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Robust Order Reduction

A. Trofino and D. F. Coutinho

Abstract—This paper proposes an LMI approach to the way. Numerical examples are presented in Section VI and
robust order reduction problem. The technique can be applied  Section VII ends the paper.
for quadratically stable linear systems with polytopic uncer-
tainties. Bounds on the magnitude of the model approximation Il. STATEMENT OF THE PROBLEM
error are characterized in terms of both the H, and H .
norms. Numerical examples are used to show the potential of Consider the system
the proposed approach. s { i = Az + Bu

y=Cx+ Du (1)

. . wherex € R™ denotes the state, € R™= the input vector,
The problem of model reduction has been largely studle\g6 R the output vectorA, B, C, D are real matrices of

Eégii?;:sft(:?%Lge;adfskiagggimetrerg?n\l/\?;ris ;Tf(jjide' ;fe;e CIémpatible dimensions. To represent some system dynamics
pp d parameters that are not precisely known or are difficult

many numerically reliable results are now available in thtleo be exactly modelled, suppose the matrices of the system
literature. See for instance [1] for a brief presentation of tr%g can take any value ’in a given polytopk as indicated

I. INTRODUCTION

main types of techniques and corresponding references. Slow [5]:

key idea is to approximate a given high order (possibly un- '

certain) system by a reduced order nominal model such that II= Co { { A B; } =1 q} @)
an upper bound on the approximation error is guaranteed Ci D; |’ T

to be small enough. where Co{-} refers to the convex hull of-}. For conve-

More recently, the LMI framework has been consideregjience, we may alternatively represent the uncertain system

to approach the model reduction problem for uncertaig by the notationS € S where the se§ is as follows:
systems [2], [3]. Among the main motivations to use the

LMI framework we could mention the flexibility it offers S = {5 in (1): [ é ZB; ] c H} (3)
to cope with mixed problems and uncertain models [5]

and also the existence of reliable tools that are available Also, we assume that systef is quadratically stable,
to numerically solve LMI problems. Unfortunately, thei.e.
existing LMI based conditions for model reduction have an , , ,
additional rank constraint [6] or are expressed in terms of -1 =1 P >0, AP+ PA;i <0, i=1,....q

bilinear matrix inequalities [4], [7] destroying the convexity Then, the problem of concern in this paper is to design

[8], [9]. a fixed model of given ordet; < n
In this paper we propose a convex LMI characterization A B
to the order reduction problem. The reduced order model M Tp = ApTy ot Dpu (4)
Yy = Cfxf + Dfu

is determined by solving an LMI optimization problem
in which an upper bound on thél, or H,, norm of wherez; € R" denotes the state of the model and
the approximation error is minimized. We first propose &ly, By, Cy, D are real matrices of compatible dimensions
solution to the full order case (approximate model) and thet® be determined such that the model approximation error
extend it to the reduced order case without rank constraintis. as small as possible.

The rest of this paper is organized as follows. Section [I The mismatch between systes and model M can
states the problem of concern. Sections Ill and IV presefe represented as the output of the following augmented
some preliminary results regarding the parameterizatiosystem hereafter referred to as error system.
of the model to be determined as well as the precise i = Az + Bou
upper bounds on thél, and H.. norms to be minimized. T(SM) { e—Cor 4 Du (5)

The main result is then presented in Section V where is _ e
determined a reduced order model in a numerical tractabfderee := y — y; is error signal and
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Definition 2.1: (H, norm) The H, norm of system To devise a convex formulation of Lemma 3.1, consider

T(S, M) is given by the notation below:

T(8, M)|2 :==suplle 6 _| S T _ | In 0n,

IS, M)l = sup el I e B [ P
wherew is an unitary impulsez,(0) =0 and D, =0. O Q=TR'T', =5, R=R/,

