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Abstract -  In this paper, we discuss the model reference 

robust control (MRRC) for plants with relative degree one 
without the knowledge of the sign of the high frequency 
gain. A switching scheme is proposed so that, after a finite 
number of switchings, the tracking error converges to zero 
exponentially. Furthermore, if some initial states of the 
closed-loop system are zero, we show that only one 
switching is needed.  

1   INTRODUCTION 
Model reference robust control (MRRC) was 

introduced by [1],[2] as a new means of I/O based controller 
design for linear time invariant plants with nonlinear input 
disturbance and has been extended to MIMO and 
non-minimum phase systems [3],[4]. To overcome the 
influence of the nonlinear input disturbance, the 
conventional parameter adaptive law in model reference 
adaptive control (MRAC) was abandoned in the MRRC. 
Instead, the concept of bounding function was introduced in 
the control law design.  

Like most of the model following methods, one of the 
basic assumptions of the MRRC is that the sign of the high 
frequency gain is known a priori. The objective of this paper 
is to generalize the MRRC scheme to the case of unknown 
sign of the high frequency gain. It is worth mentioning that 
this kind of problem is important in fault-tolerant control, 
where an autonomous supervisor must be designed to treat 
the mode changes of the controlled process and any operator 
commands [5]. 

The relaxation of the assumption of the high frequency 
gain sign has long been an attractive topic in control 
community. Several approaches have been proposed so far 
and most of them, however, are based on Nussbaum gain 
[6],[7]. Nussbaum gain seems particularly suitable to 
parameter adaptive control systems, where the gain is 
closely related to the adaptive law and changes continuously. 
The main disadvantage of the Nussbausm-type gain methods 
lies in the fact that it lacks robustness to the measurement 
noise. Furthermore, the transient behavior may be 
unacceptable.  

An alternative way is switching. In adaptive control, 
switching was first introduced by Martennson [8] and then 
was extended to more general cases by Fu, Barmish, Miller 
and Davison [9]-[11] with the objective to achieve 
Lyapunov stability or transient and steady-state performance 
specifications of tracking error with minimum prior 
information. The main idea of this kind of control is to 
design a switching law which may determine among a set of 
controller candidates when to switch from the current one to 
the next. It should be pointed out that the robustness to 
disturbance is still a problem in [9], [10]. In fact, as shown in 
[9], [10], if a bounded input or output disturbance exists, the 
Lyapunov stability may not be retained again and the system 
states can only tend to some neighborhood of origin that is 
proportional to the size of the disturbance. In [11], a 
switching method was proposed so that the tracking error 
may have an arbitrarily good transient and steady-state 
performance specifications given by designer in advance 
even when the plant high frequency gain sign is unknown. 
However, the price of this solution is that the control signal 
may be very large. 

   In this paper, a switching scheme is proposed to the 
MRRC scheme for plants with relative degree one and 
unknown high frequency gain sign. Based on the 
Comparison Lemma [12], we first construct a monitoring 
function to supervise the behavior of the tracking error, and 
then a switching scheme for the control signal is proposed. 
We show that under the supervision of the monitoring 
function, only a finite number of switchings is needed and 
the tracking error will converge to zero exponentially. 
Interestingly enough, if some initial states of the closed-loop 
system are zero, we show that only one switching is needed.  

2   PROBLEM FORMULATION 
Consider the following single input/single output linear 

time invariant plant  
 ( )[ ] ( ( )/ ( ))[ ]p p p py G s u d k n s d s u d= + = +   (2.1) 
where  and  are the system output and input, 
respectively,  is the plant transfer function with 

 and being polynomials of degree n  and , 

y u
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respectively, and   is an input disturbance. The reference 
model is given by 

d

 1( )[ ] [ ]
( )M M

M
y M s r k r

d s
= = ,   (2.2) 0Mk >

where is a monic Hurwitz polynomial satisfying 

 and  is any piecewise 
continuous, uniformly bounded reference signal. 

