
Deadlock Avoidance For Flexible Manufacturing Systems
With Choices Based On Digraph Circuit Analysis

†
Wenle Zhang and Robert P. Judd

School of Electrical Engineering and Computer Science
Ohio University

Athens, Ohio 45701

† Corresponding author. Phone: 740-597-1481, Fax: 740-593-0007,
Email: zhangw@bobcat.ent.ohiou.edu

Abstract

Due to existence of concurrent part flow and resource sharing
in modern automated flexible manufacturing systems, deadlock is
a common problem and its occurrence causes loss of productivity.
According to [12], when a manufacturing system is modeled by a
digraph, existence of circuits in such a graph is a necessary
condition for deadlock. Our research further shows that the knot
and order of a circuit is closely related to impending deadlocks – a
type of deadlock that is more difficult to detect. In this paper, a
deadlock avoidance method for flexible manufacturing systems
with flexible part routing is presented together with new concepts
such as broken circuit, supremal circuit. The new method is highly
permissive since the effective free space calculation captures more
parts flow dynamics, especially when there exist multiple knots in
the digraph model. The online policy runs in polynomial time
once the set of basic circuits of the digraph is computed offline.
Simulation results on selected examples are given.

Keywords: flexible manufacturing system, choice, digraph,
circuit, deadlock avoidance.

1. Introduction
In recent years, research on deadlock detection, prevention

and avoidance for flexible manufacturing systems has been very
active. Some of the significant work have adopted Petri net (PN)
models [1,2,4,6,11,13,15] as a formalism to describe the
manufacturing system. Banaszak[1] proposed a deadlock
avoidance algorithm (DAA) that developed a restriction policy to
guarantee that no circular wait situations will occur. Viswanadham
[11] developed a deadlock avoidance algorithm which suggested
using a recovery mechanism in case of system deadlock. Zhou
[15] developed the sequential mutual exclusions (SME) and
parallel mutual exclusions (PME) concepts and derived the
sufficient conditions for a PN containing such structures to be
bounded, live, and reversible. Structural properties of PNs such as
siphons and traps are used in [2,4] to determine potential deadlock
situations.

Another formalism is to describe the manufacturing system
using graphs [3,5,8-9,12,14]. In this approach the vertices
represent resources and the arcs (edges) represent product part
flows between resources. Cho [3] developed the concept of
bounded circuits with empty and non-empty shared resources to
detect deadlock. Judd [8] derived a set of static linear inequalities
that when they are satisfied deadlock is avoided. Lipset [9]
expanded upon [8] and quantified both necessary and sufficient
conditions for deadlock to occur in a manufacturing system.

It has been challenging to find a solution to avoid impending
deadlocks that is arbitrary steps away from a primary one. Fanti
[5] studied second level deadlock – the impending deadlock one
step away from primary deadlock. Barkaoui [2] used a one step

look-ahead controller, which cannot avoid impending deadlocks
that are more than one step away. Lawley [10] studied special
cases of choices in part routings.

The major contribution of this paper is the extension of our
previous results on deadlock avoidance for systems without choice
in part routing presented in Zhang [14] and Lipset [9] to systems
with choice in part routing, called free choice. Free choice has
been well studied in the Petri net formalism, however, we have not
found that it has been studied systematically in the digraph
formalism. Because of choices introduced, part flow dynamics
become much more complex, order evaluation method given by
[14] is no longer valid due to the added routing alternative. A
systematic circuit analysis is presented. New concepts such as
broken circuit, basic circuit, supremal circuit, are presented.
These concepts help to decrease number of circuits for space
checking thus increasing efficiency and to increase permissiveness
of our deadlock avoidance policy thus increasing productivity.
Commitment, order and effective free space of a circuit are all
redefined to deal with choice in part routing. The new deadlock
avoidance policy with flexible part routing supports still applies to
systems without choice. It is also unique in that it avoids both
primary deadlocks and impending deadlocks that are arbitrary
steps away from a primary one. It can be shown that the proposed
policy runs in polynomial time once the set of circuits of the
digraph is computed. The rest of the paper is organized as: section
2 describes the system model. Section 3 performs circuit analysis.
Section 4 studies the order and effective free space calculation of
circuits. Section 5 presents the deadlock avoidance policy and
analysis. Section 6 provides some simulation results and section 7
concludes the paper.

