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Robust Output Feedback Controller Design via Genetic
Algorithms and LMIs: The Mixed Hs/H., Problem

Gustavo J. Pereira and Humberto X. de éjoa

Abstract— This paper deals with the mixedH2/H control  output feedback control design problem for systems subject

problem for uncertain continuous-time linear systems. The to polytopic uncertainties cannot be reduced to a convex
polytopic parametric uncertainties are studied. Based on Ge- optimization problem.

netic Algorithms (GAs) and linear matrix inequalities (LMIs), L . . .
a hybrid algorithm is presented for numerical computation The last motivation, but not the least, is the interesting

of an optimal fixed-order static or dynamic output feedback Properties of the GAs [19] [21]. The underlying principles
robust controller. The genetic algorithm is used to obtain the of GAs were first published by Holland in 1962. GA can
population of controllers and the LMI based routines are  pe applied to a number of control methodologies for the
used to minimize some performance criterion. The problem improvement of the overall system performance. Previous

is formulated in terms of different Lyapunov functions. This . ) .
approach can be used for synthesis of reduced or full-order researches into this area include [6] [11] [16] [18]. In [6]

controllers. Some examples borrowed from the literature are [16] [18], GAs are used to solve the mixét; /H.. control

discussed to illustrate and validate this approach. problem for SISO systems using transfer functions. Some
related approaches to ours, developed in this work, can be
I. INTRODUCTION found in [11] [23].

Designing robust controllers with guaranteed perfor- This paper is Organized as follows. Section Il presents the
mance in the face of plant uncertainty has been the aiffiixed H2/Ho robust control problem. In Section IlI, the
of robust multivariable control theory over the last twohybrid algorithm based on GAs and LMis for obtaining a
decades. If there are uncertainties in the system modek sogplution to this problem is proposed. Some examples from
quantity combining thé{, norm and theH., norm can be the literature are discussed in Section IV.

a desirable measure of a system’s robust performance [29]. I
Thus the mixedHs/H, performance criterion provides an
interesting measure for evaluating controllers. The thgor

motivation for the mixeds/H, control problem has been
extensively discussed in [4] [10] [17] [24]. Some important

. MIXED Hs/Hoo ROBUST CONTROL PROBLEM

Consider an uncertain continuous-time linear system de-
scribed by the following state-space equations:

results about output feedback control can be found in [7] [8] i(t) = Az(t) + Biw(t) + Bau(t)

[14] [26] and the references therein. However, the general Zoo(t) = C12(t) + D1r1w(t) + Digu(t) (1)
mixed H, /M., robust control problem does not have yet a 23(t) = Cox(t) + Doyw(t) + Dogu(t)
closed-form solution except for special cases presented in y(t) = Cya(t) + Dyrw(t) + Dyou(t)

the literature. wherez(t) € R", u(t) € R™, y(t) € R?, z(t) € R,

. . . S
Ir_1 this work, a hybrid approach base_d on G_enetlc Al-Zg(t) € RP2, w(t) € RL. z(t) is referred to as the state(t)
gorithms (GAs) and LMIs in order to find an internally s ihe control inputy(t) is the sensor output..(¢) and

stgbilizing output feedback controller_ which solves theZQ(t) are the controlled outputs and(t) is the exogenous
mixed H» /M. robust control problem is proposed. input. All matrices are assumed to be real of appropriate
The first motivation for this work arises from the fact thegq known dimensions. Assume also that the matrides

mixed Hy/H., robust controller, in general, is not easy t05nd B» belong to the convex-bounded domains defined as
be designed. The mixeHs/H., problem was reduced to a

convex optimization problem by considering a formulation N N
with a common Lyapunov function in [3] [5] [15] [20] Di—d A A= A >0 2
[25], nevertheless this assumption results in some degree ' ;al 1,;% = 2)
of conservatism.