If the input signalu is a white noise with zero mean

nxn 1 1
value and unitary power density spectra, we may interpré“fheres’ .T’R.e R are matnces_ to be determined. We
the H, norm as assume in this paper thdt is non-singular. As the matrix

inequalities in this paper are strict, this assumption may be

|17 (S, M)||3 :=supE(ee) done without loss of generality by using small perturbation
S€S arguments.
where&(¢’e) denotes the mathematical expectation of the Keeping in mind that the matrixv is nonsingular, the
random variable'e. conditions in (8) are equivalent to
Alternatively, suppos_in@a(o) =0 the greatest energy NPN' > 0,N(A,P + PA, + C.C,)N' < 0,
gain that can be obtained from input signalse L, to ) , 1
the outpute corresponds to théf,, norm of the uncertain W — B,PN'(NPN')"*NPB, > 0.

system7 (S, M) leading to the following definition. Using the Schur complement and some straightforward
Definition 2.2: (H., norm) The H., norm of system gigepraic manipulations the above inequalities can be

T(S, M) is given by rewritten as
llell2 [, U, - A c’
T(E M) := su 7 m
17 ( )i ses 5’@2 [l @) U= * Uy c'+Cl | <0,
_In,
where L, denotes the space of square integrable vector L~ * v (12)
. w * *
functions on|0, co). O
Th - . . . U, :=| SB+ B, S * > 0,
e following two sections introduce the foundations for g B g g
the model reduction design. To be precise, we propose con- | (5-@Q) -« —Q

vex characterizations of the full order model approximatiovhere « denotes the symmetric block outside the main
problem (i.e.ny = n) in the H, (Section Ill) andH,, diagonal andl; = SA+A’'S, Uy = SA+A'(S—Q), U3 =

(Section V) settings. (S—Q)A+ A'(S—Q), with A,,,, B,,,, C,, being related to
the matrices of the mode\1 through the following change
I1l. GUARANTEED H3 ERROR BOUND of variables

Suppose that modeM has full order, i.e.ny = n.
Then, we can compute a bound on tHg norm of system

T (S, M) by the following standard result from the LMl Opserve that the above relations are reversible, i.e. with

Am = TAfRilT,, Bm = TBf, Cm = CfRilT/. (12)

theory and observability grammian [5]. Q =TR'T’ we get
Lemma 3.1:Consider the error systeri (S, M) with . .
D, = D — Dy = 0. Suppose there exist a mod&l with Ay = TilAmQ T,
ny = n and symmetric matrice® and W of appropriate By = T B_n}, (13)
dimensions satisfying the following optimization problem Cr = CuQ7'T,
forall S eS. and the Lyapunov matri® takes the form
. P>0, W-B/PB, >0
. ) a a ) S T

) 'Il;jhen,T(S,/\/l) is quadratically stable and the following  From apove analysis, we obtain the following theorem.
olds:
Theorem 3.1:Consider the systens € S, the model

inf |7(S,M)||3 < trace(W), VS€S. (90 M and its parameterization as defined in (13) and (14),
M . . .
whereT is any nonsingular matrix. Assume; = D = 0.

_ ) . Suppose there exist matric@g S, Q, A,,, By, Cy, solving
Remark 3.1:As A, is block diagonal, observe that the e following convex optimization problem for aff € S.
quadratic stability off (S, M) is equivalent to the quadratic

stability of bothS € S and M. Moreover, if the class

of systemsS contains only one element, i.e. the nominal
model, thentrace(W) can be done arbitrarily small with  Then M is quadratically stable and th#; norm of the
the choicedy = A, By = B, Cy =C, Dy = D. O  model approximation error satisfies (9). O
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min trace(W): ¥ <0, ¥,, >0. (15)
W.5,Q,Am,Bm,Cm



Proof. The first part of the proof follows directly from of appropriate dimension and a positive scalasatisfying

the equivalence between the following optimization problem for alf € S.
{¥<0,T, >0} /\I/lngl v : P>0, M, P,v) <0, a7
s 57
and where
{AlP+PA,+C!C, <0, W—B,PB, >0, P>0} A'P+PA, PB, c
through the parameterization defined in (13) and (14). Then, DM, P,v) = B,P I, D;
the upper bound (9) follows from Lemma 3.1. | Ca D, —Vn,