2. The System Model And Deadlock
A flexible manufacturing system consists of a set R of a finite

number of resources (such as, NC machines, robots, buffers, etc.),
a set P of a finite number of part types that the system can
produce. Each part type p ∈ P is assigned a process plan that
defines a finite number of steps of operations need to be
performed on parts of the type. We assume that each step be
performed on exactly one resource. Thus a process plan p can be
represented as a sequence of resources p=r1r2…rm. Each resource
r∈ R has a capacity, denoted as Cr, which can be considered as a
multiple of identical units. The capacity can be naturally extended
to a set of resources, R1 ⊆ R, as CR1.

Now let us introduce choice into a process plan. In case of a
choice step, the next resource can be chosen from more than one
resource. A choice step is indicated by a pair of parentheses in the
process plan. Inside the pair of parentheses are the possible next
resources separated by commas. A choice step can recursively
contain choice steps. Every process plan has a loading and one or
more unloading step, for a part to enter and exit the system. The

loading step which may also be a choice step, called step 0, is
intentionally left out of the process plan representation since it
does not contribute an arc to the system graph for our purpose. An
unloading step is kept in the plan for indicating the last step
although it does not contribute an arc to the system graph. The
load/unload station is represented as resource R0. An example
plan with choices is given in the following,

p1=R1-(R4-R6,R2-(R1,R5),R3-R5)-R4-(R5,R6)
1 2 3 4 5 6 7 8 9 10 11

There are three choice steps in this plan. The first choice step is
that after R1 the part can go to any one of R4, R2 or R3, thus
leading to 3 choice branches which merge at second R4. The
second choice is that after R2 the part goes to either R1 or R5.
And the third choice is that after the second R4 the part goes to
either R5 or R6. The steps are sequentially numbered in the order
they are listed. If a part is at step 7, then its next step is 8. If a
part is at step 4, then its next step is 5 or 6.

Once the system is in operation, there will exist a set Q of
parts in the system at any given time. Each part q ∈ Q belongs to
a part type p ∈ P, denoted as Pq=p. Each part has a unique current
step, denoted as Sq, which can be considered as the state of the
part. The state of the system, denoted as n, is defined as a vector
of CR elements corresponding to all parts currently in the system.
An element of n has value 0 for an empty resource unit. The state
changes with parts flowing through the system, such as loading a
new part, unloading a finished part or transporting a part from one
resource to the next resource. When a new part q is first loaded
into the system, Sq = 1. A part q that has exited the system or is
still waiting for being loaded has Sq = 0.

For deadlock avoidance purpose, flexible manufacturing
systems can be modeled by a directed graph—called a wait
relation graph (WRG), which is constructed from all process
plans. The WRG G = (R, A) consists of a set R of vertices and a
set A of directed arcs. Each vertex represents a resource. A
directed arc a is drawn from vertex r1 to vertex r2, if r2

immediately follows r1 (including choices) in at least one process
plan, denoted as a= r1r2. So, a step has one or more arcs (called
choice arcs), corresponding to the current resource (vertex), called
tail, and one next resource for a non-choice step or more than one
next resources for a choice step, called head(s).

A subgraph G1 = (R1, A1) of G consists of a subset of the
vertices and a subset of arcs of G such that all the arcs in A1

connect vertices in R1. From graph theory, we know that a path is
defined to be a sequence of vertices r0r1r2…rk, and a circuit is a
path with r0 = rk. A circuit is simple if it does not contain any
other circuit. With choice introduced, we extend a circuit (except
for simple circuit) to be a subgraph that is strongly connected.

A part q is enabled in state n if any of its next resource(s) is
free. If part q is currently being processed in resource r1 and the
next free resource is r2, then q enabled means that once r1 finishes
its operation on q, the part can be transported or moved from r1 to
r2. A system state n is live if a sequence of part moves exists such
that the system can be emptied. Otherwise, the state is in
deadlock.

