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Abstract— This paper deals with the mixedH2/H∞ control
problem for uncertain continuous-time linear systems. The
polytopic parametric uncertainties are studied. Based on Ge-
netic Algorithms (GAs) and linear matrix inequalities (LMIs),
a hybrid algorithm is presented for numerical computation
of an optimal fixed-order static or dynamic output feedback
robust controller. The genetic algorithm is used to obtain the
population of controllers and the LMI based routines are
used to minimize some performance criterion. The problem
is formulated in terms of different Lyapunov functions. This
approach can be used for synthesis of reduced or full-order
controllers. Some examples borrowed from the literature are
discussed to illustrate and validate this approach.

I. I NTRODUCTION

Designing robust controllers with guaranteed perfor-
mance in the face of plant uncertainty has been the aim
of robust multivariable control theory over the last two
decades. If there are uncertainties in the system model, some
quantity combining theH2 norm and theH∞ norm can be
a desirable measure of a system’s robust performance [29].
Thus the mixedH2/H∞ performance criterion provides an
interesting measure for evaluating controllers. The theoretic
motivation for the mixedH2/H∞ control problem has been
extensively discussed in [4] [10] [17] [24]. Some important
results about output feedback control can be found in [7] [8]
[14] [26] and the references therein. However, the general
mixedH2/H∞ robust control problem does not have yet a
closed-form solution except for special cases presented in
the literature.

In this work, a hybrid approach based on Genetic Al-
gorithms (GAs) and LMIs in order to find an internally
stabilizing output feedback controller which solves the
mixedH2/H∞ robust control problem is proposed.

The first motivation for this work arises from the fact the
mixedH2/H∞ robust controller, in general, is not easy to
be designed. The mixedH2/H∞ problem was reduced to a
convex optimization problem by considering a formulation
with a common Lyapunov function in [3] [5] [15] [20]
[25], nevertheless this assumption results in some degree
of conservatism.

The second motivation comes from the change of variable
presented in [20] [25], developed to turn output feedback
specifications into LMIs. In this change of variable the
system matricesA andB2 are involved, thus the dynamic
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output feedback control design problem for systems subject
to polytopic uncertainties cannot be reduced to a convex
optimization problem.

The last motivation, but not the least, is the interesting
properties of the GAs [19] [21]. The underlying principles
of GAs were first published by Holland in 1962. GA can
be applied to a number of control methodologies for the
improvement of the overall system performance. Previous
researches into this area include [6] [11] [16] [18]. In [6]
[16] [18], GAs are used to solve the mixedH2/H∞ control
problem for SISO systems using transfer functions. Some
related approaches to ours, developed in this work, can be
found in [11] [23].

This paper is organized as follows. Section II presents the
mixed H2/H∞ robust control problem. In Section III, the
hybrid algorithm based on GAs and LMIs for obtaining a
solution to this problem is proposed. Some examples from
the literature are discussed in Section IV.

II. M IXED H2/H∞ ROBUST CONTROL PROBLEM

Consider an uncertain continuous-time linear system de-
scribed by the following state-space equations:















ẋ(t) = Ax(t) + B1w(t) + B2u(t)
z∞(t) = C1x(t) + D11w(t) + D12u(t)
z2(t) = C2x(t) + D21w(t) + D22u(t)
y(t) = Cyx(t) + Dy1w(t) + Dy2u(t)

, (1)

wherex(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p, z∞(t) ∈ <p1 ,
z2(t) ∈ <p2 , w(t) ∈ <l. x(t) is referred to as the state,u(t)
is the control input,y(t) is the sensor output,z∞(t) and
z2(t) are the controlled outputs andw(t) is the exogenous
input. All matrices are assumed to be real of appropriate
and known dimensions. Assume also that the matricesA
andB2 belong to the convex-bounded domains defined as

DA =

{

A;A =
N

∑

i=1

αiAi,
N

∑

i=1

αi = 1, αi ≥ 0

}

(2)

DB =







B2;B2 =
M
∑

j=1

βjB2j ,
M
∑

j=1

βj = 1, βj ≥ 0







. (3)

Furthermore, suppose that all pairs(A,B2) and (Cy, A)
are stabilizable and detectable, respectively, and without any
loss of generality,Dy2 = 0. No assumptions are necessary
about singular plants withjw-axis zeros or rank deficiencies
in matricesD.