The second motivation comes from the change of variable M M
presented in [20] [25], developed to turn output feedbackp, _ J) g By = B:Bsi,y B;i=1,3>0%. (3)
specifications into LMIs. In this change of variable the v v ; 7o ; ! '

system matrices! and Bs are involved, thus the dynamic
Furthermore, suppose that all paitd, B2) and (C,, A)
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The mixedH,/H, robust control problem under consid-
eration can be formulated as follows. Consider a standard _ )
system block diagram on the figure 1. Dip=[Dip 0],i=12
= | Cy 0 = | Dy
7W > = Cy B |: 0 Incxnc :| ’ Dyl B |: O ’
G 4‘> Zoo

the investigated control law is given hy(¢) = Lxys(t),
with

Dk Ck
K = (m+ne)x(ptn)
Thus, the dynamic output feedback problem can be treat as
a static output feedback one.

where the uncertain plar@ is given by (1). The linear DefiningT._ ., (s) as the closed-loop transfer matrix from
time invariant (LTI) output feedback controll@é(s) can be @ 10 Zoo @Nd T, (s) the one fromw to 2, that is
represented in the state-space form by:

Fig. 1. Block Diagram.

n(t) _ AKn(t) +BKy(t) (4) Tzocw(s) = (C_(1D12_LKCy_)[SI (A—FBQ%/KCy)]__l
u(t) = Cgn(t)+ Dgy(t) ’ (B1+ BaLgDy1) + (D11 + D12Li Dy1)
where Ay € R"<*"<_ In this approach, the order. must Topuw(s) = (CaDapLiCy)[sI - (AJFB{LKC@/)L '
be fixed but the controller can be of reduced  n) or (B1 + BaLkDy1) + (Day + Do L Dy )
full-order (n. > n). Both G and K are real-rational and (10)
proper.
The resulting closed-loop system by dynamic outpuhe mixedH;/H. robust control problem under consider-
feedback is described by ation can be formulated as follows.
Find a proper, real-rational admissible robust controller
p(t) = Ajxs(t)+ Birw(t) Ly which minimizes the Hy norm || 7%, |2 subject to the
Zoo(t) = Chiyxs(t) + Dirjw(t) ) Hoo NOrmconstraint || 7, .||« < 7, for a given achievable
zo(t) = szfrf(t) + Dorjw(t) ° H o-norm bound v, for VA € D4 and VB, € Dp.
y(t) = Cypxs(t)+ Dyyw(t) Note that(Da; + Das L D,1) must be zero in order to
where guarantee that th& problem be properly posed. Although
this problem consider the minimization dff,.||2, our
approach allows to deal with a more general migeg/ H..
Ay [ A +§2é)KC BiCK } , performance cost the trade-off criterion:
K K
B1+ Ba D Dy Min O‘HTzoow”go + Bl Tz0ll3
Ciy = [Cit DzZDKC DipCk |, i=1.2, with & > 0 and 3 > 0 as defined in [12]. It is important to
Dy = [ i1 + DioDg Dy ] ,1=1,2, observe that thé{., norm constraint keeps the closed-loop
Cy = [C, 0], system internally stable under the action of uncertainties

. . . (VAEDA andVBeDB).
with A € D4 and B € Dp. Rewriting the equations (5) as  |n order to solve this problem we recall some standard
results inH, and H,, control theory. We first present the

ip(t) = Axgp(t) + Biw(t) + Bous(t) Ho problem in terms of LMIs.
zoo(t) = Cizp(t) + Diyw(t) + Dious(t) Using the bounded real lemma [7] [28] and the concept
2(t) = Cazs(t) + Doyw(t) + Dagus(t) , (7) of quadratic stability [5], theH., constraint is equivalent
y(t) = Cyzs(t) + Dyrw(t) to the existence of a unique solutiof,, = XZ > 0 that
ys(t) = Cyas(t) + Dyrw(t) satisfies the matrix inequality
where
A X + XA B Xoo C
- A 0 = By foo f 1f
A= [ 0 O } , Br = [ 0 } ; ( B —I DlTlf <0, (12
CriooXoo Duy  —*I