Corollary 3.1: Suppose tha® has only one element and  1hen, the error systerd (S, M) is quadratically stable
Dy = D. Then, trace(W) in Theorem 3.1 is arbitrarily and _
small with A,,, = Uy + C'(C + C,,). O inf |7(S, M) < 7, VS €S, (18)
Proof. To show thatrace(1W) becomes arbitrarily small

whenever we can choost,, = ¥, + C’'(C + C,,), notice -
that with this choicel < 0 becomes equivalent td; < 0 Remark 4.1:From the same arguments of Remark 3.1,
and U3 < 0. Next consider the choic# = —Q, C,, = Lemmad4.1limplies the quadratic stability of bathe S and
—C, By, = —SB. As S — Q > 0, choose in additorgp M. Moreover, when the class of systefisontains only
such thatS — @ becomes arbitrarily close to zero. one element the scalgrcan be done arbitrarily small with

Thus within an arbitrary small error tolerance we gethe choiceAs = A, By =B, Cy =C andDy =D. O

S =Q Ay = Q_lAm = A, By = —Q'B, = B, Using the same procedure of Section Ill, we can obtain
Cy = =Cp = C. Finally observe thatV,, becomes an | M| version to Lemma 4.1. To this end, consider the
arbitrarily close to a block diagonal matrix which allows,gtation defined in (10). Then, the conditions in (17) are
in turn trace(W) to be arbitrarily small. equivalent toN PN’ > 0 and ¥, < 0, where

Lemma 3.1 is defined in terms of the inequalities asso~;, ._ ;; . /
ciated with the observability grammian. This lemma could\I’V i= diag{N, In,., In, }o(M, P, 7)diag{N', I, In, }
be alternatively represented by means of the controllability Using the Schur complement and some straightforward
grammian leading to the following optimization problem: algebraic manipulations we may rewrite these conditions as

P >0, W—C,PC! >0, follows
min  trace(W) : { (16) Q>0 S—Q>0,and
M, P, W, A,P+ PA,+ B,B/ <0,
vees U Uy A, Uy (19)
where P and W are symmetric matrices. U, = * Wq Uy <0,
The same quadratic stability properties®fS, M) and * * —Ug

the upper bound (9) hold for Lemma 3.1 with (16) instea ' .
of (8). As a result, Theorem 3.1 can be recast in accordan%vehereqll’ W2, W5 are as defined in (11) and

with (16) by using the dual system, i.e. the expressions in Uy = [ SB+ B, (' ] )

(11) are redefined with = A’, B = ¢’ andC = B’

and to get a coherent notation also replatg, B.,, Con Us = [(S-Q)B C'+C), |,
by A/ C! B!, respectively. These change of variables in

(11) correspond to the parameterization defined in (12), (13) - [ vy, =Dy }

and (14) to represent Lemma 3.1 with (16). The idea of dual ~Do ln, |7

system is interesting when the mat#xin (16) or (8) cannot \yith A, By, Cr, being related to the matrices ofA

come arbitrarily close to its respective grammian. In thigegarding the change of variables defined in (12), (13) and
case Lemma 3.1 with (8) or (16) has different properties ar@[4)_

then Theorem 3.1 and its dual version lead to different upper Now, we are ready to state the following result.
bounds on||7 (S, M)|2. As a conseqguence, we can use

them as alternative approaches to the model approximation! heorem 4.1:Consider the uncertain systefhc S, the
problem. model M and its parameterization as defined in (13) and