Deadlocks can be further categorized into two major types,
primary deadlock and impending deadlock. A system state n is in
primary deadlock if a circular wait situation exists [1]. A primary
deadlock can be understood as a siphon in the Petri net model of
the system becomes empty of tokens, or as a circuit in the digraph
model is filled with parts where no part is enabled. A system state
n is in impending deadlock if parts exist in the system that can be
moved; however, the system will inevitably enter a primary
deadlock after a finite number of part moves.

3. Circuits Analysis
Given a system digraph, there are existing methods that find

all simple circuits [7] [12]. In the following, we assume all simple
circuits are given as a set CS.

Several operations can be defined on circuits. The
intersection of two circuits c1 and c2, denoted as c1∩c2, is the
subgraph whose vertices and arcs are on both c1 and c2. The union
of two circuits c1 and c2, denoted as c1∪c2, is the subgraph whose
vertices and arcs are on c1 or c2. The union is said to be vertex
joined if the intersection of the two circuits has at least a vertex.

In the following, we will discuss how to find the set of
circuits necessary for deadlock avoidance—called deadlock
circuits (or DA) set, denoted as C.

Obviously, a choice arc can be on more than one simple
circuit and a simple circuit can have only one choice arc of any
choice step, but it can have more than one choice arc of different
choice steps. If all choice arcs a1, a2, …, ak of a choice step are on
k different simple circuits, c1, c2, …, ck, then the union circuit c =
c1∪c2∪…∪ck is called the choice circuit of the choice step and
the choice step is called the pivot of the choice circuit. A choice
circuit may have one or more choice steps other than the pivot.
The union of two choice circuits is said to be choice joined if the
intersection of two choice circuits has at least a choice arc from
each pivot.

Because of the introduction of choices, a choice arc may form
an escape path from a circuit. Such a circuit is called a broken
circuit.

Definition 3.1: A circuit is broken if there is a resource
(vertex) on the circuit where all choice steps using the resource as
a tail have at least one choice arc that is not on the circuit.

Simple circuits, choice circuits and more complicated circuits
can all be broken. This definition is rather complicated, examples
1-3 in the following will help clarify it.

Definition 3.2: A basic circuit is defined as a non-broken
circuit that does not contain any other non-broken circuit.

Basic circuits are the smallest deadlock units of a system
graph, let CB denote the set of all basic circuits of a system graph.
All other deadlock units can be formed by vertex joined union
circuits of basic circuits.

Theorem 3.1: A broken circuit c that does not contain any
basic circuit will not generate deadlock.

Proof: Because a choice arc a is not included by c, a part q
with a as a choice arc can always go along arc a, which means q
does not necessarily need a resource of c, then c can not form a
circular wait and thus can not generate a deadlock. ■

Given N (>1) different circuits all with the same set of
vertices c1 = (R1, A1), c2 = (R1, A2), …, and cN = (R1, AN), if A1 ⊂
Ak, A2 ⊂ Ak, …, Ak-1 ⊂ Ak, Ak+1 ⊂ Ak, …, AN ⊂ Ak, then ck is said
to be the supremal circuit among the N circuits. We also say that
ck covers every other circuits. So, if given two circuits c1, c2 and
c2 covers c1, then c1 and c2 have the same set of resources and c2

has all arcs of c1 and at least one more arc that c1 does not have.
Theorem3.2: Given two circuits c1 and c2, if c2 covers c1, then

c1 can be removed from the DA set C, that is, its space does not
need to be checked for deadlock avoidance.

Proof: Since c1 has the same resources but less arcs than c2,
so c2 has all order one knots and all commitments of c1 (defined
later) in any given state. Then the effective free space of c2 is less
than or equal to that of c1, thus all deadlocks avoided by space(c1)
> 0 are also avoided by space(c2) > 0. Therefore, c1 can be
removed from the DA set C for deadlock avoidance. ■

So, the DA set C of circuits necessary for deadlock avoidance
should include all basic circuits in CB not covered by and all

supremal or covering vertex joined union circuits of basic circuits.
So a circuit in C is either a basic circuit or a union circuit of two or
more basic circuits.

