
An Educational Testbed for Design and
Implementation of Computer Control Software

M. Moallem
mmoallem@engga.uwo.ca

Department of Electrical & Computer Engineering
University of Western Ontario

London, Ontario, N6A 5B9
Canada

Abstract— There is a growing need in industry for engineers
who can perform software design and system integration
for various applications in embedded control. While courses
offered in the Electrical & Computer Engineering disciplines
cover such topics as microprocessors, digital and analog
hardware, control theory, and programming languages, there
are few courses that focus on integrating these subjects for de-
signing embedded systems. This paper describes a laboratory
testbed developed for a new course on Embedded Computer
Control offered at the University of Western Ontario, Canada.
The embedded controller performs command, control, and
user interface tasks required to operate a low-cost prototype
of a thermal system. Furthermore, its network connectivity
allows users to tune system parameters, start and stop running
the system, and observe the status of the plant via the Internet.

Index Terms— Computer control, real-time control, com-
mand and control systems, embedded computing, modular
design, network enabled systems.

I. INTRODUCTION

Embedded computing is an enabling technology dealing
with the engineering of computer systems used in such areas
as command and control, communications and multimedia,
and information systems. Emerging technologies such as
Micro Electromechanical Systems (MEMS), wireless ad-
hoc networks, smart homes and work-spaces, intelligent
highways, medical mechatronic devices, etc, would require
use of even more embedded computers. The opportunities
seem to be endless and limited only by creative designs and
novel technologies.

There are certain challenges in developing efficient em-
bedded computer systems. First, due to their nature, the
design of embedded applications often require multidisci-
plinary and cross disciplinary skills. Secondly, many em-
bedded applications are real-time, meaning that the correct-
ness of computations is as important as their timeliness.
Thirdly, modern embedded applications have sophisticated
functionality, requiring execution of concurrent tasks and
intensive algorithms.

With regard to control systems, Boasson [1] analyzed
software design issues for complex control systems, empha-
sizing the need for highly modular and expandable software

architectures. Stewart et al. [8], [9], developed a real-
time operating system, called Chimera, for reconfigurable
sensor-based control systems and introduced the concept
of port-based objects (PBO)– a software frame-work that
supports the design and implementation of sensor-based
control systems. Real Time Operating Systems (RTOS) have
been utilized in several control applications to implement
modular architectures (see e.g., [6], [5]).

With the ever increasing role of embedded computing in
today’s applications, there is a growing need for introduc-
tion of new courses in Electrical, Computer, and Software
Engineering disciplines. In this regard, such courses should
focus on integrating design techniques with concepts intro-
duced in earlier courses. In this paper, we present details
of a laboratory project designed to accompany a course on
embedded and real-time computer control. The project is
designed to provide an opportunity for students to integrate
topics covered in the course with previously taken courses
in programming and computer science, signal processing,
controls, microprocessors, and electronics.

This paper is organized as follows. Section II describes
the laboratory setup, course structure, and the capstone
project. Section III discusses design issues in developing
software for the system. In section IV, we present some
results on incorporating the system into a course project
and feedback received from students.

II. LABORATORY SETUP

The objective of the project is to introduce procedures
for designing embedded computer controlled systems. The
students are required to design the software and build
a sensor-based feedback control system, using a Propor-
tional Integral Derivative (PID) controller with existing
components. Two main references were selected for this
purpose, i.e., the textbook by Wolf [11], which focusses
on embedded systems design techniques, and a technical
report by Wittenmark et. al [10], which discusses practical
issues such as discretization, anti-aliasing filters, selection
of sampling rates, and integrator windup.

The system is depicted in Figure 1 and is comprised of
a tube, consisting of a DC fan (used for cooling desktop

Fan

Input keys,
alarm, led
indicator,

potentiometer

Vcc

R

Lamp
Rt

Drive electronics

Thermistor

Workstation

I/O panel

Tube

PWM motor signal PWM lamp signal

Embedded

Micro-controller Unit

Serial interface

Network port

Fig. 1. Components of the temperature control system.

