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Abstract— Following the Smith compensator the parallel
compensator designed for nonminimum phase plants is in-
troduced in the paper. The compensator connected in parallel
to the plant changes its properties so that the replacement
plant model becomes minimum phase and may be shaped
dependently upon the goal of the control. In the case of
regulation on a constant level a first order lag may be chosen
for the replacement plant model. In the case of tracking or
disturbance rejection of signals with frequencies belonging to
some working frequency band, the replacement plant model
should have its frequency response close to that of the plant, in
the working frequency band. The proposed approach simplifies
the design and improves accuracy of the control.

I. INTRODUCTION

It is known that there are so called difficult plants
for which it is difficult to design a regulator assuring
appropriate accuracy of control. One could mention here
plants with pure time delay and nonminimum phase plants.
For the mentioned plants an insignificant increase of the
proportional regulator gain causes instability and for small
gain the system has unsatisfactory accuracy in steady state.
Also the demand of stability creates a limitation for the gain
of integral part of regulator. This part removes the steady
state error, but related with small gain transients are very
slow.

For the plants with pure time delay Smith [5] proposed
a compensator with effectively takes the delay outside the
loop and allows a feedback design based on the plant
dynamics without delay. The result is that the regulator
designed in this manner is faster and assures higher ac-
curacy. Now this compensator is commonly called Smith
compensator [1] (or predictor [3]).

In the present paper, following the idea of the Smith
compensator a parallel compensator is proposed, which
may be applied to nonminimum phase plants. Using this
approach, the regulator may be designed for the replacement
plant with appropriately chosen minimum phase model.
Similarly as for the Smith compensator the assumption is
that the plant is stable (in the case of Smith compensator this
is not exactly formulated in literature). This approach may
be also applied for the system with relay implementation of
the control and a preliminary idea was presented in [2].

The contribution of the paper is in proposing to
nonminimum phase plants the parallel compensator which
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improves the accuracy of control and in showing that the
compensator may be applied both, for the systems with
continuous–time and relay control implementation.

II. PARALLEL COMPENSATOR

Consider the linear plant described by the transfer func-
tion (TF)

G(s) =
Y (s)

U(s)
=

L(s)

M(s)
(1)

where Y (s) and U(s) are the Laplace transforms of the
plant output and input, respectively, whileL(s) andM(s)
are polynomials ofm-th andn-th order, respectively and
m < n. Assume that the plant is stable, that is its poles
pi, i = 1, 2, ..., n have negative real parts i.e.Repi < 0.

In the case of difficult plant (e.g nonminimum phase, or
with higher order dynamics), when it is difficult to design
the regulator assuring an appropriate accuracy, the parallel
compensator shown in Fig. 1 may be applied. The idea of
parallel compensator described by the TF

Gc(s) =
Yc(s)

U(s)
= G1(s) − G(s) (2)

is similar to that of the Smith predictor. HereYc(s) is the
Laplace transform of the outputyc of the compensator,
while G1(s) is the TF which should be appropriately
chosen.

Fig. 1. The connection of parallel compensator.

Note that in the proposed structure shown in Fig. 1 the
TF Gr(s) of the replacement plant is described by

Gr(s) =
Y1(s)

U(s)
= G(s) + Gc(s) =

= G(s) + G1(s) − G(s) = G1(s) (3)



Thus the replacement plant is described by the TFG1(s)
and the regulatorR(s) should be designed for the replace-
ment plant described by the TFG1(s). Therefore the crucial
point in the proposed method is the choice of the TFG1(s).

We will distinguish two cases dependently upon the goal
of the control and the way of its implementation .

As concerns the goal of the control we will distinguish:

I. Regulation with some accuracy under stepwise exci-
tations;

II. Tracking and disturbance rejection with some accu-
racy for frequencies belonging to a working frequency
band[0, ωmx].

As concerns control implementation we will distinguish:

1) Continuous–time implementation;
2) Relay implementation – modified sliding mode.