( )Md s
*deg( ( )) :Md s n m n= − = r

We make the following assumptions: 
(A1)  is minimum phase. The parameters of 

are unknown but belong to a known compact set; 
)(sGp

( )pG s

(A2)  The degree  of  is a known constant; n )(sd p

(A3)  The relative degree ; * 1n =
(A4) The sign of the high frequency gain  is 

unknown; 
)0(≠pk

(A5)  The lumped disturbance and uncertainty term  
is bounded by a known continuous function 

),( tyd
),( tyρ  as, for 

all , ( , )y t +∈ ×R R

  ),(),( tytyd ρ≤ ,   (2.3) 0≥∀t
 where the bounding function ( , )y tρ  is assumed to be 
continuous, uniformly bounded with respect to t  and, 
locally uniformly bounded with respect to the system output 

. The uncertainty  is not necessarily continuous 
but, if it may be discontinuous, existence of the solution of  
is assumed. 

y ( , )d y t
y

The control signal of the MRRC system is of the 
following form: 
   (2.4) ˆT

Ru θ ω= + u
where  is the nonlinear control to  be designed to ensure 
that the tracking error  

Ru

   (2.5) Myye −=:

 tends to zero, the constant vector  will be defined 
below and 

2ˆ nθ ∈R
ω , the regressor vector,  is defined as 

  (2.6) TTT ry ],,,[: 21 ννω =
where 1ν  and 2ν  are generated by input/output filters 
according to  
 1 1 2 2,b u b yλ λν ν ν ν= Λ + = Λ +& & , , 0)0(1 =ν
 , , ,  (2.7) 0)0(2 =ν ( 1) ( 1)n n− × −Λ∈R 1nbλ

−∈R
where  is a matrix such that det  is a Hurwitz 
polynomial and ( ,

Λ ( )sI −Λ
)bλΛ  is controllable pair. It is well 

known [13] that under the above assumptions, there exits a 
unique constant vector   
 ,  (2.8) * * * * *

1 0 2[ ( ) , , ( ) , ]T T Tkθ θ θ θ= R2n∈
such that, modulo exponentially decaying terms due to initial 
conditions, 
 .  (2.9) M

T
p yrsMsGy === ])[(]))[(( * ωθ

Since the plant parameters are assumed to be uncertain, the 
constant vector θ̂  in (2.4) is then defined as  
 , (2.10) 2

1 0 2
ˆˆ ˆ ˆ ˆ: [ ( ) , , ( ) , ]= RT T Tkθ θ θ θ ∈ n

which can be obtained from nominal plant and is a rough 
estimate of *θ . The tracking error e  can therefore be 
readily expressed from (2.1)-(2.10) as   
 *( ) [ ]T

f Re M s d uκ θ ω ε= + + +%   (2.11) 

where ε  denotes a bounded, differentiable and 
exponentially decaying real function that represents 
non-zero initial conditions for all internal states of the 
MRRC system, 
 *ˆ:θ θ θ= −% , ,  ** 1//: kkk Mp ==κ

]))[(1(: 1 dsdd f −= , 1 1̂( ) : ( )Td s adj Is bλθ= − Λ . (2.12) 

3   CONTROL LAW DESIGN 
In this section, we consider the control law design for 

plants with * 1n = . From (2.2),  implies that we can 
write the reference model as 

* 1n =

 ( )
s

MkM s
λ

=
+

, 0λ > . (3.1) 

Hence, from (2.11) and (3.1), 
 ( T

p f Re e k d u )λ θ ω ε= − + + + +%&   (3.2) 

where ε  in (2.11) is in fact divided into two parts: one is 
those related to , and the other one is (0)e ε , which is also a 
bounded, differentiable and exponentially decaying real 
function. 

The following lemma summarizes the main result when 
the sign of  is known: pk

Lemma 1: Let the relative degree one MRRC system satisfy 
the assumptions (A1), (A2), (A3) and (A5). Suppose the 
sign of  is known. If the control signal is defined as pk
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  (3.3) 
where 0≥β , 0>σ  and 0τ ≥  are design parameters,  the 
functions g  and µ are  chosen such that  

 BND( )T
fg dθ ω= +% , egµ =   (3.4) 

where )BND( ⋅ is a bounding function [1]. Then, e  
converges exponentially to either zero (if 0>β ) or a 
residual set (if 0=β ) whose radius becomes zero in the 
limit as σ  approaches zero. Furthermore, the control  
is continuous and uniformly bounded for 

Ru
0>σ , 0≥β . 