The mixedH2/H∞ robust control problem under consid-
eration can be formulated as follows. Consider a standard
system block diagram on the figure 1.
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Fig. 1. Block Diagram.

where the uncertain plantG is given by (1). The linear
time invariant (LTI) output feedback controllerK(s) can be
represented in the state-space form by:

{

η̇(t) = AKη(t) + BKy(t)
u(t) = CKη(t) + DKy(t)

, (4)

whereAK ∈ <nc×nc . In this approach, the ordernc must
be fixed but the controller can be of reduced (nc < n) or
full-order (nc ≥ n). Both G and K are real-rational and
proper.

The resulting closed-loop system by dynamic output
feedback is described by















ẋf (t) = Afxf (t) + B1fw(t)
z∞(t) = C1fxf (t) + D11fw(t)
z2(t) = C2fxf (t) + D21fw(t)
y(t) = Cyfxf (t) + Dy1w(t)

, (5)

where

Af =

[

A + B2DKCy B2CK

BKCy AK

]

,

B1f =

[

B1 + B2DKDy1

BKDy1

]

, (6)

Cif =
[

Ci + Di2DKCy Di2CK

]

, i = 1, 2,

Di1f =
[

Di1 + Di2DKDy1

]

, i = 1, 2,

Cyf =
[

Cy 0
]

,

with A ∈ DA andB ∈ DB . Rewriting the equations (5) as























ẋf (t) = Āxf (t) + B̄1w(t) + B̄2us(t)
z∞(t) = C̄1xf (t) + D11w(t) + D̄12us(t)
z2(t) = C̄2xf (t) + D21w(t) + D̄22us(t)
y(t) = Cyxf (t) + Dy1w(t)
ys(t) = C̄yxf (t) + D̄y1w(t)

, (7)

where

Ā =

[

A 0
0 0nc×nc

]

, B̄1 =

[

B1

0

]

,

B̄2 =

[

B2 0
0 Inc×nc

]

, C̄i =
[

Ci 0
]

, i = 1, 2, (8)

D̄i2 =
[

Di2 0
]

, i = 1, 2,

C̄y =

[

Cy 0
0 Inc×nc

]

, D̄y1 =

[

Dy1

0

]

,

the investigated control law is given byus(t) = LKys(t),
with

LK =

[

DK CK

BK AK

]

∈ <(m+nc)×(p+n). (9)

Thus, the dynamic output feedback problem can be treat as
a static output feedback one.

DefiningTz∞w(s) as the closed-loop transfer matrix from
w to z∞ andTz2w(s) the one fromw to z2, that is

Tz∞w(s) = (C̄1D̄12LKC̄y)[sI − (Ā + B̄2LKC̄y)]−1

(B̄1 + B̄2LKD̄y1) + (D11 + D̄12LKD̄y1)

Tz2w(s) = (C̄2D̄22LKC̄y)[sI − (Ā + B̄2LKC̄y)]−1

(B̄1 + B̄2LKD̄y1) + (D21 + D̄22LKD̄y1)

(10)

the mixedH2/H∞ robust control problem under consider-
ation can be formulated as follows.

Find a proper, real-rational admissible robust controller
LK which minimizes the H2 norm ‖Tz2w‖2 subject to the
H∞ norm constraint ‖Tz∞w‖∞ < γ, for a given achievable
H∞-norm bound γ, for ∀A ∈ DA and ∀B2 ∈ DB .

Note that(D21 + D̄22LKD̄y1) must be zero in order to
guarantee that theH2 problem be properly posed. Although
this problem consider the minimization of‖Tz2w‖2, our
approach allows to deal with a more general mixedH2/H∞

performance cost the trade-off criterion:

Min α‖Tz∞w‖
2
∞

+ β‖Tz2w‖
2
2

LK
(11)

with α > 0 andβ > 0 as defined in [12]. It is important to
observe that theH∞ norm constraint keeps the closed-loop
system internally stable under the action of uncertainties
(∀A ∈ DA and∀B ∈ DB).

In order to solve this problem we recall some standard
results inH2 andH∞ control theory. We first present the
H∞ problem in terms of LMIs.