III. REGULATION WITH PRESCRIBED
ACCURACY

In this case we are mainly interested in the accuracy of
the constant steady state, appearing after some time from
occurrence of stepwise excitation (set point or disturbance).
Since in the case of nonminimum phase plants we have a
limited possibility of shaping transient response, which is
dependent upon the placement of zeros and poles of the
plant we do not formulate some special demands concerning
transient response, though it should be acceptable.

In this case the modelG1(s) may be chosen in the form
of a first order lag i.e

G1(s) =
k0

Ts + 1
, k0 = G(0), (4)

assuring that

G1(0) = G(0) (5)

Since the gain of constant signals(ω = 0) is the same for
both the modelsG1(s) and G(s), then in steady state for
constant signals, as results from (2) and (5), it is

y1 = 0 and e = w − y

For the replacement plant (4) the proportional(P ) regu-
lator with high gain may be applied, or

R(s) = k, k is high (6)

and the researched CL system with (4) and (6) has appropri-
ate stability degree for high at will gain (frequency response
kG1(jω) lies in the first negative quadrant of the Nyquist
plane).

Additionally, it may be noticed that the researched system
is very robust. Really the change of some parameter of
the plant causes the change of the frequency response
of the plant to the form denoted byG∗(jω). For any
frequency ω the vector G∗(jω) − G(jω) changes the
replacement plant characteristicG1(jω). However, since
the frequency responseG1(jω) lies in the first negative

quadrant of the Nyquist plane, its distance from the critical
point (−1, j0) is so big that only sufficiently large vector
G∗(jω)−G(jω) and sufficiently large change of parameter
may cause instability. This resonning justifies robustness
of the system with proposed parallel compensator. The
simulations performed in the following Example confirms
this observation.

A. Example 1

Consider the nonminimum phase plant described by the
following TF

G(s) = kp

−2s + 3

s3 + 4s2 + 4s + 3
, kp = 1 (7)

To design the parallel compensator for regulation with
prescribed accuracy we chooseG1(s) in the form (4) with
T = 0.5 andk0 = G(0) = 1. Assumek = 50 which gives
2% accuracy in steady state.

Fig. 2. Plots ofy andw for Example 1.

Step responsey(t) of the CL system, forw = 1(t)
(1(t) = 1 for t ≥ 0 and 1(t) = 0 for t < 0), is shown
in Fig. 2. The CL system is stable even forkp = 2
(without change of the parallel compensator), but then the
undershot is∼ −0.4, overshot is∼ 1.9 and there are some
oscillations in the response. When we takeT = 0.25 then
the undershot and overshot is somewhat smaller and the
response is somewhat slower.

IV. TRACKING AND DISTURBANCE REJECTION

In this case we are mainly interested in the accuracy
during tracking or disturbance rejection of varying signals
with frequencies belonging to some working frequency band
[0, ωmx]. Similarly as in the case of regulation systems, in
the case of nonminimum phase systems we have limited
possibility of shaping transient response, which however
should be acceptable.



Choosing the modelG1(s) we should take into account
the fact that in the proposed system with the parallel
compensator, the replacement plant has the modelG1(s)
and to this plant the regulator should be designed. Therefore
the model G1(s) should be minimum phase and it is
recommended that the relative degree of the rational TF
G1(s) is equal to one, since for this kind of the replacement
plant even the proportional(P ) regulator with high gain
k gives usually a satisfactory solution. For the stable and
minimum phase modelG1(s), this is caused by the fact that
the corresponding frequency responsekG1(jω) lies usually
in the first and second positive and/or negative quadrants
of the Nyquist plane, sufficiently far from the critical point
(−1, j0), which assures stability.

Additional demand is that the frequency responses of
G(jω) andG1(jω) in the working frequency band[0, ωmx]
should be close one to other or

G1(jω) ≈ G(jω) for ω ∈ [0, ωmx] (8)

Thus the process of design contains the following steps

1) choose the rational TFG1(s) with relative degree
equal to one;

2) find the values of the coefficients of polynomials
in the numerator and denominator ofG1(s) so that
the approximation (8) is fulfilled in some interval
[0, ωmx];

3) design the regulator for which the CL system has a
satisfactory stability degree.