(14) with T being any nonsingular matrix. Suppose there
IV.  GUARANTEED Ho, ERROR BOUND exist matricesS, Q, Ay, Bm, Cm, Dy and a positive scalar
Suppose that modeMt has full order, i.eny = n, and ~ solving the following optimization problem for aff € S.
consider the following version of the bounded real lemma .
[10] for an H,, characterization of the error system. S,Q,Am,rggllr,lc,meﬁ’y 10>0,5-Q>0,¥, <0. (20)

Lemma 4.1:Consider the error systef (S, M). Sup- Then, M is quadratically stable and thH,, norm of
pose there exist a modal with ny = n, a matrixP = P’ 7 (S, M) satisfies the bound (18). O

3365



Proof. The parameterization defined in (13) and (14) The interest of the above structure is that the modgl,
implies the equivalence between the conditions can be viewed as a cascade connection of two auxiliary sub-
models, namelyM,. and M, and hereafter refereed to as
q/ _ L T g! i -
¥, <0, @>0, §-Q >0} reduced-order model and pseudo-model, respectively, which

and {®, <0, P>0}. are given by:
Then, from Lemma 4.1 it follows tha? (S, M) is Mo i, = Arzr + Bru
quadratically stable and the upper bound (18) is satisfied. T yr = Crwp + Dyu (22)
|

My o {&,=A25+ Byu+ Agrx,,
Corollary 4.1: Suppose thaS has only one element.

Then, v in Theorem 4.1 is arbitrarily small withd,, = wherez, € R" is the state of the reduced-order model,

Uy + U050, o g € R the state of the pseudo-model withy =1 —n
andA,, B,,C,,Dy and Ay, Ay, B, being real matrices of
Proof. Notice with compatible dimensions to be determined such that the model

approximation error is minimized as in Sections Il and IV.

_ — 11/
Am =Wy + Wy W Vs Observe from (22) and (5) that the error sigaak y—y;

that ., becomes equivalent to associated with the model estimation problem is now given
i in terms of the state of the reduced-order model since
Uy +97C°C <0and¥s <0. y; = y». Moreover, it can be seen that the dynamics of the
Next consider the choice pseudo-model, which are driven by the system input vector
and the states of the reduced-order model, neither affect
T=-Q, Cp=-C, By=-SB, Df=D. the dynamics of the reduced-order mogdé,. nor the error

signal. In fact, the dynamics of the pseudo-modéd|, are
becomes arbitrarily close to zero aid < 0 (this is always non—observaplg_ at the Qgtput error signal. In other words,
under zero initial conditions the full order error system

possible providedd is quadratically stable).
Thus, within an arbitrary small error tolerance that isT(S’.Mrg) and the reduced-order error Systénis, M),
proportional to]|S — Q||, we get obtained from(S, M, , M,.) accprdmg to (5), have the _
same response for the same input. Also, the quadratic
S=Q, Ay =Q'A,, = A, stability of 7(S, M,,) implies the stability of both the
. _1 . . . reduced-order model and the pseudo-model as well, i.e the
By =-Q" Bn=5, Cr=-Cn=0C non-observable dynamics ¢, are stable.

The desired result follows by observing that in this case The main reason for considering the reduced-order model
W, < 0 becomes equivalent t9¥; + C'C' < 0 that can  gpproximation problem based on the full-order error system
always be satisfied by simply re-scaling the maix B 7(S M,,) is that we can handle it by means of Theorems
V. REDUCED ORDER MODELS 3.1and 4.1 proyided that we take the particular structure of

] ] ] the modelM,.; in (21) into account.