Vcc

Vcc

Vcc
Vcc

Buzzer

3.3 k

LED outputs Switch inputs

Push buttons

GND

2 k

LED

4.7 k

From digital outputs To digital inputs

Vcc (5-12 V)

 signal
Buzzer input

10k

 outputPotentiometer

Fig. 2. Circuit diagram of the I/O panel board.

CPU’s), a lamp (for heating the tube), a 10 kΩ thermistor
for measuring temperature, an I/O panel consisting of four
push button switches, a buzzer, a potentiometer, and a mi-
crocontroller development kit (from Z*World [12]). Figure
2 illustrates the circuit diagram of the I/O panel, consisting
of push button switches, Light Emitting Diodes (LED’s),
a buzzer, and a potentiometer. The potentiometer can be
used for different purposes. It can be used as a set-point for
temperature, or can be combined with push button switches
for tuning the PID controller gains. The push button keys
are used as digital inputs. Using these keys, the user may
turn the system on or off, or set the maximum speed of the
fan, or change the PID gains. Similarly, the LED outputs
may be used to display the status of switches, and the buzzer
can be used to inform the user if the temperature has gone
above or below certain limits.

The BL2000 Microcontroller Unit (MCU) from Z*World
[12] was used, which provides digital and analog I/O, and
an Ethernet port on a single-board computer unit. The
Ethernet model was selected for remote monitoring and

Fig. 3. Embedded system hardware components.

Fig. 4. Embedded system controlled and monitored using an Internet
browser.

supervisory control. The programming environment uses
Dynamic C, which is an integrated C compiler, editor loader,
and debugger for embedded control and communication
applications. The PC workstation in Figure 1 is used as a
development host that is connected to the target embedded
system by a serial RS232 interface.

In Figure 1, the motor and lamp are driven by pulse-
width-modulated signals to control the temperature in the
tube. These signals are on the order of a few tens of Hertz,
which can be generated by using the digital output bits
and blocking delay functions (i.e., waitfor() statements in
th environment used). The drive electronics consist of two
buffers and two CMOS transistors working as ON/OFF
switches. Figure 3 shows different hardware components
of the system put together. A rough estimate of the budget
required for setting up the system is US$200.

The temperature is regulated by turning on either the
fan or the lamp based on the voltage developed across
the thermistor. The I/O panel and a web browser provide
user interfaces to the system and can be used to monitor
the temperature of the system, tune PID controller gains,
and start or stop operation of the system from either the
I/O panel or a web browser. The available TCP/IP libraries
allow for Ethernet communications and include libraries for

Lamp Interface Motor Interface

Temperature Controller

* *

PWM ControllerUser Interface

1 2

1

11 1

1

1

1

PID Controller

Temperature Sensor
*

1

1
1

1

I/O Panel

I/O Board
*

I/O Network

Network
Port

*
(RJ45)

1 1

Fig. 5. A Unified Modeling Language (UML) class diagram showing
composition of subsystems.

sending email and running http servers. As a requirement of
the project, the system should send email messages to a user
under certain conditions, e.g., to report a failure condition
such as a high tube temperature. Figure 4 shows the system
under control from an internet browser.

III. DESIGN OF THE CONTROL SYSTEM SOFTWARE

Coding a feedback control algorithm that works properly
is often not sufficient. Software design must also take
into account such issues as functionality, user interface,
safety and reliability, upgradability, power consumption,
and system costs.

The first step in the design process is to have a set of
requirements. Since some components of the system are
already given, the design steps involving specifications and
architecture (in particular, hardware architecture) can be
performed quickly. The class diagram illustrated in Figure
5 shows components of the software architecture in the
Unified Modeling Language (UML) form. The Tempera-
ture Controller class is comprised of User Interface, PID
Controller, and PWM Controller software classes. Special
classes representing hardware components are denoted by
asterisks. The main module, i.e., Temperature Controller,
is responsible for initializing other modules, establish links
between modules, and run the system tasks.