Different algorithms may be proposed for solving the
problem of the coefficients finding in step 2. Some formal
algorithm will be described in the next section. In the
following Example a simple method based on Nyquist
plots and fundamental knowledge is used.

A. Example 2

Consider the plant described by the TF (7) which has
the polesp1 = −3, p23 = −0.5 ± j0.866 and one
nonminimum phase zeroz1 = 0.6667. We would like to
design CL system with parallel compensator, which for
some frequency band[0, ωmx] tracks varying set point and
rejects varying disturbance.

First, we decide to use the second order (simpler) model
G1(s) in the form

G1(s) =
b1s + 1

a0s2 + a1s + 1
(9)

for which G1(0) = G(0) = 1.
Second, the first approach for coefficientsa0, a1 is ob-

tained from assumption that the faster mode of TF (7),
related with polep1 is neglected and the remaining slower
modes related with polesp23 are retained. In this manner
we obtain denominator of (9) in the forms2 + s+1, which
has the rootsp23 i.e. a0 = 1, a1 = 1 and we choose a
rather smallb1, sayb1 = 0.25.

Third, using MATLAB commandnyquist(G,G1), the
plots of the frequency responsesG(jω) and G1(jω) are
obtained on Nyquist plane. By means of successive trials
the coefficientsa0, a1, b1 are changed in this manner that
visually initial segments ofG(jω) andG1(jω) are almost
cover each other. Hereωmx is the maximal frequency on
G(jω) for which this cover occurs.

Forth, to suite the frequencies in the initial segment
for both the plots, we take the readings of the highest
frequenciesωmx andω′

mx on both the plots ofG(jω) and
G1(jω), respectively , for which the corresponding points
G1(jωmx) and G1(jω

′

mx) are almost cover. We obtain
ωmx = 0.304 andω′

mx = 0.231.
Fifth, to change the scale of frequency on the plot of

G1(jω) the new coefficientsa′

0, a
′

1, b
′

1 are calculated in
accordance with the following rules

c = ωmx/ω′

mx = 0.304/0.231

a′

0 = a0/c2, a′

1 = a1/c b′1 = b1/c

In this manner we have obtained the TF (9) with the
following coefficients

a′

0 = 2.5928, a′

1 = 1.8977 b′1 = 0.1139 (10)

The Nyquist plots ofG(jw) and G1(s) with parameters
(10) are shown on Fig. 3 whereωmx = 0.304 rad/sec.

Fig. 3. Nyquist plots ofG(jω) andG1(jω) for Example 2.

On Fig. 4 the time responsey of the CL system for
sinusoidal set pointw = sin(0.304t) · 1(t) is compared
with w. It is shown that beyond the initial transient period
both the plots are almost the same. For sinusoidal set point
w with higher frequency it appears a phase shift and a
difference in the amplitudes of the signalsw and y. It
becomes that the system withG1(s) (9) and parameters (10)
is more sensitive to plant parameters changes. For instance
it is stable forkp from 0.7 to 1.1.



Fig. 4. Plots ofy andw for Example 2.

V. DETERMINATION OF G1(s) IN GENERAL
CASE

Assume that the modelG1(s) has the form

G1(s) =
b1s

p−1 + b2s
p−2 + ... + bp

sp + a1sp−1 + ... + ap

(11)

and is stable and minimum phase. We would like to find
the coefficientsai, bi, i = 1, 2, ..., p, p ≤ n, for which the
frequency responseG1(jω) approximatesG(jω) in some
interval [0, ωmx] andG1(0) = G(0).