The convex tech_nlques d_eveloped in Sections Il and To obtain from the parameterization (13) the matrices
v can_not be used n a straightforward way to the mOdelef,Bf,Of, with the structure indicated in (21), the free
reduction problem, i.e. when the order of the model WO atrix T is defined as follows:
be determined is strictly smaller than system order. The
reason is the existence of a rank constraint associated to T = QTT,,. T, — T, O, g
the parameterization defined in (10) and (12). To overcome T i 0irgy Srg ™ Oy x T,
this non-convex rank condition, consider in this section that '
the error systeriVt defined in (5) has a particular structurewhereT’., T, are any nonsingular matrices afiglis a given

As S — @ > 0, also choose) > 0 such thatS — Q

(23)

M.,4 indicated below. nonsingular matrix.
Now, for a given orden,. of M,., consider the following
; 40 B traints odl,,, C,, and Q:
iy = A PIREZ 4 B | convex constraints odl,,, C,, and Q:
Mg : gr g g (21)
/
= [C., 0]z;+Du 0 A Tp Q5
v = | Jos + Dy _ T(Ap, Co @) = | 21QTH0, | =0,  (24)
where the dimensions of the matrices are in accordance with Con T 2

the partition
where); and (), are as follows

. z, € R",
=" € R™,
I [ Tg :| zj‘ eR" Q1 = [ Im« Onr><ng ]7 QQ = [ Ongxnr Ing ]
with n = n, + ng. It can be easily checked that under the above constraints
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we get the following VI. NUMERICAL EXAMPLES

AT = { Ay Onpxong } To illustrate the proposed resditswe present three
mi0 = Am, ma ’ numerical examples. The first one is based on the TGEN
Q1 On.wn (25) system described in [11], the second one is the example
QTo { Q- 623 ! } ) proposed in [3] and the third is the second example of [4].
ConTo = [ Cmi Onyxn, | Example 6.1:Consider the TGEN system described in

[11]. It has the form (1) withA € RS*¢ B € R6*2 C ¢
R2%6, The nominal system is Hurwitz but has 3 poles close
to the imaginary axis, namely0.231, —0.351+ 6.34. To
illustrate the robustness feature It ;) to represent the
(i,7) element ofA and suppose s = co + o0 Where
_ -1 —1 _ co is the nominal value and is a uncertain parameter
By =Ty (QTo) ™ B, Cf = CnToTrg. satisfying |§)] < «, for a givena. The nominal system
Note that the above definition leads to the desired structutescribed in [11] corresponds fo= 0.
defined in (21). The table shows the guaranteed cost obtained with the
Applying the matrix inversion lemma t6Q7,)~' and Theorems 3.1 and 4.1. Each column of the table corresponds
(25), we obtain the following matrices fo¥1,.: to a given model order. The rows correspond to the design
A = TQ7 A, T, requirgments: 0] nor_ninal guaranteed cost on the model
" ’ reduction error; and (ii) robust guaranteed cost for the above
uncertainty set. The results were obtained by uding 1.,
and o = 0.2. The last row displays the model reduction
error obtained from the Hankel-norm technique applied to
the nominal system.

for some matricesd,,,, Q; (i =1,2,3) andC,,, .
Then, from (13) and (23) the matrices;, B¢, C; take
the form indicated bellow:

Af = T;]l (QTO)_l (AmTO)Trga
(26)

(27)
Br = TT_IQIIQIBWH Cr = leTra

and to the pseudo-modg¥, : A, =T, Q3" Ay, T, and

By =T; 1 (—Q5' Q2Q1 ' By, + Q5 ' Q2 Bry),

s R B [n 6 [5 [4 [3 ]2
Agr =T (-Q5 Q2Q1 A, + Qg A, )T trace(W) [ () || O 1.09] 2.48] 2.94] 4.33
From above, the main result of this paper is stated as trace(W) || (ii) || 0.07 ] 1.52] 2.91| 3.37 | 4.75
follows. 5y @ | o 211211 2.11| 2.13
Theorem 5.1:Let T, be any given non-singular matrix haZkeI E:;) 8'78 éig igg gg; ggi

andn, a given integer such that, < n. There exists a : : : .

model M,. of order n,. with an H, (or H,,) bound on
the error signal of syster (S, M,.), if the conditions of
Theorem 3.1 (or Theorem 4.1) are satisfied for&le S
with the additional convex constraifff(A4,,,C,,,Q) = 0
given by (24). In the affirmative cas#!,. indicated in (22),
is quadratically stable and its matrices are given by (27). where the system matrices are given by