= By 0 -~ . for all vertices(4;, Byj),i =1,2...N andj =1,2... M,
= [ } Ci=[G 0],i=12,®) 4 gefined in (2) and (3).
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Now consider thé<{, performance measure [5] [14] with- subject to uncertainties. In the change of variable intocedu
out taking into account th&{,, norm constraint. Supposing in [25] using matricesk and.S, the system matriced and
that the output feedback controllér is computed in such B, are involved, hence certain limitations are imposed on
a way thatA; is asymptotically stable, thé{, norm of extending this result to deal with control synthesis proble

T.,.(s) can be calculated by [9]: for polytopic uncertain systems. Relaxing this assumgtion
the design of both reduced and full-order controller can als
1Ty (5)15 = Trace(CgfLCCZTf), (13) be considered in an unified state-space framework by our
. . approach.
where L. = LT > 0 is the solution of the Lyapunov PP
equation 1. GAS AND LMI s BASED OPTIMIZATION APPROACH
In this section we introduce a hybrid design procedure
T T _
ApLe+ LeAy + By By = 0. (14) of robust output feedback controller for solving the mixed

Therefore, for the uncertain plan® described in (5), H2/Ho control problem presented in the precedent section.
|T.00ll3 < Tmce(CQfXQCQTf) for any X, = X1 > 0 The hybrid procedure we proposed combines the reliability

such that properties of the Genetic Algorithms [19] [21] and their
typical search heuristics with the accuracy and efficiency
ApXy+ X2A7 + BiyBl; <0 (15)  of LMI solving methods [5] [22].

Based on GAs and LMIs this algorithm searches an opti-
X i X . mal robust controllet.x (9) and consequently determines
As earlier, this problem is not tractable unless requirimey t X, > 0 and X, > 0 that solve the optimization problem
o0

same Lyapunov matrix; > 0 (quadratic stability) in (15). (16) satisfying (17)-(19). Thus, our algorithm works with a
It is worth noticing that the inequalities (12) and (15) arepopulation of candidate solutionsy (individuals).

LMIs for fixed controller L, andy. This choice has been made in order to decrease the

This "?ads o the f(_)llowing suboptimal matrix inequ‘"""tyalgorithm required computation effort. Hence, the optamniz
formulation for our mixedi /T robust control problem: oy can e achieved via the genetic operators, selection,

crossover and mutation, applying only to tlig; popu-

for all matrices(A4;, By;),i=1,2...Nandj =1,2... M.

Min Trace(Caos X2C3}) lation, instead of Lyapunov matrices. Many works based
X2 >0,X00 >0, Lk (16) on Lyapunov's method found in the literature [11] [23]
s.t. [27] adopt jointly the Lyapunov matrices and the controller
parameters as individual to compose the GA population.
Mo Xoo + Xoo(Mar)t My; XM At each generation the optimization problem (16) is
* -1 MdT <0, (17) solved for all candidate individualg ;; of the population
* * —72I using the Matlab package LMI-Lab [12]. Remember that
for fixed Ly = [lij](m+nc)><(p+nc) the mixed Hs/H oo
Moy X5 + Xo Mgy, + My; My <0, (18)  robust control problem (17)-(19) is convex. The, norm
constrainty is given but nevertheless the more general
Doy +D22LKDy1 —0. (19) mixed H2/Hoo robust control proble.m defined with the
performance cost (11) and constraints (17)-(19) can be
where solved with this algorithm.

A simple genetic algorithm for mixed{s/H., robust

Mo = Ai + Baj Lk Cy control problem is described as follows.

My; = 531 + Boj Lk Dy

20 e e
M. =C1 + Di2LkCy (20) A. Initialization
Ma = Dy + Di2Lk Dy Our genetic algorithm works with a float point represen-
withi=1,2...Nandj=1,2... M. tation for the population, i.e., the parameters themselves

This problem is not jointly convex in the variablesThe individuals Lx are created randomly. Unlike other
(X2, X, Lg), but it is still convex for a fixed controller GAs, some solutions may be infeasible in this case. An
L. This performance criterion gives an upper bound of thé i is said to be infeasible if it does not fulfill the LMI
optimalH, performance subject to tHé., norm constraint. constraints (17)-(19). Therefore, every time an individua