Proof. See [1].  

    



The proof of the following corollary can be found in 
[1]. 
Corollary 1: The MRRC system is stable if and only if the 
tracking error e  is uniformly bounded. 
Remark 3.1: The bounding function of a signal , say, f

)BND( f  is a known, continuous, nonnegative function 
that bounds the magnitude (or Euclidean norm ) of . 
Readers may see [1] for detail about the definition.   

f

Since, however, the sign of  is unknown, we have to 
redefine the control as 

pk
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and design a monitoring function to decide when  would 

be switched from   to  and vice versa, where the sets 

and satisfy  and 

Ru

Ru+
Ru−

+T −T [0, )+ − = ∞T TU φ+ − =T TI , and 

both  and have the form  . 

Here,  or  denotes the switching time for  and will 
be defined later. The difference between (3.3) and (3.6) is 
that if the sign of  is known, we only need one control 

signal while if the sign of  is unknown, two control 

signals, say,  and  are needed, where 

+T −T ),[),[ 11 ++ jjkk tttt ULU

kt jt Ru

pk

pk

Ru+
Ru−

Ru+  and 

correspond to and , 
respectively.  

Ru− 0)sgn( >pk 0)sgn( <pk

To this end, we consider the Lyapunov function     

 21
2

V e= .  (3.7) 

The time derivative of V  along the trajectory of (3.2) yields 
 2 [( ) ]T

p f RV e k d e eu eλ θ ω ε= − + + + +%& .  (3.8) 

Suppose we have correctly estimated the sign of  for 

some 
pk

00 ≥≥ tt  where 0t  is any finite initial time, then, by 
replacing (3.3) in (3.8) it follows that 
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where the triangle inequality  
   (3.10) )/2/( 22

εε εε cece +≤

has been used with  being any positive constant, the 

constant 
εc

λ  is defined as 
 : /2 >cελ λ= − 0   (3.11) 
and is given by designer in advance, and the following 
inequalities  
  ( )T

fd eθ ω µ+ ≤% , 

 1
]1)([exp
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≤
+−+

−
++ t

t

τβσµ

βτσµ
ττ   (3.12) 

have been used also, where the first inequality is from (3.4), 
and the proof of the second one can be found in [1]. 

To construct the monitoring function, we consider the 
following differential equation: 

 2

2
1)(2 εβσξλξ
εc

tk p +−+−= exp& , 

  )()( 00 tVt =ξ , 0tt ≥ . (3.13) 

Comparing (3.13) to (3.9), it follows that  
 0),()( ttttV ≥∀≤ ξ&& .  (3.14) 

Note that )()( 00 tVt =ξ , then by using the Comparison 
Lemma [12, Th.7, p.214], we have 
 0),()( ttttV ≥∀≤ξ , (3.15) 
provided a correct sign of  has been estimated for all pk

0tt ≥  .  

 We therefore consider the solution of (3.13). Since ε  
decays exponentially, there exist constants 0>δ  and , 
such that  

0>c

 )exp()( tct δε −≤ , . (3.16) 0≥t

Hence, the solution of (3.13) satisfies 
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where pk  is an upper bound of pk  which, from the 

assumption (A1), can be obtained a priori. Since β  is a 

design parameter, we can choose β  such that λβ 2< ; also, 

we can let λδ <  due to the fact that a less δ  can only 
make (3.16) more conservative. As a result, 

 , .  (3.20) ββ =0 δδ =0

By taking into account (3.20), the inequality (3.17) can be 
rewritten as  

0 0

0

( ) exp[ 2 ( )] ( ) exp( )

exp( 2 ), .

t t t V t c

c t t
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t
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β
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Since ε  as well as  and δc δ  are unknown, based on the 
above inequality, we define the monitoring function 

as follows: )(tkϕ

 
( ) exp[ 2 ( )] ( ) exp( )