An algorithm for calculating the set of basic circuit and the
DA set C is under development for another paper. In the
following, we assume the DA set C is given.

Example 3.1. Figure 1 shows a simple manufacturing system
that makes three types of parts with one choice step {a1, a2}. The
simple circuits identified are c1 = ({r1, r2}, {a1, a3}) and c2 = ({r1,
r3}, {a2, a4}) and both are broken circuits. They do not have
deadlock individually. The only basic circuit for this system is the
non-broken choice circuit c3 = c1∪c2 = ({r1, r2, r3}, {a1, a2, a3,
a4}) since it includes both choice arcs a1 and a2. A deadlock
occurs if a part at the choice step r1 needs to move along either a1

or a2, a part at r2 moves along arc a3 and a part at r3 moves along
arc a4. Therefore, the DA set is C = CB = {c3}.

Example 3.2. A manufacturing system has a digraph as
shown in figure 2. The system makes two types of parts. The first
type of parts has a process plan p1 = r1-(r2, r5)-r3-r4. The second
type of parts has a process plan p2 = r4-r3-r2-r1. It is easy to
identify that the system graph consists of 4 simple circuits:

c1 = ({r1, r2}, {a1, a2}), c2 = ({r2, r3}, {a3, a4})
c3 = ({r3, r4}, {a5, a6}), c4 = ({r1, r2, r3, r5}, {a2, a4, a7, a8})

So, CS = {c1, c2, c3, c4}. Arcs a1 and a7 are choice arcs of the
choice step of p1.

Simple circuits c1 and c4 are both broken because of choice
arcs a1 and a7, c2 and c3 are non-broken. The only choice circuit
c5 = c1∪c4 is non-broken. So, CB = {c2, c3, c5}. Possible unions
are: c2∪c3, c2∪c5, c3∪c5, c2∪c3∪c5, but c2∪c5 covers c5 and
c2∪c3∪c5 covers c3∪c5. So C = {c2, c3, c2∪c3, c2∪c5, c2∪c3∪c5}.

Example 3.3. The system in figure 3(a) makes also three
types of parts, there exists two choice steps {a1, a2, a3} and {a4,
a5}. Four simple circuits are identified, c1, c2, c3 and c4. They are
all broken. Arcs a1, a2 and a3 are choices arcs of the choice step of
p1. Arcs a4 and a5 are choice arcs of the choice step of p3.
Although c1∪c2∪c3 includes all choice arcs of the choice step of
p1, it also includes a choice arc of the choice step of p3 but not all,
so it is broken. Similarly, c3∪c4 is also broken. The choice joined

union circuit that includes all choice arcs is c5 = c1∪c2∪c3∪c4 is
the only basic circuit. So C = CB = {c5}.

Figure 3(b) describes a manufacturing system that makes 4
types of parts, there are two choice steps {a1, a2, a3} and {a1, a2}.
Arcs a1 and a2 are choice arcs of the choice step of p4 and arcs a1,
a2 and a3 are choice arcs of the choice step of p1. Individually,
simple circuits c1, c2 and c3 are all broken. c6 = c1∪c2 is a basic
circuit since it includes both choice arcs of the choice step of p4

and c7 = c1∪c2∪c3 is also a basic circuit since it includes all three
choice arcs of the choice step of p1. CB = {c4, c5, c6, c7}. It can be
found that C = {c4, c5, c6, c7, c4∪c6, c5∪c6, c4∪c5∪c6, c4∪c7,
c5∪c7, c4∪c5∪c7}.

4. Space Calculation of Circuits
With choice introduced, commitment can no longer be

calculated based on arcs as in [14] and [9] because of existence of
choice arcs. Instead, they will be calculated with respect to a
circuit. If part q is at a choice step, then potentially q can move
along any one of the choice arcs. However, q will move along
only one of the choice arcs.

A unit of resource r1 that is processing a part q is said to be
committed to circuit c if q’s next resource is r2 and arc a = r1–r2 is
on c, or if q is at a choice step, then all choice arcs are on c. We
also say that q commits to circuit c. Let Mr,c,n denote the number
of units of resource r that are committed to circuit c when the
system is in state n.