Using the bounded real lemma [7] [28] and the concept
of quadratic stability [5], theH∞ constraint is equivalent
to the existence of a unique solutionX∞ = XT

∞
> 0 that

satisfies the matrix inequality





AfX∞ + X∞AT
f B1f X∞CT

1f

BT
1f −I DT

11f

C1f∞X∞ D11f −γ2I



 < 0, (12)

for all vertices(Ai, B2j), i = 1, 2 . . . N andj = 1, 2 . . . M ,
as defined in (2) and (3).



Now consider theH2 performance measure [5] [14] with-
out taking into account theH∞ norm constraint. Supposing
that the output feedback controllerLK is computed in such
a way thatAf is asymptotically stable, theH2 norm of
Tz2w(s) can be calculated by [9]:

‖Tz2w(s)‖2
2 = Trace(C2fLcC

T
2f ), (13)

where Lc = LT
c > 0 is the solution of the Lyapunov

equation

AfLc + LcA
T
f + B1fBT

1f = 0. (14)

Therefore, for the uncertain plantG described in (5),
‖Tz2w‖

2
2 ≤ Trace(C2fX2C

T
2f ) for any X2 = XT

2 > 0
such that

AfX2 + X2A
T
f + B1fBT

1f < 0 (15)

for all matrices(Ai, B2j), i = 1, 2 . . . N andj = 1, 2 . . . M .
As earlier, this problem is not tractable unless requiring the
same Lyapunov matrixX2 > 0 (quadratic stability) in (15).
It is worth noticing that the inequalities (12) and (15) are
LMIs for fixed controllerLK andγ.

This leads to the following suboptimal matrix inequality
formulation for our mixedH2/H∞ robust control problem:

Min Trace(C2fX2C
T
2f )

X2 > 0,X∞ > 0, LK

s.t.
(16)





MakX∞ + X∞(Mak)T Mbj X∞MT
c

∗ −I MT
d

∗ ∗ −γ2I



 < 0, (17)

MakX2 + X2M
T
ak + MbjM

T
bj < 0, (18)

D21 + D̄22LKD̄y1 = 0. (19)

where

Mak = Āi + B̄2jLKC̄y

Mbj = B̄1 + B̄2jLKD̄y1

Mc = C̄1 + D̄12LKC̄y

Md = D1 + D̄12LKD̄y1

, (20)

with i = 1, 2 . . . N and j = 1, 2 . . . M .
This problem is not jointly convex in the variables

(X2,X∞, LK ), but it is still convex for a fixed controller
LK . This performance criterion gives an upper bound of the
optimalH2 performance subject to theH∞ norm constraint.

It is important to point out that our approach does not
require the hypothesis of common Lyapunov matricesX2 =
X∞. This reduces the conservatism and provides better
results. Furthermore, the usual change of variable necessary
to recast the mixedH2 andH∞ problem as a LMI problem
[20] [25] can also be eliminated. It allows to readily solve
the dynamic or static output feedback control case for plants

subject to uncertainties. In the change of variable introduced
in [25] using matricesR andS, the system matricesA and
B2 are involved, hence certain limitations are imposed on
extending this result to deal with control synthesis problem
for polytopic uncertain systems. Relaxing this assumptions,
the design of both reduced and full-order controller can also
be considered in an unified state-space framework by our
approach.

III. GA S AND LMI S BASED OPTIMIZATION APPROACH

In this section we introduce a hybrid design procedure
of robust output feedback controller for solving the mixed
H2/H∞ control problem presented in the precedent section.
The hybrid procedure we proposed combines the reliability
properties of the Genetic Algorithms [19] [21] and their
typical search heuristics with the accuracy and efficiency
of LMI solving methods [5] [22].

Based on GAs and LMIs this algorithm searches an opti-
mal robust controllerLK (9) and consequently determines
X2 > 0 and X∞ > 0 that solve the optimization problem
(16) satisfying (17)-(19). Thus, our algorithm works with a
population of candidate solutionsLK (individuals).

This choice has been made in order to decrease the
algorithm required computation effort. Hence, the optimiza-
tion can be achieved via the genetic operators, selection,
crossover and mutation, applying only to theLK popu-
lation, instead of Lyapunov matrices. Many works based
on Lyapunov’s method found in the literature [11] [23]
[27] adopt jointly the Lyapunov matrices and the controller
parameters as individual to compose the GA population.