( 1)exp( 2 ),
k k k

k

t t t V t c

k t
β tϕ λ

δ

= − − + −

+ + −

β
 

  (3.22) 1 0[ , ), : 0, 0,1,k kt t t t k+∈ = = L

where  is the switching time to be defined and, {kt }kδ  is 
any monotonically decreasing sequence satisfying 

  as .  (3.23) 0→kδ k →∞

It is clear that we obtain from (3.21) mainly by 
replacing both  and 

)(tkϕ

δc δ  by integers  and , 
respectively. Note that the value of k  increases as the 
switching proceeds while  satisfies (3.23).  

1+k kδ

kδ

Remark 3.2: The sequence {( in (3.21) may be 
replaced by any monotonically increasing sequence { }  
that tends to infinity.          

1)}k +

kz

Recalling that the inequality (3.17) holds if the sign of 
 is correctly estimated, it seems natural to use pk ξ  as a 

benchmark to decide whether a switching of  is needed. 
However, since 

Ru
ε  is not available for measurement, we 

have to use kϕ  to replace ξ  and invoke the switching of 

kϕ . Note that from (3.7) and (3.22), we always have 
( ) ( )k k kV t tϕ<  at the switching point . Hence, we 

define the switching time for  from  to 
ktt =

Ru Ru−
Ru+ (or Ru+  to 

) as follows: Ru−

1
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We have the following main result of this section. 

Theorem 1: Suppose the MRRC system given by equations 
(2.1), (2.2) and (3.1) satisfies the assumptions (A1)-(A5). 
Let the control signal  be defined by (3.6) and the 

switching time of  (from  to  and vice versa) be 
defined by (3.24). Then, the switching will stop after at most 
finite number of switchings, and the tracking error will 
converge to zero exponentially.  

Ru

Ru Ru+
Ru−

Proof. By contradiction, suppose  switches between Ru Ru+  

and Ru−  without stopping. Since  and δc δ  (see (3.19) and 
(3.16), respectively) are constants, and from (3.6),  only 

has two choices, 
Ru

Ru uR
+=  or , then after a finite 

number of k-th switchings, from (3.21) and (3.22), the 
following inequalities must be satisfied: 

Ru u−= R

1)( +< kcδ , )2()2( tt kδδ −<− expexp , ,  (3.25) ktt >∀

and, at the same time,  has a correct sign, i.e., Ru R Ru u+=  if 

 or 0>pk R Ru u−=  if . 0<pk

Note that we can design the control signals Ru+  and Ru−  
to be continuous (or piece-wise continuous)[1], hence, for 
any finite number of switchings,  is piece-wise 
continuous. That is, the solution of (3.2) exists and is 
continuous for any finite number of switchings [13]. The 
continuity of e  implies that as well as  is 
bounded.  Now, from (3.25) and (3.21), we have 

Ru

( )kV t )( kk tϕ

 ,  (3.26) )()( tt kϕξ < ktt >∀

where we have replaced 0t  by  in (3.21). However, since 
for a correct estimate of the sign of , V  satisfies (3.15), 
the above inequality implies that  

kt

pk

 , . (3.27) )()( ttV kϕ< ktt >∀
Hence, from (3.24), no switching will occur again, a 
contradiction. Since  is bounded and no switching is 
needed for all , is uniformly bounded and 
converges to zero exponentially. Thus, (3.27) shows that 

as well as  will converge to zero exponentially. Finally, 
by invoking the Corollary 1, the system is stable. This 
completes the proof.                       Q.E.D. 

)( kk tϕ

ktt > )(tkϕ

V e

The following corollary shows a more interesting 
(probably surprising) fact for the relative degree one MRRC 
system. 
Corollary 2: if 0=ε , then at most one switching of  is 
needed. 