Note that an empty unit is not committed and the total
number of units of a resource committed can be less than the
number of busy units. This happens when a busy unit is
processing a part at its last step. This unit is also not committed.
A unit of a resource that is on circuit c is free with respect to c if it
is not committed to c.

(b)
Figure 3. Circuits set calculation example

a1

a2

a3

c1

c2

c3

(a)

a1

a2

a3

a4

a5

c1

c4

c3

c2

c4

c5

Figure 1. Broken circuit example

a1

a2

a3

a4

c1

c2

a1

a2

a3

a4

a5

a6

a7 a8

Figure 2. Basic circuits example

c1 c2 c3

c4

The commitment can then be extended to the circuit c = (R1,
A1) as follows,

Mc,n = Σ Mr,c,n, for all r ∈ R1

Given the system in state n, the slack of a circuit c = (R1, A1),
denoted as Kc,n, is defined as

Kc,n = CR1 – Mc,n

The slack can be understood as the number of available free
resource units to allow for parts flow on the circuit.

Definition 4.1. Let c1, c2,…, cm, m > 1, be m component
basic circuits of a circuit c of C. If c1∩c2∩…∩cm contains only a
single capacity resource, then the resource is called a knot of c.

Given two circuit c1 and c2 of C, if k is a knot of c1 and c2 ⊃
c1, then k is also a knot of c2.

Definition 4.2: Given two component basic circuits c1 and c2

of a circuit c of C, with k = c1∩c2 being a knot. If in state n, there
exists a part on c that both has an arc of c1 ending at k in its
process plan and will commit to an arc of c2 starting at k, then c1 is
said to be connected to c2 with respect to c, denote as c1→c2. If
c1→c2 and c2→c1, then c1 and c2 are called cross-connected,
denoted as c1↔c2. If c has m component basic circuits c1, c2,…,
cm, with k = c1∩c2∩…∩cm being a knot, then c1, c2,…, cm are
cyclically connected if c1→c2, c2→c3, …, cm→c1.

Definition 4.3. Given a circuit c of C with knot k. The order
of knot k with respect to the circuit c in state n, denoted as Ok,c,n, is
defined as

Based on this definition, if c1 and c2, c2 ⊃ c1, are two circuits
of C and K={all knots of c1}. Then,

Ok,c2,n = Ok,c1,n, ∀ k∈K.
The order definition can be extended to a circuit. Let c be a

circuit that contains m knots, k1, k2, …, km. Then, the order of c is
given by

The order of a basic circuit is zero. Since a basic circuit
either does not contain any other component basic circuits or has
the intersection of the component basic circuits more than a node,
so it has no knot. This is not the case in [9] or [14].

Definition 4.4. Let c be a circuit of C in state n. The
effective free space of c, denoted as Fc,n, is given by,

Fc, n = Kc, n – Oc, n

Theorem 4.1. Let G be the WRG of a manufacturing system
and C be the DA set of of G. Then G is live in state n if Fc, n > 0,
∀c∈C.

Proof. This can be similarly proved as the corresponding
theorem on systems without choice in our previous work [9]. ■

As a sufficient condition for a system state to be live,
theorem 4.1 will be used as the basis for developing our deadlock
avoidance policy later.

Example 4.1. Consider the state given in figure 2 of example
2 where all parts A are of type p1 and all parts B are of type p2.
The commitment, order and space calculation for all circuits of C
of the system graph is shown in the table 1.

According to theorem 4.1, the given system state is in
deadlock since the last circuit has effective free space 0. And as a
matter of fact, the state is actually an impending deadlock or
second level deadlock [5].

Table 1. Commitment, order and space for example 4.1
c2 c3 c2∪c3 c2∪c5 c2∪c3∪c5

M 0 1 1 5 6

O 0 0 0 0 1

F 3 1 3 1 0

Example 4.2. Consider the state given in figure 3(b) of
example 3 where part B is of type p2 and all parts C are of type p3

and all parts D are of type p4. Selected circuits c5, c6 and c5∪c6

are calculated in table 2. If all other circuits of C have effective
free space > 0, then the given state is not in deadlock and the fact
is that it is not in deadlock.