It is important to point out that our approach does nof.x (controller) is generated or changed, it's necessary to
require the hypothesis of common Lyapunov matri&gs=  guarantee its feasibility, otherwisky is discarded. This
X. This reduces the conservatism and provides bettproceeding goes on until the number of individual of the
results. Furthermore, the usual change of variable negessaopulation is reached. The search domain for the parameters
to recast the mixe@{, and’H ., problem as a LMI problem [;;, Vi, Vj, cover by this algorithm must be limited. The GA
[20] [25] can also be eliminated. It allows to readily solveemployed in this work adopt an elitist strategy, in which at
the dynamic or static output feedback control case for planeach generation the individual with worst fitness value is
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replaced by the one with best fithess value from the last The modified arithmetic crossover operator is not only a
generation. It stops when a fixed number of generatiorsmple convex combination between two current individu-
N7 is achieved or when the value returned by the fitnesals, but an exchanging of genetic information of heuristic
function remains constant for a number of generations. nature:

B. Objective and Fitness Function

L = T
The objective (cost) function provides the mechanism for Lkt = (aLkiCrXar + (1 — @) LkaCr X2)Cy
evaluating each individual . We consider two differents (Cr(aXig+ (1 - Q)Xﬂ)OfT)ﬂ (25)
objective functions. The first one uses thg norm: Lis = ((1—a)LCrXo + aLmeXﬂ)C?
J(Lg) = Min TTaC@(CQfXQCQTf) (Cr((1 — a)Xo1 + aX22)CJ7;)*1’
X2>0,X00 >0 - @) hereC,r — € Dol Xo and Xu are the
subject to (17) — (19) ! 2 + Do LgCy, Xo1 22

Lyapunov matrices solutions to the mixéd, /H., convex
The second one minimizes a trade-off criterion (11): problem (17)-(19) for the fixed controlletsy; and Lo,
respectively, andv is a randomly generated number in the
range 0 to 1.Lx; and Lxo are the two new offspring.

_ ; 2 T
X ;](OL? _>]V£Z: ~0 y” + fTrace(CorX>Cop) To guarantee feasibility of the two new offspring, this
2 y <X oo ) 1
subject to (17) — (19) procedure can be repeated up to 5 times.
(22) E. Mutation

To maintain uniformity over different problems, we use the S ) ) )
fitness function to rescale the objective function. In this After crossover, each individual is subjected to mutation

work. the fitness function is defined as with a given probability. The mutation operator used in this
book is similar to that one of classic genetic algorithms
using real numbers. The mutation operator performed on a

fitness(Li) = single individual L is defined as

1

1+ /J(Lk) 23)
Minimizing the objective function/ (L) is equivalent to o
getting a maximum fitness value i§1 th()a gengtic search. No Li = Li + plxo (26)
penalty functions are used in this algorithm. where L is a random matrix with all entries uniformly

, chosen in[—1,1], p is a positive real constant anty is
C. Sdlection the mutated individual.

Based on the principle of survival of the fithess, some

individuals are selected to populate the next generatiba. TF. GA Parameters
selection is executed based on "roulette wheel’method [21] The fo”owing parameters were used:

D. Crossover o Lij € [=Lij, Ljl; -

« Heuristic crossover probability.;, = 0.3;
« Arithmetic crossover probability., = 0.8;
o Mutation probabilityp,, = 0.1;

Selected individuals are then recombined, through a
crossover operation, with a crossover probability, by mxi
and matching genetic information between pairs of indi-
viduals contained in the current population. Two types of
crossover are used: heuristic and modified arithmetic.

The heuristic operator generates a single offspiing
from two current parentd i, and Lgo according to the
following rule:

These parameters are empiric, and were obtained after
many simulations. The others parameters (population size,
number of generationV; and l_ij) are different for each
problem.

