterization defined in (12), (13)
and (14) to represent Lemma 3.1 with (16). The idea of dual
system is interesting when the matrixP in (16) or (8) cannot
come arbitrarily close to its respective grammian. In this
case Lemma 3.1 with (8) or (16) has different properties and
then Theorem 3.1 and its dual version lead to different upper
bounds on‖T (S,M)‖2. As a consequence, we can use
them as alternative approaches to the model approximation
problem.

IV. GUARANTEED H∞ ERROR BOUND

Suppose that modelM has full order, i.e.nf = n, and
consider the following version of the bounded real lemma
[10] for an H∞ characterization of the error system.

Lemma 4.1:Consider the error systemT (S,M). Sup-
pose there exist a modelM with nf = n, a matrixP = P ′

of appropriate dimension and a positive scalarγ satisfying
the following optimization problem for allS ∈ S.

min
M,P,γ

γ : P > 0, Φ(M, P, γ) < 0, (17)

where

Φ(M, P, γ) =




A′aP + PAa PBa C ′a
B′

aP −γInu
D′

a

Ca Da −γIny


 .

Then, the error systemT (S,M) is quadratically stable
and

inf
M
‖T (S,M)‖∞ < γ, ∀ S ∈ S. (18)

2

Remark 4.1:From the same arguments of Remark 3.1,
Lemma 4.1 implies the quadratic stability of bothS ∈ S and
M. Moreover, when the class of systemsS contains only
one element the scalarγ can be done arbitrarily small with
the choiceAf = A, Bf = B, Cf = C andDf = D. 2

Using the same procedure of Section III, we can obtain
an LMI version to Lemma 4.1. To this end, consider the
notation defined in (10). Then, the conditions in (17) are
equivalent toNPN ′ > 0 andΨγ < 0, where

Ψγ := diag{N, Inu , Iny}Φ(M, P, γ)diag{N ′, Inu , Iny}.
Using the Schur complement and some straightforward

algebraic manipulations we may rewrite these conditions as
follows

Q > 0, S −Q > 0, and

Ψγ :=




Ψ1 Ψ2 −Am Ψ4

? Ψ3 Ψ5

? ? −Ψ6


 < 0,

(19)

whereΨ1,Ψ2,Ψ3 are as defined in (11) and

Ψ4 :=
[

SB + Bm C ′
]
,

Ψ5 :=
[

(S −Q)B C ′ + C ′m
]
,

Ψ6 :=
[

γInu −D′
a

−Da γIny

]
,

with Am, Bm, Cm being related to the matrices ofM
regarding the change of variables defined in (12), (13) and
(14).

Now, we are ready to state the following result.

Theorem 4.1:Consider the uncertain systemS ∈ S, the
modelM and its parameterization as defined in (13) and
(14) with T being any nonsingular matrix. Suppose there
exist matricesS, Q, Am, Bm, Cm, Df and a positive scalar
γ solving the following optimization problem for allS ∈ S.

min
S,Q,Am,Bm,Cm,Df ,γ

γ : Q > 0, S −Q > 0, Ψγ < 0. (20)

Then,M is quadratically stable and theH∞ norm of
T (S,M) satisfies the bound (18). 2



Proof. The parameterization defined in (13) and (14)
implies the equivalence between the conditions

{Ψγ < 0, Q > 0, S −Q > 0}
and {Φγ < 0, P > 0}.

Then, from Lemma 4.1 it follows thatT (S,M) is
quadratically stable and the upper bound (18) is satisfied.

¥
Corollary 4.1: Suppose thatS has only one element.

Then, γ in Theorem 4.1 is arbitrarily small withAm =
Ψ2 + Ψ4Ψ−1

6 Ψ′5. 2

Proof. Notice with

Am = Ψ2 + Ψ4Ψ−1
6 Ψ′5

that Ψγ becomes equivalent to

Ψ1 + γ−1C ′C < 0 andΨ3 < 0.

Next consider the choice

T = −Q, Cm = −C, Bm = −SB, Df = D.

As S − Q > 0, also chooseQ > 0 such thatS − Q
becomes arbitrarily close to zero andΨ3 < 0 (this is always
possible providedA is quadratically stable).

Thus, within an arbitrary small error tolerance that is
proportional to‖S −Q‖, we get

S = Q, Af = Q−1Am = A,

Bf = −Q−1Bm = B, Cf = −Cm = C.

The desired result follows by observing that in this case
Ψγ < 0 becomes equivalent toγΨ1 + C ′C < 0 that can
always be satisfied by simply re-scaling the matrixS. ¥

V. REDUCED ORDER MODELS

The convex techniques developed in Sections III and
IV cannot be used in a straightforward way to the model
reduction problem, i.e. when the order of the model to
be determined is strictly smaller than system order. The
reason is the existence of a rank constraint associated to
the parameterization defined in (10) and (12). To overcome
this non-convex rank condition, consider in this section that
the error systemM defined in (5) has a particular structure
Mrg indicated below.