Table 2. Commitment, order and space for example 4.2
c5 c6 c5∪c6

M 2 3 5

O 0 0 0

F 1 2 1

5. Deadlock Avoidance Policies
Based on the sufficient conditions established earlier, two

deadlock avoidance policies will be developed, which can be
applied to process controllers of actual manufacturing systems to
detect and avoid deadlocks. The difference of the two policies is
they evaluate order of a knot or circuit differently. Policy I uses a
lazy order evaluation and policy II uses an incremental order
evaluation.

Lazy order evaluation: Given m basic circuits c1, c2,…, cm

and c1∩c2∩…∩cm = k is a knot. The order of k is calculated as
one if there exist i > 1 circuits, say c1, c2,…, ci, such that there
exist a type of part that needs to visit c1 then c2, a type of part that
needs to visit c2 then c3, …, and a type of part that needs to visit ci

then c1; calculated as zero, otherwise.
Lazy order evaluation determines the order of a knot by

statically establishing cyclic connectedness among the basic
circuits joined by the knot so that orders can be calculated offline.
This evaluation implies as long as it is possible to have cyclic
connectedness in the future evolution of the system, the order is
set to one.

Policy I: Given the WRG G of a system starting from empty
of parts. Let C be the DA set of G, which can be calculated offline
or during system startup or initialization. The EFS of each circuit
in C is calculated based on lazy order evaluation. Then, a part
move is accepted only if after the part move, the EFS of all
affected circuits remain positive (Theorem 4.1).

Incremental order evaluation: Given m basic circuits c1,
c2,…, cm and c1∩c2∩…∩cm = k is a knot. The order of k is
initialized to zero and incrementally updated using definition 4.2
only when i) a part is loaded into the system and its process plan
has k; ii) a part is moved to k.

According to definition 4.2, loading a part may cause two
basic circuits to become connected and moving a part to a knot
may cause two basic circuits to become disconnected. Then only
when a part is loaded or moved to a knot, the order of the affected
circuits needs to be updated.

Policy II: Policy II is policy I, except that the EFS
calculation is based on incremental order evaluation.

Both policies need to calculate the DA set C of G, which
might be expensive but can be done offline. An efficient string
manipulation procedure to compute circuits was presented in [12].
[2], [4] and [5] have similar calculation to find all circuits or

Ok,c,n =
1, if two or more basic circuits intersecting at k

are cyclically connected.
0, otherwise.

Oc, n = Σ Oki, c, n
i=1

m

siphons. Let K be the set of knots of G, |pi| be the length of
process plan pi, i =1~|P|, where |P| is the number of process plans,
and L = Σ(|pi|,i=1~|P|). In general, it can be assumed that |K| << L.
Policy I can be computed in linear time (O(|C|)), since orders can
be established offline while calculating C. Policy II dynamically
calculates orders of knots and captures more dynamics of the
system, thus is more permissive but more expensive. However,
the incremental order calculation can be done in polynomial time.
Since the connectedness of two basic circuits c1 and c2 with c1∩c2

= k can be established by examining if arc r1→k→r2 (assume r1 on
c1 and r2 on c2) is contained in the process plan of all parts in the
system, but for all parts of the same type, this test needs only be
done once and the number of such tests is limited by the number
of process plans. There are at most |C|2 such pairs of basic
circuits. The computation needed to update connectedness among
all basic circuits is then in the order of O(|C|2 L). The cyclic
connectedness (thus the order) can then be established by checking
for connectedness among m basic circuits for all knots and the
computation is trivial compared to update connectedness. Then
policy II can be computed in polynomial time.

The deadlock avoidance algorithm will not allow any
deadlock state – called correct in the literature, this is guaranteed
by theorem 4.1. And it allows most live states with a very high
average permissiveness as shown in the simulation section.

6. Simulation

The deadlock avoidance policies have been implemented in
Java. Simulation has been run to calculate the state space allowed
by the deadlock avoidance method on several examples.
Simulation results show that the deadlock avoidance method is
indeed correct. The permissiveness, calculated as the number of
allowed live states by the algorithm against the actual number of
live states is obtained on these examples as given in the following.