A. PID Controller

Following [10], a modified PID control algorithm that
overcomes the conventional PID controller problems such
as integrator wind-up, differentiation of command signal,
etc, is given in the Laplace domain by (see Figure 6)

U(s) = K(bUc(s)− Y (s) +
1

sTi

(Uc(s)

− Y (s))−
sTd

1 + sTd/N
Y (s)) (1)

where K, b, Ti, Td, and N are controller parameters, and
U(s), Uc(s), and Y (s) denote the Laplace transforms of u,
uc, and y, respectively. In order to implement the control
algorithm on an embedded computer, equation (1) has to be

PWM GeneratorPID Controller

Potentiometer

V

System: Tube with
fan, lamp, thermistor

Thermistor
y

e u
u

cc

c +
-Set-point

voltage

Fig. 6. Block diagram of the temperature feedback control system.

discretized. Denoting the sampling period by T , and using
backward differences to discretize the derivative term and
forward differences for the integral term, we have

u(kT) = P (kT) + I(kT) +D(kT) (2)

where k denotes the k-th sampling instant and

P (kT) = K(bu(kT)− y(kT))

I(kT) = I((k − 1)T) +
KT

Ti

e((k − 1)T)

D(kT) =
Td

Td +NT
D((k − 1)T)

−
KTdN

Td +NT
(y(kT)− y((k − 1)T)).

(3)

In order to develop modular embedded software in C, one
has to use Abstact Data Types (ADT). An ADT is a precursor
to objects and consists of a data structure and a set of
methods that operate on the structure. Towards this end,
an appropriate data type for the PID Controller module in
Figure 5 as follows

typedef struct {
float K, b, Ti, T, Td;
unsigned short N; /* parameters */
float i, ilast; /* integral term */
float y, ylast; /* output */
float d, dlast; /* derivative term */
float uc; /* input */
float u; /* output */
float elast; /* error term */
float ulow, uhigh;/* low/high inputs

for windup compensation */
} pid_t;

The routines that operate on the pid t data type are used
for initializing, updating, and calculating the PID controller
and take the following general form

void initPid(pid_t *p, ...);
void updatePid(pid_t *p, ...);
void calcPid(pid_t *p, ...);

The PID Controller module interacts with the Temperature
Sensor, PWM Controller, User Interface, and PWM Con-
troller modules. Thus, appropriate parameters (indicated by
· · ·) have to be passed to the above routines from these
modules.

Fig. 7. Web browser interface to the embedded system.

B. Other Modules

The PWM Controller obtains its data from the PID
Controller and sends PWM pulses to either the fan or
the lamp. The PWM Controller is implemented through
software by sending high and low digital values to a digital
output channel. The User Interface module in Figure 5
is comprised of two modules: (1) The I/O Panel module,
which scans the I/O panel for new inputs from the push
button switches and the potentiometer, and provides outputs
to the LED’s and the buzzer, and (2) The I/O Network mod-
ule, which provides an interface to the network port. The
TCP/IP protocol suite allows application layer protocols for
sending email, transferring files, using the File Transfer
Protocol (FTP), and displaying web pages, using the Hyper
Text Transfer Protocol (HTTP). The Simple Mail Transfer
Protocol (SMTP) is used to send email messages from a
client to a Mail Transfer Agent (MTA) (see e.g., [3]).

As a requirement of the course project, the embedded
system should send emergency messages to a user if the
temperature sensor reads values above or below some
critical limits. A typical interface to the http server task
running on the embedded processor is shown in Figure 7.
Using an Internet browser, a user can monitor the tube’s
temperature, start and stop the system, change the set-point
temperature, and tune the PID controller gains.

The Temperature Sensor module consists of a thermistor
in series with a resistor as shown in Figure 1. The voltage
vt across Rt in Figure 1 is read by an A/D converter and
can be used to obtain the temperature of the thermistor as
follows

T =
βT0

β − T0ln
(

vtR
(Vcc−vt)R(T0)

) · (4)

where Rt(T0) is a known resistance at temperature T0, and
β is a constant.