To formulate more precisely, let

G1(jω) = ReG1(jω) + jImG1(jω)

G(jω) = ReG(jω) + jImG(jω)

where Re and Im denote real and imaginary part of
appropriate frequency response. Then

d(ω) = ||G1(jω) − G(jω)|| =
√

[ReG1(jω) − ReG(jω)]2 + [ImG1(jω) − ImG(jω)]2

(where||·|| is Euclidean norm) denotes the distance between
the corresponding points of both the responsesG1(jω) and
G(jω). Of course it should be

d(ω) ≤ ∆ for ω ∈ [0, ωmx]

where ∆ is an assumed small number determining the
accuracy of approximation (say∆ = 0.01, or 0.05).

Now, assume some value forωmx and denote by

ωi =
i

2π
ωmx i = 1, 2, ..., 2p (12)

the successive, equally distributed frequencies from interval
[0, ωmx].

Denote byΩ the set of admissible coefficientsai, bi,
i = 1, 2, ..., p, for which the polynomials appearing in
numerator and denominator of the TF (11) are stable and
additionallybp = G(0)ap. The exact form of the setΩ may
be determined for any functionG1(s) using Routh-Hurwitz
criterion of stability, applied for polynomials appearingin

numerator and denominator of (11), together with depen-
dencebp = G(0)ap.

Determine the measure of distance between the points of
G1(jω) andG(jω), corresponding to the same frequencies
ω ∈ [0, ωmx] in the form

d = max
i

d(ωi), i ∈ [1, 2, ..., 2p]. (13)

To calculate the values of the coefficients we may use
the following

Algorithm
1) Choose the valueωmx and determineωi using (12).
2) Calculate the coefficientsai, bi, i = 1, 2, ..., p mini-

mizing

dmin = min
Ω

d

3) If ∆−dmin ≥ 0.1∆ then increaseωmx and repeat the
points 1) and 2) of the algorithm. If0 < ∆−dmin ≤
0.1∆ then – end.

4) If ∆ − dmin < 0 then decreaseωmx and repeat the
points 1) and 2) of the algorithm.

As the result of applying the above algorithm we obtain
ωmx and the coefficientsai, bi, i = 1, 2, ..., p for given
G(s) and assumedG1(s) and∆.

For solving the optimization problem formulated in point
2) any non-gradient algorithm (e.g. genetic algorithm) may
be used.

VI. RELAY IMPLEMENTATION

It is known, that if the plant is nonminimum phase then
it is impossible to implement a relay control, such as on–
off control or sliding mode control, assuring appropriate
accuracy. One possibility of implementing such a control
is applying the appropriate parallel compensator. The block
diagram of the relay control with parallel compensator and
the characteristic of the relay is shown on Fig. 5.

Fig. 5. CL system with parallel compensator and relay implementation;
characteristic of the relay.

As in the continuous–time implementation also now, the
critical point is the choice of the modelG1(s) which



together withG(s) determines the parallel compensator (2).
Dependently upon the goal of the control, as it is described
in section II, the recommendations for the choice ofG1(s)
are the same as those for the continuous–time control,
described in section III and IV.

It is worthwhile to note that the discussed relay imple-
mentation, when the TFG1(s) has relative order equal
to one, may be treated as some modification of sliding
mode control. Really in sliding mode control to obtain fast
switching of the relay and to determine so called sliding
surface the appropriate derivatives of the error signal are
used [4]. In the proposed solution the fast switching of the
relay is obtained owing to the fact that the relative order
of the TFG1(s) is equal to one. It is worthwhile to stress
that in this solution the derivatives of the error signal with
usually gain noises are not utilized at all.

Below the results of simulations for two examples are
given.

A. Example 3

Consider the nonminimum phase, stable plant described
by the TF (7). Assume that the goal of the control is
regulation of the plant output on a constant value determined
by the set pointw. A stepwise change of the set point
(or output disturbance) may occur. The relay control with
parallel compensator is used, as shown on Fig. 5.

Since the plant and the goal of control is the same as in
Example 1 the same parallel compensator with

Gc(s) =
1

0.5s + 1
−

−2s + 3

s3 + 4s2 + 4s + 3
(14)

may be used.

Fig. 6. Plots ofy andw for Example 3.