At each generation the optimization problem (16) is
solved for all candidate individualsLK of the population
using the Matlab package LMI-Lab [12]. Remember that
for fixed LK = [lij ](m+nc)×(p+nc) the mixed H2/H∞

robust control problem (17)-(19) is convex. TheH∞ norm
constraint γ is given but nevertheless the more general
mixed H2/H∞ robust control problem defined with the
performance cost (11) and constraints (17)-(19) can be
solved with this algorithm.

A simple genetic algorithm for mixedH2/H∞ robust
control problem is described as follows.

A. Initialization

Our genetic algorithm works with a float point represen-
tation for the population, i.e., the parameters themselves.
The individuals LK are created randomly. Unlike other
GAs, some solutions may be infeasible in this case. An
LK is said to be infeasible if it does not fulfill the LMI
constraints (17)-(19). Therefore, every time an individual
LK (controller) is generated or changed, it’s necessary to
guarantee its feasibility, otherwiseLK is discarded. This
proceeding goes on until the number of individual of the
population is reached. The search domain for the parameters
lij ,∀i,∀j, cover by this algorithm must be limited. The GA
employed in this work adopt an elitist strategy, in which at
each generation the individual with worst fitness value is



replaced by the one with best fitness value from the last
generation. It stops when a fixed number of generations
NI is achieved or when the value returned by the fitness
function remains constant for a number of generations.

B. Objective and Fitness Function

The objective (cost) function provides the mechanism for
evaluating each individualLK . We consider two differents
objective functions. The first one uses theH2 norm:

J(LK) = Min Trace(C2fX2C
T
2f )

X2 > 0,X∞ > 0
subject to (17) − (19)

. (21)

The second one minimizes a trade-off criterion (11):

J(LK) = Min αγ2 + βTrace(C2fX2C
T
2f )

X2 > 0,X∞ > 0, γ > 0
subject to (17) − (19)

.

(22)
To maintain uniformity over different problems, we use the
fitness function to rescale the objective function. In this
work, the fitness function is defined as

fitness(LK) =
1

1 +
√

J(LK)
(23)

Minimizing the objective functionJ(LK) is equivalent to
getting a maximum fitness value in the genetic search. No
penalty functions are used in this algorithm.

C. Selection

Based on the principle of survival of the fitness, some
individuals are selected to populate the next generation. The
selection is executed based on ”roulette wheel”method [21].

D. Crossover

Selected individuals are then recombined, through a
crossover operation, with a crossover probability, by mixing
and matching genetic information between pairs of indi-
viduals contained in the current population. Two types of
crossover are used: heuristic and modified arithmetic.

The heuristic operator generates a single offspringL̄K

from two current parentsLK1 and LK2 according to the
following rule:

L̄K = r(LK2 − LK1) + LK2, (24)

wherer is a random number chosen in[0, 1], and the parent
LK2 is not worst thanLK1, that is,J(LK1) ≥ J(LK2). The
heuristic crossover is a special operator which uses values
of the objective function in determining the direction of
the search. It is possible for this operator to generate an
offspring which is not feasible. In this case another random
valuer is chosen and another offspring is created. If after 3
attempts no new candidate solution is feasible, the parents
are crossed by using the modified arithmetic crossover.

The modified arithmetic crossover operator is not only a
simple convex combination between two current individu-
als, but an exchanging of genetic information of heuristic
nature:

L̄k1 = (αLk1CfX21 + (1 − α)Lk2CfX22)C
T
f

(Cf (αX12 + (1 − α)X22)C
T
f )−1 (25)

L̄k2 = ((1 − α)Lk1CfX21 + αLk2CfX22)C
T
f

(Cf ((1 − α)X21 + αX22)C
T
f )−1,

where Cf = C̄2 + D̄22LKC̄y, X21 and X22 are the
Lyapunov matrices solutions to the mixedH2/H∞ convex
problem (17)-(19) for the fixed controllersLK1 and LK2,
respectively, andα is a randomly generated number in the
range 0 to 1.L̄K1 and L̄K2 are the two new offspring.
To guarantee feasibility of the two new offspring, this
procedure can be repeated up to 5 times.

E. Mutation

After crossover, each individual is subjected to mutation
with a given probability. The mutation operator used in this
book is similar to that one of classic genetic algorithms
using real numbers. The mutation operator performed on a
single individualLK is defined as

L̄K = LK + ρLK0 (26)

whereLK0 is a random matrix with all entries uniformly
chosen in[−1, 1], ρ is a positive real constant and̄LK is
the mutated individual.