Ru

Proof. From (3.16), 0=ε  implies that the term 
exp( 2 )cδ tδ− in (3.21) should be cancelled, i.e.,   

0 0( ) exp[ 2 ( )] ( ) exp( )t t t V t c t 0t≥βξ λ β≤ − − + − , t .(3.28)  

    



Therefore, once the correct sign of is chosen, from (3.15), 
(3.28) and taking into account (3.22), the following 
inequality holds for any finite : 

pk

k
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where we have replaced 0t  by . In comparison (3.29) 
with (3.24), it is clear that if the correct sign of  is chosen 

at , no switching occurs; whereas, one switching is 
enough.                    Q.E.D. 

kt

pk

00 =t

4   SIMULATION RESULTS 
We consider the following relative degree one plant:  
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where x  is the state vector of the controllable canonical 
form of the plant. Note that . The reference 
model is  

0)sgn( <pk
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The parameters of the input/output filters are 2Λ = −  and 
. We choose the reference signal and the 

disturbance . The 
design parameters defined by (3.6) are 

1g = sin(2 )r = t

++= yttyd sinsin 0.50.2),( ty cos2

0=τ , 0.15=σ  
and 1=β . To obtain the bounding function of (3.4), similar 
to [1], we write  
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and choose , ,  

 and , where 

0ˆ =θ BND( ) 4k =%
0 1BND( ) = BND( ) =θ θ% %

2BND( ) 5θ =% 21),( yty +=ρ ω , θ% ,  
and   are defined by (2.6) and (2.12), respectively. We 

choose at  the control signal of (3.6) to be  

, that is, an incorrect control is given at the 
beginning of the simulation since . The 

monitoring function 

)(sd1

fd

0=t (0)Ru

(0)Ru+=

0)sgn( <pk

kϕ  is given by (3.22) where  is 

chosen as  and 
kδ

)11/( += kkδ pk  in (3.19) as 5pk = . 
The simulation results are shown in Fig.1 where we can see 
that after one switching of  from  to Ru Ru+

Ru− , the plant 
output  soon follows  and the tracking error 
converges to zero exponentially. 

y My

We then consider different initial conditions and 
control gains. In the first case, we increase the value of the 
initial condition and find that our scheme is quite insensitive 
to the change. Fig.2 shows that only one switching occurs 
even when the initial condition has been increased to 

. In the second case, we decrease the 
gain of (3.6) by replacing 

[(0) 100 , 100 Tx = ]
g  with 0.95g  since the 

conservativeness always exists in the design of g . Fig.3 
shows that there are three switchings with the same initial 
condition, i.e., . [ ](0) 100 , 100 Tx =

The conclusion is that our scheme is quite insensitive to 
the initial condition, the nonlinear input disturbance and the 
choice of the sequences {  and {}kz }kδ (see Remark 3.2 and 
(3.23), respectively) provided we design the controller gain 
according to the way introduced by [1]. In fact, an 
appropriately chosen controller gain may guarantee that 

converges faster than ( )V t ( )k tϕ once a correct sign of  

is chosen and therefore, the condition 
pk

( ) ( )kV t tϕ< kt t∀ >  
is satisfied which, from (3.24), implies that no switching will 
occur again. This may give an explanation for the fact that in 
almost every simulation, only one switching is observed. 

5   CONCLUSION 
In this paper, we have introduced a switching 

methodology for the controller design of the MRRC system 
without the knowledge of the sign of the high frequency gain. 
The main idea of the scheme is to construct a monitoring 
function to supervise the behavior of the tracking error. 
Then, a switching scheme is proposed. We have shown that 
for plants with relative degree one, our scheme can 
guarantee the tracking error to converge to zero 
exponentially. Furthermore, if some of the initial states of 
the closed-loop system are zero, we have shown that at most 
one switching is needed. Generalization to plants of higher 
relative degree is being developed by the authors.   
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Fig. 1-1. Tracking error. 
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Fig.1-2. Control signal . Ru
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Fig.1-3. Monitoring function kϕ . 
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Fig.1-4. Sign switching. 
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Fig. 2-1. Tracking error. 
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Fig.2-2. Monitoring function kϕ . 
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Fig.3-1. Tracking error. 
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Fig.3-2. Monitoring function kϕ . 

    


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP02.3
	Page0: 3291
	Page1: 3292
	Page2: 3293
	Page3: 3294
	Page4: 3295
	Page5: 3296