Example 6.1: Consider the manufacturing cell shown in
figure 4 (A case study in [7]). The cell is composed of three
robots (R1, R2 and R3; each one can hold one product at a time)
and four machines (M1, M2, M3 and M4; each one can process
two products at a time). There are three loading buffers (named
I1, I2 and I3) and three unloading buffers (named O1, O2 and O3)
for loading and unloading the cell. The action area for robot R1 is
I1, O3, M1, M3); for robot R2 is I2, O2, M1, M2, M3, M4; and
for robot R3 is I3, O1, M2, M4.

The cell manufactures three types of products P1, P2 and P3,
as described in the following:

i) A raw product of type P1 is taken from I1 and is placed in
O1 once it has finished its processing. The sequence of operations
for this type is M1→M2 (i.e. treatment in M1 and then in M2) or
M3→M4 (treatment in M3 followed by treatment in M4).

ii) A raw product of type P2 is taken from I2, processed in
M2 and routed to O2.

iii) A raw product of type P3 is taken from I3, processed in
M4 followed by treatment in M3, and finally placed in O3.

The directed graph is shown is figure 5. The simple circuits
identified are labeled in figure 5.

Due to the choice step at R1, both simple circuit c1 and c6 are
broken. The choice circuit is c1∪c6 which is covered by c8 = c1

c1∪c6∪c2. So the set of basic circuits is CB = {c2, c3, c4, c5, c7,
c8}. Basic circuit c7 is covered by its supremal circuit
c3∪c4∪c5∪c7. After removing circuits covered by their
corresponding supremal circuits, the circuits set C is found to be,
C = { c2, c3, c4, c5, c8, c2∪c3, c2∪c5, c3∪c4, c3∪c5, c8∪c3, c8∪c5,
c2∪c3∪c4, c2∪c3∪c5, c8∪c3∪c4, c8∪c3∪c5, c3∪c4∪c5∪c7,
c2∪c3∪c4∪c5∪c7, c3∪c4∪c5∪c7∪c8}.

Simulation with policy II applied shows that 20801 live states
are allowed out of total 22019 live states. That corresponds to a
permissiveness as high as 20801/22019 = 94.5%.

More simulation results on examples given earlier are,
Apply to example 3.2, policy II allows 419 live states out of

total 445 live states. The permissiveness is 94.2%.
Apply to example 3.3(b), policy II allows 10930 live states

out of 11032 total live states. The permissiveness is calculated as
99.1%.

Apply to an example system without choice, example 6.1 in
[14], policy II has a permissiveness of 90.7%

In general, policy II allows more live states than [2] and [4].
Essentially, this is because the order evaluation captures more
parts flow dynamics, especially when there exist multiple knots.
Method [2] allows more states than [4]. However, even with the
one step look-ahead controller, method [2] still cannot guarantee
to avoid all deadlocks. Also, policy II performs better than [5]
when higher than second level deadlock exists.

7. Conclusions
A systematic circuit analysis for flexible manufacturing

systems with choice in part routing is presented in this paper.
Concepts of broken circuits, basic circuits and supremal circuits
are introduced. These concepts help to decrease number of
circuits for space checking thus increasing efficiency and to
increase permissiveness of our deadlock avoidance policy.
Definitions of commitment, order and effective free space of a
circuit [14][9] are all extended and refined to handle choice in part
routing. We found that basic circuits and knots in the WRG of a
manufacturing system are the rudimentary causes of deadlocks.
Especially, order one knots are essential to impending deadlocks –

Figure 4. The manufacturing cell for example 6.1

c1 c2 c3 c4

c5
c6 c7

Figure 5. Digraph for example 6.1

a type of deadlock more difficult to detect (The impending
deadlock one step away from primary deadlock is called second
level deadlock [5]). Based on the space calculation, a sufficient
condition is quantified for a system state to be live. Two deadlock
avoidance policies are established on this sufficient condition.
Several examples are simulated with the two policies applied.
Simulation results show that policy II is highly permissive and
provides more live states than results by related methods in the
literature. One disadvantage of the proposed method is that the
calculation of C might be expensive, which [2], [4] and [5] all
suffer. However, the calculation can be done off line. A well-
known string manipulation method for this calculation was given
in [12]. Also, the necessary condition has not yet been established
that may contribute to even higher permissiveness. Developing
the necessary condition will be one of our future research topics.