Example 6.2:Consider the following uncertain system as
proposed in [3]:

& = Az + Bu, y = Cuz,

Remark 5.1:In the full-order model estimation prob- [ —2 3 -1 1
lem the matricesA,,, By, Cy,, @, S in Theorem 3.1 (or 0 -1 1 0
Theorem 4.1) as well as the free matrix have to be A = 0 0 a3 12
constant becaus@1 and P are the same for all element 0 0 0 -4
S € S. However, for reduced-order models the matrices [ —25 by —1.2
associated with the pseudo-model, are not required to 1.3 -1 1
be constant because they do not affect the model estimation B = 1.6 2 0
errore := y — y,. As a result, we may let them to depend —34 01 2
on the uncertain_ parameters to reduce the conservativeness [ 95 13 16 —34
of the LMI conditions. O c = 0 -1 2 01

Remark 5.2:1f the system model depends on a set of | 12 1 0 2

parameters, one may wish to estimate a reduced (or full-
order) model that is itself dependent on the same set (SP_?S“ < [&3‘5’_]‘2’_5]’ b1z € [_?]’_5’0'5]' e i biai
sub-set) of these parameters. In this case we just let thed N g)ro dem odlr}tergst 'E ; IS exifmpe IS to_|9 t;u_n a
matricesA,,, Cy,, Bn,, Dy be affine functions of the sub- re duce 'O.Fd er rrr:ofe”wn_ f E i In an ¢ & ﬁense.ITOIt 1S
set of desired parameters. As a result the matrices of tfgd: consider the following definition for the matrl:
model we get will also be an affine function of this same 1The numerical results were obtained with the free software Scilab

sub-set of parameters through the relation (13). O available at the site www-rocq.inria.fr/scilab.
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I
02

I

I (1]

T, = [ } |
Then, applying Theorem 5.1 to the above system yields{,z]
an upper-boundy = 5.54 on H, norm of the error
signal. This result is conservative with respect to fiig (3]
bound obtained in [3]y = 3.79). In this reference the (4]
model is itself dependent of the uncertain parameters and
an alternating projection method is used to handle a non-
convex rank constraint. In contrast, our approach considerS)
a fixed model (parameter independent) with a much lowefg)
computational effort than the result obtained in [3].

Example 6.3:Consider the following time-invariant sys- [7]

tem [4]:

G- T = Ax + Bu, (8]
| y=Cx
where the system matrices are as follows [9]
2 3

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
_ 10
A= 0 0 0 0 1 0 1ol

0 0 0 0 0 1
—0.007 -0.114 -0.85 —2.8 —445 -34 [11]

B= 00000 1'

C= 0007 0014 0 0 0 O

The objective in this example is to determine a first order
model G, for systemqG. Applying Theorem 5.1, we get
trace(W) = 0.0205 with Ty = I which is considerably
better than the result proposed in [4] where was obtained
0.0557 < [|7(G,G,)|13 < 0.0616.

VIl. CONCLUSIONS

In this paper, we have proposed sufficient convex LMI
conditions to the order-reduction problem. In contrast with
the techniques found in the literature, as for instance the
ones in the references [2], [3], [6] and [4], our method is
convex (does not depend on rank constraint conditions) and
the model obtained is fixed (parameter independent) even
if the system is uncertain (parameter dependent). The tech-
nigue can be applied to quadratically stable linear systems
with polytopic uncertainties, and the model is determined
by minimizing upper bounds on thié, or H,, norms of the
error signal between the model and its approximation. The
stability of the model to be determined is shown through
a suitable Lyapunov function, and the results are based
on the parameterization of the model matrices and the
Lyapunov function as defined in (13) and (14), respectively.
The numerical examples have shown that the proposed
methodology yields a good compromise between accuracy
and computational effort. The best choice of maffijxused
in the order-reduction case (Section V) is an interesting
problem that remains open.
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