Mrg :





ẋf =
[

Ar 0
Agr Ag

]
xf +

[
Br

Bg

]
u,

yf =
[

Cr 0
]
xf + Dfu

(21)

where the dimensions of the matrices are in accordance with
the partition

xf =
[

xr

xg

] 



xr ∈ Rnr ,
xg ∈ Rng ,
xf ∈ Rn,

with n = nr + ng.

The interest of the above structure is that the modelMrg

can be viewed as a cascade connection of two auxiliary sub-
models, namelyMr andMg, and hereafter refereed to as
reduced-order model and pseudo-model, respectively, which
are given by:

Mr :
{

ẋr = Arxr + Bru
yr = Crxr + Dfu

,

Mg : { ẋg = Agxg + Bgu + Agrxr,

(22)

wherexr ∈ Rnr is the state of the reduced-order model,
xg ∈ Rng the state of the pseudo-model withng = n− nf

andAr, Br, Cr, Df andAg, Agr, Bg being real matrices of
compatible dimensions to be determined such that the model
approximation error is minimized as in Sections III and IV.

Observe from (22) and (5) that the error signale := y−yf

associated with the model estimation problem is now given
in terms of the state of the reduced-order model since
yf = yr. Moreover, it can be seen that the dynamics of the
pseudo-model, which are driven by the system input vector
and the states of the reduced-order model, neither affect
the dynamics of the reduced-order modelMr nor the error
signal. In fact, the dynamics of the pseudo-modelMg are
non-observable at the output error signal. In other words,
under zero initial conditions the full order error system
T (S,Mrg) and the reduced-order error systemT (S,Mr),
obtained from(S,Mrg,Mr) according to (5), have the
same response for the same input. Also, the quadratic
stability of T (S,Mrg) implies the stability of both the
reduced-order model and the pseudo-model as well, i.e the
non-observable dynamics ofMg are stable.

The main reason for considering the reduced-order model
approximation problem based on the full-order error system
T (S,Mrg) is that we can handle it by means of Theorems
3.1 and 4.1 provided that we take the particular structure of
the modelMrg in (21) into account.

To obtain from the parameterization (13) the matrices
Af , Bf , Cf , with the structure indicated in (21), the free
matrix T is defined as follows:

T = QT0Trg, Trg =
[

Tr 0nr×ng

0ng×nr Tg

]
(23)

whereTr, Tg are any nonsingular matrices andT0 is a given
nonsingular matrix.

Now, for a given ordernr of Mr, consider the following
convex constraints onAm, Cm andQ:

Υ(Am, Cm, Q) =




Ω1 Am T0 Ω′2
Ω1 QT0 Ω′2
Cm T0 Ω′2


 = 0, (24)

whereΩ1 andΩ2 are as follows

Ω1 =
[

Inr 0nr×ng

]
, Ω2 =

[
0ng×nr Ing

]
.

It can be easily checked that under the above constraints



we get the following

AmT0 =
[

Am1 0nr×ng

Am2 Am3

]
,

QT0 =
[

Q1 0nr×ng

Q2 Q3

]
,

CmT0 =
[

Cm1 0ny×ng

]
(25)

for some matricesAmi
, Qi (i = 1, 2, 3) andCm1 .

Then, from (13) and (23) the matricesAf , Bf , Cf take
the form indicated bellow:

Af = T−1
rg (QT0)−1(AmT0)Trg,

Bf = T−1
rg (QT0)−1Bm, Cf = CmT0Trg.

(26)

Note that the above definition leads to the desired structure
defined in (21).

Applying the matrix inversion lemma to(QT0)−1 and
(25), we obtain the following matrices forMr:

Ar = T−1
r Q−1

1 Am1Tr,

Br = T−1
r Q−1

1 Ω1Bm, Cr = Cm1Tr,
(27)

and to the pseudo-modelMg : Ag = T−1
g Q−1

3 Am3Tg and

Bg = T−1
g (−Q−1

3 Q2Q
−1
1 Ω1Bm + Q−1

3 Ω2Bm),

Agr = T−1
g (−Q−1

3 Q2Q
−1
1 Am1 + Q−1

3 Am2)Tr.

From above, the main result of this paper is stated as
follows.

Theorem 5.1:Let T0 be any given non-singular matrix
and nr a given integer such thatnr < n. There exists a
model Mr of order nr with an H2 (or H∞) bound on
the error signal of systemT (S,Mr), if the conditions of
Theorem 3.1 (or Theorem 4.1) are satisfied for allS ∈ S
with the additional convex constraintΥ(Am, Cm, Q) = 0
given by (24). In the affirmative case,Mr indicated in (22),
is quadratically stable and its matrices are given by (27).2

Remark 5.1:In the full-order model estimation prob-
lem the matricesAm, Bm, Cm, Q, S in Theorem 3.1 (or
Theorem 4.1) as well as the free matrixT have to be
constant becauseM and P are the same for all element
S ∈ S. However, for reduced-order models the matrices
associated with the pseudo-modelMg are not required to
be constant because they do not affect the model estimation
error e := y − yr. As a result, we may let them to depend
on the uncertain parameters to reduce the conservativeness
of the LMI conditions. 2

Remark 5.2:If the system model depends on a set of
parameters, one may wish to estimate a reduced (or full-
order) model that is itself dependent on the same set (or
sub-set) of these parameters. In this case we just let the
matricesAm, Cm, Bm, Df be affine functions of the sub-
set of desired parameters. As a result the matrices of the
model we get will also be an affine function of this same
sub-set of parameters through the relation (13). 2

VI. N UMERICAL EXAMPLES

To illustrate the proposed results1, we present three
numerical examples. The first one is based on the TGEN
system described in [11], the second one is the example
proposed in [3] and the third is the second example of [4].