F. GA Parameters

The following parameters were used:

• lij ∈ [−l̄ij , l̄ij ];
• Heuristic crossover probabilitypch = 0.3;
• Arithmetic crossover probabilitypca = 0.8;
• Mutation probabilitypm = 0.1;
• ρ = 1;

These parameters are empiric, and were obtained after
many simulations. The others parameters (population size,
number of generationNI and l̄ij) are different for each
problem.

IV. EXAMPLES

Example 1. Borrowed from [13], it represents the model
of the linearized dynamic equation of the VTOL helicopter.
In [13], only the optimalH2 control by output feedback is
considered. The matrices are

A =









−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 a32 −0.7070 a34

0 0 1 0









wherea32 ∈ [−0.6319, 1.3681]; a34 ∈ [1.22, 1.62]



B2 =









−0.4422 −0.1761
b21 7.5922

5.5200 −4.4900
0 0









, CT
y =









0
1
0
0









,

whereb21 ∈ [2.7446, 4.3446] and

B1 = I4, C2 =

(

I4

0

)

, D22 =

(

0
I2

)

, D21 = 0,

Dy1 = 0, Dy2 = 0, C1 = I4, D11 = 0, D12 = 0.

SettingNI = 10 and with a population of 10 individuals
and nc = 2, the algorithm finds the dynamic output
feedback controller

AK =

(

−7.1164 −4.1802
4.5548 −41.5504

)

, BK =

(

32.4228
23.3667

)

CK =

(

15.7138 24.5692
−37.8962 −26.8289

)

,DK =

(

4.9199
−7.0081

)

and the associated guaranteed cost‖H‖2
2 = 18.9888 and

‖H‖∞ = 18.9714. Designing a quadratic stabilizing output
feedback in order to compare our results to those obtained in
[13], we foundLK = [1.0032,−10.0781]T and the associ-
ated guaranteed cost‖H‖2

2 = 18.8209, with NI = 10 and a
population size 20. In [13], the optimal solution provided is
LK = [−1.0086, 6.1051]T and associated guaranteed cost
‖H‖2

2 = 20.2509.
Example 2. Consider the following system discussed in

[2]:

A =

(

0 1
−1 0

)

, B2 =

(

0
1

)

, Cy =
(

0 1
)

,

B12 = I2, B1∞ =

(

1
0

)

, C2 =

(

1 0
0 0

)

,

C1 =
(

0 1
)

, D22 =

(

0
1

)

.

Instead of having just one perturbationw, there are two
different perturbations, represented byw2 (H2 Norm ) and
w∞ (H∞ Norm). The system becomes:















ẋ = Ax + B12w2 + B1∞w∞ + B2u
z2 = C2x + D22u
z∞ = C1x
y = Cyx

(27)

The GA begins by randomly generating population of 20
individuals. After 10 generations, the output feedback con-
trol was LK = [−3.4176] with associated norms‖H‖2 =
1.5651 and ‖H‖∞ = 1.0000. In [2], the results were
LK = [−0.8165], ‖H‖2 = 1.5651 and‖H‖∞ = 1.3416.

V. CONCLUSION

In this work, the mixedH2/H∞ robust control problem
has been addressed. An algorithm based on GAs and LMIs
has been proposed to find a fixed structure output feedback
robust controller which minimizes anH2 performance cost
subject toH∞ norm constraint. The near mixedH2/H∞

robust optimal design is achieved by genetic operations and
LMI based routines. Simulations results indicate that this
approach can offer an effective and simple method to solve
the open mixedH2/H∞ robust control problem.

The proposed algorithm is suitable for full-order or
reduced-order dynamic output controller design. In this
approach the assumptionX2 = X∞ is not required re-
ducing the conservatism and allowing better solutions. It
is important to note that the genetic operators are applied
only to the gain matricesLK . Hence this implementation
can present less computation burden.

Due to the properties of this approach, additional per-
formance constraints could be incorporated to the mixed
H2/H∞ problem (multiobjective synthesis), for example,
the performance requirements which can be reached by
pole placement. This method can be applied to the design
of control laws for discrete systems subject to state and
control constraints [1]. Future work will be dedicated in
this direction. The results of this work can also be readily
extended to the state feedback case.

REFERENCES
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