8. References
[1] Banaszak, Z. and B. Krogh, "Deadlock Avoidance in Flexible

Manufacturing Systems with Concurrently Competing Process
Flows," IEEE Trans. on Robotics and Auto., vol. 6, no. 6, 1990, pp.
724-733.

[2] Barkaoui, K., and I. B. Abdallah, “Deadlock Avoidance in FMS
Based on Structural Theory of Petri Nets,” IEEE Symposium On
Emerging Technologies and Factory Automation, V. 2, pp. 499-510,
1995.

[3] Cho, H., T.K. Kumaran, and R. Wysk, "Graph-Theoretic Deadlock
Detection and Resolution for Flexible Manufacturing Systems,"
IEEE Trans. on Robotics and Auto., vol. 11, no. 3, pp. 550-527.

[4] Ezpeleta, J., J. M. Colom, and J. Martinez, “A Petri Net Based
Deadlock Prevention Policy for Flexible Manufacturing Systems,”
IEEE Transactions on Robotics and Automation, V. 11, N. 2, pp.
173-184, April 1995.

[5] Fanti, M.P., Maione, B., Mascolo S., and Turchiano, B., “Event-
Based Feedback Control for Deadlock Avoidance in Flexible
Production Systems”, IEEE Trans. on Robotics and Auto., Vol. 13,
no. 6, 1997, pp. 347-363.

[6] Hsieh, F. and S. Chang, "Dispatching-driven deadlock avoidance
controller synthesis for flexible manufacturing systems," IEEE
Trans. Robotics and Auto., vol. 10, no. 2, 1994, pp. 196-209.

[7] Johnson, D. B., “Finding All The Elementary Circuits Of A Directed
Graph”, SIAM J. of Computing, Vol. 4, No. 1, 1975, pp. 77-84.

[8] Judd, R. P. and T. Faiz, "Deadlock Detection and Avoidance for a
Class of Manufacturing Systems," Proceedings of the 1995 American
Control Conference, pp. 3637-3641.

[9] Lipset, R., P. Deering, and R. P. Judd, "Necessary and Sufficient
Conditions for Deadlock in Manufacturing Systems," Proceedings of
the 1997 American Control Conference, vol. 2, pp. 1022-1026, June
1997, Albuquerque.

[10] Lawley, M. A., "Deadlock Avoidance for Production Systems with
Flexible Routing", IEEE Trans. on Robotics and Auto., Vol. 15, No.
3, 1999, pp. 497-509.

[11] Viswanadham, N., Y. Narahari, and T. Johnson, "Deadlock
Prevention and Deadlock Avoidance in Flexible Manufacturing
Systems Using Petri Net Models," IEEE Trans. on Robotics and
Auto., vol. 6, no. 6, 1990, pp. 713-723.

[12] Wysk, R., N. Yang and S. Joshi, "Detection of Deadlocks in Flexible
Manufacturing Cells", IEEE Trans. on Robotics and Automation,
Vol.7, No.6, 1991, pp.853-859.

[13] Xing, K., B. Hu and H. Chen, "Deadlock avoidance policy for Petri-
net modeling of flexible manufacturing systems with shared
resources," IEEE Transactions on Automatic Control., vol. 41, no. 2,
1996, pp. 289-295.

[14] Zhang, W., R. P. Judd and P. Paul, “Evaluating Order Of Circuits For
Deadlock Avoidance In A Flexible Manufacturing System”,
Proceedings of the 2003 American Control Conference, pp. 3679-
3683, June 2003, Denver.

[15] Zhou, M. and F. DiCesare, "Parallel and Sequential Mutual
Exclusion for Petri Net Modeling of Manufacturing Systems with
Shared Resources," IEEE Trans. on Robotics and Auto., vol. 7, no. 4,
1992, pp. 550-527.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP03.4
	Page0: 3333
	Page1: 3334
	Page2: 3335
	Page3: 3336
	Page4: 3337
	Page5: 3338