C. Execution of Tasks

Concurrent programming allows for separation of mod-
ules into separate tasks and is a key element in modular
software development. Analysis of schedulability of tasks
is helpful in evaluating performance of the system and can
provide guidelines for maximal utilization of the processor.
For a priority-based preemptive kernel, the Rate Monotonic
Analysis [4] and its modifications (e.g., [7]) can be used to
determine schedulability of a task set. For the case where
a non-preemptive kernel is used, one has to consider the
structure of the code. The cooperative multitasking kernel
is used to implement periodic tasks using the following
construct [12]

main () {
/* variable declarations */
for (; ;){

costate Task_1 {
waitfor(delay(period of task 1);

/* code for task 1 */
}

costate Task_2 {
waitfor(delay(period of task 2);

/* code for task 2 */
}

......
costate Task_N {

waitfor(delay(period of task N);
/* code for task N */

}
}

}

where costates are blocks of code that can suspend them-
selves, by executing waitfor() statements, yield execution
to other tasks, or abort their execution. In order to pro-
vide a timing analysis for the system, let us denote the
periods and the worst case execution times of the tasks
by T1, T2, · · · , TN , and e1, e2, · · · , eN , respectively.
A timer interrupt is used to update a global variable that
keeps track of the time. The delay() functions in the code
listing above use this global variable to identify whether
the corresponding task has to be executed or not. Suppose
that the timer interrupt runs every Ttick seconds and it takes
etick seconds to execute the interrupt code. Let us denote
the maximum time it takes for a for (; ;){ ... } loop to be
executed by tx. Then, tx can be obtained by solving the
following equation

tx =

N
∑

i=1

ei +
tx

Ttick

etick. (5)

Taking the deadline of each task equal to its period, a
necessary condition for all tasks to meet their deadlines is
that the period of each task be greater than the worst case

execution time tx of the loop, i.e.,

Tj >

∑N

i=1 ei

1− etick

Ttick

, ∀j = 1, · · · , N. (6)

The schedulability condition (6) can be used as a guideline
to guarantee that all tasks meet their deadlines. Quali-
tatively, reducing the execution times and increasing the
periods would help satisfy the inequality condition given
by (6). Students are required to measure execution times of
the tasks, perform a quantitative analysis of the schedula-
bility of the task set, and take appropriate measures if the
schedulability test fails, e.g., by changing the tasks’ periods
or optimizing code for speed.

IV. DISCUSSION OF RESULTS

In general, the students’ responses to the project were
quite positive. Some students from the Electrical Engineer-
ing option, who had less background in programming and
were not paired with students in the Computer Engineering
option, had some difficulty in developing code and testing
their programs. The group sizes were typically two with
occasionally three students per group. However, majority of
students maintained that the material for doing the project
was well laid out and that the project had made the course
interesting by integrating concepts from microprocessors,
programming, control, and electronics.

All the groups managed to finish their projects after six
lab hours (two lab sessions). The preliminary lab exercises
were helpful in this regard as they were designed to guide
the students towards implementing the building blocks
required by the project. A flowchart for these experiments is
shown in Figure 8 which include writing simple programs
to perform cooperative multi-tasking, perform digital and
analog I/O, obtain characteristics of the temperature sensor,
and run the motor and lamp using Pulse Width Modulation
(PWM).

The graduate students taking the course were required
to implement the more challenging network interface and
email programs. Figures 3, 4, and 7 illustrate systems im-
plemented by students. Other recommended projects could
focus on adding an ftp server task for streaming sensor data
to a host workstation, and the use of wireless technology
for remote control and monitoring.

V. CONCLUSION

Control systems are one of the main application domains
for embedded computing. With the complexity of applica-
tions growing rapidly, it is very important that engineers
designing control systems be educated so that they are
aware of the design procedures and challenges in embedded
computing technology.