Example 6.1:Consider the TGEN system described in
[11]. It has the form (1) withA ∈ R6×6, B ∈ R6×2, C ∈
R2×6. The nominal system is Hurwitz but has 3 poles close
to the imaginary axis, namely−0.231, −0.351± j6.34. To
illustrate the robustness feature leta(i,j) to represent the
(i, j) element ofA and supposea(6,6) = c0 + c0 δ where
c0 is the nominal value andδ is a uncertain parameter
satisfying |δ| ≤ α, for a given α. The nominal system
described in [11] corresponds toδ = 0.

The table shows the guaranteed cost obtained with the
Theorems 3.1 and 4.1. Each column of the table corresponds
to a given model order. The rows correspond to the design
requirements: (i) nominal guaranteed cost on the model
reduction error; and (ii) robust guaranteed cost for the above
uncertainty set. The results were obtained by usingT0 = In

and α = 0.2. The last row displays the model reduction
error obtained from the Hankel-norm technique applied to
the nominal system.

nr 6 5 4 3 2

trace(W ) (i) 0 1.09 2.48 2.94 4.33
trace(W ) (ii) 0.07 1.52 2.91 3.37 4.75

γ (i) 0 2.11 2.11 2.11 2.13
γ (ii) 0.78 2.62 2.62 2.62 2.69

hankel (i) 0 0.18 1.26 3.25 5.31

Example 6.2:Consider the following uncertain system as
proposed in [3]:

ẋ = Ax + Bu, y = Cx,

where the system matrices are given by

A =




−2 3 −1 1
0 −1 1 0
0 0 a33 12
0 0 0 −4




B =




−2.5 b12 −1.2
1.3 −1 1
1.6 2 0
−3.4 0.1 2




C =



−2.5 1.3 1.6 −3.4

0 −1 2 0.1
−1.2 1 0 2


 .

anda33 ∈ [−3.5,−2.5], b12 ∈ [−0.5, 0.5].
The problem of interest in this example is to obtain a

reduced-order model withnf = 2 in an H∞ sense. To this
end, consider the following definition for the matrixT0:

1The numerical results were obtained with the free software Scilab
available at the site www-rocq.inria.fr/scilab.



T0 =
[

I2 I2

02 I2

]
.

Then, applying Theorem 5.1 to the above system yields
an upper-boundγ = 5.54 on H∞ norm of the error
signal. This result is conservative with respect to theH∞
bound obtained in [3] (γ = 3.79). In this reference the
model is itself dependent of the uncertain parameters and
an alternating projection method is used to handle a non-
convex rank constraint. In contrast, our approach considers
a fixed model (parameter independent) with a much lower
computational effort than the result obtained in [3].

Example 6.3:Consider the following time-invariant sys-
tem [4]:

G :
{

ẋ = Ax + Bu,
y = Cx

where the system matrices are as follows

A =

2
666664

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−0.007 −0.114 −0.85 −2.8 −4.45 −3.4

3
777775

B =
�

0 0 0 0 0 1
�′

C =
�

0.007 0.014 0 0 0 0
�

The objective in this example is to determine a first order
model Gr for systemG. Applying Theorem 5.1, we get
trace(W ) = 0.0205 with T0 = I6 which is considerably
better than the result proposed in [4] where was obtained
0.0557 ≤ ‖T (G,Gr)‖22 ≤ 0.0616.

VII. C ONCLUSIONS

In this paper, we have proposed sufficient convex LMI
conditions to the order-reduction problem. In contrast with
the techniques found in the literature, as for instance the
ones in the references [2], [3], [6] and [4], our method is
convex (does not depend on rank constraint conditions) and
the model obtained is fixed (parameter independent) even
if the system is uncertain (parameter dependent). The tech-
nique can be applied to quadratically stable linear systems
with polytopic uncertainties, and the model is determined
by minimizing upper bounds on theH2 or H∞ norms of the
error signal between the model and its approximation. The
stability of the model to be determined is shown through
a suitable Lyapunov function, and the results are based
on the parameterization of the model matrices and the
Lyapunov function as defined in (13) and (14), respectively.
The numerical examples have shown that the proposed
methodology yields a good compromise between accuracy
and computational effort. The best choice of matrixT0 used
in the order-reduction case (Section V) is an interesting
problem that remains open.
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