_ ) IV. EXAMPLES
Lx =7r(Lgs — Lg1) + Lko, 4 ,
K (L2 K1) ke (24) Example 1. Borrowed from [13], it represents the model

wherer is a random number chosen(iin 1], and the parent of the linearized dynamic equation of the VTOL helicopter.
Lo is not worst thanl i1, thatis,J(Lk1) > J(Lk2). The In [13], only the optimalH. control by output feedback is
heuristic crossover is a special operator which uses valuesnsidered. The matrices are
Or]: the objhecltlvg functl_(t))T |? de;(_ermmmg the direction of —0.0366  0.0271  0.0188 —0.4555
the search. It is possible for this operator to generate an 0.0482 —1.0100 0.0024 —4.0208
offspring which is not feasible. In this case another random A =

. . . 0.1002 aso —0.7070 a34
valuer is chosen and another offspring is created. If after 3 0 0 1 0
attempts no new candidate solution is feasible, the parents
are crossed by using the modified arithmetic crossover. whereass € [—0.6319,1.3681]; a34 € [1.22,1.62]
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—0.4422 —0.1761 0
_ bo1 7.5922 r |1

By = 55200 —44900 |*C = | o |
0 0 0

whereby; € [2.7446,4.3446] and

I 0
By = 14, 02:< S),D222(12>7D21=0,

Dy =0, Dyp =0, Cy =14, D11 =0, D12 =0.

Setting N; = 10 and with a population of 10 individuals

and n, = 2, the algorithm finds the dynamic output
feedback controller
A, — [ ~T1164 41802 B, _ [ 324228
E=\ 45548 —415504 ) K =\ 23.3667
oo — ( 157138 24.5692 Do 49199
K=\ —37.8062 —26.8280 ) K =\ —7.0081

V. CONCLUSION

In this work, the mixedHs/H, robust control problem
has been addressed. An algorithm based on GAs and LMIs
has been proposed to find a fixed structure output feedback
robust controller which minimizes aH, performance cost
subject toH., norm constraint. The near mixets/H oo
robust optimal design is achieved by genetic operations and
LMI based routines. Simulations results indicate that this
approach can offer an effective and simple method to solve
the open mixedHs/H., robust control problem.

The proposed algorithm is suitable for full-order or
reduced-order dynamic output controller design. In this
approach the assumptiok, = X, is not required re-
ducing the conservatism and allowing better solutions. It
is important to note that the genetic operators are applied
only to the gain matriced.x. Hence this implementation
can present less computation burden.

Due to the properties of this approach, additional per-
formance constraints could be incorporated to the mixed
H2/Hoo problem (multiobjective synthesis), for example,
the performance requirements which can be reached by
pole placement. This method can be applied to the design

and the associated guaranteed doft|3 = 18.9888 and
||H|| = 18.9714. Designing a quadratic stabilizing output
feedback in order to compare our results to those obtained
[13], we found L = [1.0032, —10.0781]7 and the associ-
ated guaranteed cogH ||2 = 18.8209, with N; = 10 and a
population size 20. In [13], the optimal solution provided i
Lk = [—1.0086,6.1051]" and associated guaranteed costyy
| H 3 = 20.2509.

Example 2. Consider the following system discussed in

2]: [2]

0 1 0
A_(—l 0>,Bg_<1>,cy_(0 1), [3]

1 1 0 4l
B12=I2,Bloo:<0),c2=<0 0),

(5]
Ci=(0 1), Dy=|" 0
1 ) 22 1 .
Instead of having just one perturbatian there are two [7]
different perturbations, represented ty (H> Norm ) and

Weo (Hse NOrm). The system becomes: 8]

T = Az + Biawg + BiooWe + Bau

9
29 = Cox + Daous (27) el
Zoo = Ch
y=Cyr [10]

The GA begins by randomly generating population of 20
individuals. After 10 generations, the output feedback-con
trol was Lx = [—3.4176] with associated normgH||, = [11]
1.5651 and [|H|l = 1.0000. In [2], the results were [y
Ly = [-0.8165], ||[H||2 = 1.5651 and || H||», = 1.3416.

of control laws for discrete systems subject to state and
control constraints [1]. Future work will be dedicated in

this direction. The results of this work can also be readily
extended to the state feedback case.
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