An experimental testbed for design and implementation
of embedded control software was developed to serve as the
laboratory component of an undergraduate-graduate course
on Embedded Computer Control. The course material and

Analog I/O using the I/O Panel
Performing Digital and

Multitasking using Co-statements

Development Environment
Introduction to the

LAB 1:

LAB 2:

LAB 3:

LAB 4:
Pulse Width Modulation and Control of
Lamp and Motor using Digital Outputs

Fig. 8. Flowchart of preparatory experiments.

project integrate concepts taught in several other courses in-
cluding microprocessors, control systems, programming and
software development, and electronics. The low-cost tem-
perature control platform provides students with a hands-
on environment to develop fundamental skills in the design
and implementation of embedded computer systems. The
opportunity for students to experiment with a network
enabled system allows them to get familiar with state-of-
the-art technologies such as network appliances and their
potential applications in industrial measurement and control.

ACKNOWLEDGEMENT

The author would like to acknowledge help provided
by teaching assistants, K. Kang, H. Bassan, and P. Yuan,
in developing several of the laboratory experiments, and
B. Kettlewell, G. Aarsten, and E. Porter of the Electronic
Shop at the University of Western Ontario, for building
the electronic components of the system. The feedback and
constructive comments by students has also been valuable
in developing the laboratory.

REFERENCES

[1] M. Boasson, “Control Systems Software,” IEEE Transactions on
Automatic Control, Vol. 38, No. 7, pp. 1094-1106, 1993.

[2] X. Feng, S.A. Velinsky, and D. Hong, “Integrating Embedded
PC and Internet Technologies for Real-Time Control and Imaging,”
IEEE/ASME Transactions on Mechatronics, Vol. 7, No. 1, pp. 52-60,
2002.

[3] M.T. Jones, “Embed with the Mailman,” Embedded Systems Program-
ming, pp. 45-52, October 2001.

[4] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogram-
ming in a Hard Real–Time Environment,” J. Assoc. Comput. Mach., Vol.
20, No. 1, pp. 46-61, 1973.

[5] M. Moallem, “Electron Beam Position Monitoring and Feedback
Control in Duke Free-Electron Laser Facility,” IEEE Transactions on
Industrial Electronics, Vol. 49, No. 2, pp. 423-432, 2002.

[6] M. Moallem, R.V. Patel and K. Khorasani, “Nonlinear Tip-Position
Tracking Control of a Flexible-Link Manipulator: Theory and Experi-
ments”, Automatica, 37, pp. 1825-1834, 2001.

[7] L. Sha, R. Rajkumar, and S.S. Sathaye, Proceedings of the IEEE,
Special Issue on Real-Time Systems, Vol. 82, No. 1, pp. 68-82, 1994.

[8] D.B. Stewart, D.E. Schmitz and P. K. Khosla, “The Chimera II Real-
Time Operating System for Advanced Sensor-Based Robotic Applica-
tions,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 22,
No. 6, pp. 1282-1295, 1992.

[9] D.B. Stewart, R.A. Volpe and P.K. Khosla, “Design of Dynamically
Reconfigurable Real-Time Software Using Port-Based Objects,” IEEE
Transactions on Software Engineering, Vol. 23, No. 12, 1997.

[10] B. Wittenmark, K.J. Astrom and K-E. Arzen, Computer Con-
trol: An Overview, Technical Report, Department of Automatic Con-
trol, Lund Institute of Technology, Sweden (downloadable from
www.control.lth.se/ kursdr/ifac.pdf).

[11] W. Wolf, Computers as Components: Principles of Embedded Com-
puting System Design, Morgan Kaufman, San Francisco, 2001.

[12] Z*World, Inc., Davis, CA, http://www.zworld.com/company/.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM19.4
	Page0: 3221
	Page1: 3222
	Page2: 3223
	Page3: 3224
	Page4: 3225
	Page5: 3226