In Fig. 6 the step responsey of the CL system, with
relay parametersh = 0.2, H = 6 and parallel compensator
(14), to the set pointw = 1(t) is shown. It was obtained
from simulations performed in SIMULINK ver 4.0. It is

shown that the step response is almost the same as that
for the continuous–time system, considered in Example
1 and shown on Fig. 2. Only the steady state error is
smaller, now. The relay parametersh and H influence
insignificantly the step response. Increase ofh even to0.4
or decrease ofH even to 3 gives almost the same step
response. Increase of the plant gain tokp = 2 (without
change of the parallel compensator) gives similar effect as
in the continuous–time system considered in Example 1.

B. Example 4

For the same nonminimum phase plant (7) assume now,
that the goal of the control is tracking and disturbance
rejection for signal with some working frequency band
[0, ωm]. The relay control with parallel compensator is used,
as shown in Fig. 5. Since the plant and the goal of control
is the same as in Example 2 the same parallel compensator
with

Gc(s) =
0.1139s + 1

2.5928s2 + 1.8977s + 1
−

−
−2s + 3

s3 + 4s2 + 4s + 3
(15)

may be used.
In fig. 7 the time responsey of the CL system with relay

parametersh = 0.01, H = 6 and parallel compensator
(10) to set pointw = sin(0.304t) · 1(t), obtained from
simulations, is shown. The hysteresis parameterh is now
20–times smaller than that in Example 3 to avoid switching
oscillations in the outputy. This is caused by the fact
that the slope of the step response ofG1(s) determined
by 0.1139/2.5928 = 0.0439, which for given h decides
about frequency of switching is now2/0.0439 = 45.5581
– times smaller than that ofG1(s) from Example 3. De-
crease ofh and increase ofH influence the time response,
insignificantly. Similarly as in the continuous–time control
from Example 2 the system now is more sensitive to
plant parameter changes than in Example 3. For instance
the system is stable (neglecting switching oscillations not
shown in the outputy) for kp from 0.7 to 1.17 without
change of compensator (14) parameters.

From the performed simulations it results that there
is great similarity in the properties of the system with
continuous–time and relay implementation.

VII. CONCLUSIONS

Design of regulators assuring appropriate accuracy for
nonminimum phase plants meets great difficulties. This is
caused by the fact that usually insignificant increase of the
proportional regulator gain causes instability and small gain
causes law accuracy even in a constant steady state. If the
integral part is introduced in regulator, to reduce the steady
state error, then its gain is also very limited giving very
slow transients.



Fig. 7. Plots ofy andw for Example 4.

In the present paper, following the Smith compensator [5]
we propose for nonminimum phase plants the compensator
which connected in parallel to the plant changes its model
which becomes minimum phase. For the changed replace-
ment plant model it is easy to design regulator with high
gain which assures appropriate accuracy. The kind of the
changed model depends upon our choice and the goal of
the control.

If the main goal of the control is the accuracy of
regulation in steady state under stepwise excitations, then
the changed model may take the form of a first order lag
with the gain equal to that of the plant. The time constant
of this model has also a limited influence on under– and
over–shot of the step response.

If the main goal of the control is tracking or disturbance
rejection of signals with frequencies belonging to some
working frequency band, then the changed model in the
form of rational transfer function with relative order equal
to one, should be chosen in this manner that it is minimum
phase and in the working frequency band its frequency
response is approximately the same as that of the plant.

Especially in the case of regulation the proposed system
structure is very robust since the frequency response of the
replacement plant model lies in the first negative quadrant of
the Nyquist plane (first order lag). In the case of tracking or
disturbance rejection the demand of closing the frequency
response of the replacement plant to that of the plant causes
some decrease of robustness, since the frequency response
of the replacement plant may lay now in the first and second
negative quadrants of Nyquist plane (closer to the critical
point (−1, j0)).

To the replacement plant the relay implementation of
the control may be applied; it has similar properties as a
continuous–time one, which results from performed simu-
lations.

It seems that the described idea of parallel compensator
may be also used for other difficult plant improving
accuracy at least in steady state and also robustness of the
control.
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