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Abstract— Adaptive Robust Control (ARC) is implemented
in conjunction with dynamic inversion to control the response
of the F-15 IFCS aircraft. Adaptive Robust Control as de-
scribed by Yao [1] combines the ability of adaptive control to
deal with uncertainty in model parameters with the ability of
sliding mode control to deal with exogenous disturbances and
other uncertainties. Pilot inputs are translated to roll, pitch,
and yaw rate commands. The nonlinear dynamic inversion
(DI) control law decouples the system to allow tracking of these
commands. ARC is implemented in a control loop outside the
DI control loop to provide tracking performance in the face
of modeling uncertainties and actuator failures. The control
is simulated using a full nonlinear 6-DOF simulation of the
F-15 IFCS aircraft.

I. I NTRODUCTION

This paper describes the application of an adaptive robust
controller (ARC) to aircraft flight control. The control
action is based upon an uncertain model of aircraft behavior.
The assumed nature of the uncertainties is what guides con-
troller design. For our purposes, the uncertainty is grouped
into two broad classes: 1) slowly varying with known
functional form (variations in the aerodynamic coefficients),
2) quickly varying with unknown functional form. For the
purposes of this paper, the first type of uncertainty will
be refered to as “parametric” and the second refered to as
“unstructured”.

Ultimately the effectiveness of aircraft control is evalu-
ated by a human operator. This makes it difficult to judge
performance solely based on numerical responses. While
flying qualities can be related to frequency and damping
requirements at various flight conditions, there remains a
certain amount of subjectivity in the judgement of the
response of the system. In this paper, a dynamic inversion
control is implemented as an inner loop with Adaptive
Robust Control as an outer loop [1]. This is similar to the
neural network approaches such as the one described in [2].
The purpose of this controller structure is to decouple the
axes of the system in the presence of modeling uncertainties
and/or actuator failures in a way that is desirable for the
pilot. The failure mode considered in this paper is a stuck
control surface. It is important to note that with this form
of implementation much of the work required to acheive
certain flying qualities is done in creating a reference model.
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The reference model can be any dynamic system whose
response exhibits the desired flying qualities. The work of
the dynamic inversion (DI) and the robustifying outer loop
is to ensure that the system adequately tracks this reference
model.

Adaptive control techniques seek to utilize the assumed
structure of equations of motion by dealing with uncertain-
ties in model parameters. If these parameters are slowly
varying or do not change at all then adaptive control can
have great success. However, in the presence of uncertainty
that lies outside of the assumed structure of the models
or in the case of rapidly changing parameters, there is no
guarantee that the system will behave as the pilot wishes,
or that it will even remain stable (with stability being
defined as the convergence of the system output to the
reference input) [3], [1]. Beyond this, there is no guarantee
on the speed of this convergence. It has been shown that
if persistence of excitation conditions are not satisfied, the
control can be very sensitive to disturbances.

The ability of sliding mode control (SMC) to deal with
parametric and unstructured uncertainty while guaranteeing
tracking performance makes it very desirable for flight
control applications. In addition, it does not require any
type of fault detection or explicit control reconfiguration [4],
[5]. To achieve perfect tracking, SMC relies on an infinitely
fast switching control which when approximated in practical
implementations can lead to chattering. While this is well
known and has been dealt with in a variety of ways,
tracking error is usually only guaranteed to be in some
boundary layer region [1], [3], [6], [4]. Sliding mode control
and in particular the continuous approximation (a sat(·)
function used in place of the sgn(·) function) can be thought
of as very high gain control. In aircraft problems this
leads to rate/position saturation of the actuators which can
result in instability. Several authors have investigated means
to preserve stability in the presence of of rate/position
saturation [4], [5]. The problem of rate/position limits is
not specifically addressed in this paper, though included in
simulation model.

Adaptive Robust Control (ARC) as described by Yao in
[1] provides a bridge between the two methods described
above. The control consists of a sliding mode portion
which ensures stability as well as performance (in the
form of a time constant to the sliding surface) coupled
with an adaptive portion which can “learn” the parametric
uncertainty present in the system. In this way, the control
can handle the unstructured uncertainties and provide steady
state tracking performance. The control is implemented on
the full nonlinear 6-DOF simulation of the F-15 IFCS.



II. N OTATION

The following notation will be used throughout this
paper. The nomenclature for aircraft parameters is fairly
standard and is adopted from [7]:
p, q, r roll, pitch, and yaw rates of an aircraft
δa, δe, δr Synthetic surface position commands
α angle of attack
β sideslip angle
PI pilot inputs
F (s) precompensator: converts PI top, q, r cmds
sgn(x) sign of x
sat(x) sat(x) : Rn 7→ [−1, 1]

III. SUMMARY OF ARC AS PRESENTED BYYAO [1]

The motivation for using Adaptive Robust Control in
a particular application is to achieve a combination of
the transient performance and robustness of sliding mode
control with the steady state error guarantees of adaptive
control. As a simple example, consider a scalar dynamic
system with state x and inputν described by the following
differential equation:

ẋ = θϕ (x, t) + ν + ∆ (x, t, u) , x ∈ R, θ ∈ R1×p (1)

The variableθ represents a vector of unknown parame-
ters, (θ1, . . . , θp). The effect of eachθi on the derivatives
of the state is a known function of the state and time,
ϕi(x, t). Unstructured uncertainty, denoted∆(x, t, u), may
be functionally dependent on time, the state,x, and/or the
input. This allows∆(x, t, u) to capture the effects of both
exogenous disturbances and unknown dynamics. The values
of θ and∆(x, t, u) are not known, but are assumed to have
known bounds.

θi ∈ Ωθi

4
=

{
θi : θi,min < θi < θi,max

}
(2)

|∆(x, t, u)| ≤ δ (x, t) , i = 1 . . . p

The functionδ (x, t) is bounded with respect to time such
that δ (x(t), t) ∈ L∞ wheneverx(t) ∈ L∞.

The output variable (x) should track a referencexd(t).
Define the tracking error,e = x(t) − xd(t). The SMC
portion of the control will be based upon a filtered tracking
error. Auxillary variablesxc, z, yc, and xr are defined

as follows (xc
4
= filter states,xr

4
= filtered reference,

z
4
=filtered error):

ẋc = Acxc + Bce xc ∈ Rnc , Ac ∈ Rnc×nc ,
z = Ccxc + e = yc + e Bc ∈ Rnc , Cc ∈ R1×nc

= x− xr xr
4
= xd(t)− yc

(3)
The system given by(Ac, Bc, Cc) is a filter for the tracking
error. The sliding surface associated with the SMC portion
of the control is described byz = 0. The dynamics on the
sliding surface are designed using(Ac, Bc, Cc). The transfer
function frome to z has relative degree zero. The termxr

is a filtered version of the commandxd.

The adaptive robust control law which ensures the con-
vergence of the system given by Equation (1) to the sliding
surface (z = 0) is given below.

ν = νs + νa (4)

νa = ẋr − θ̂πϕ (x, t) (5)

νs = −kz − µ
(
h (x, t) , z

)
(6)

˙̂
θ = zϕ (x, t)T

γ (7)

Theνs portion of the control can be thought of as the sliding
mode portion, providing stability in the face of disturbances
and transient performance guarantees (through selection of
k) [1]. The νa term is the adaptive portion of the control
law. It consists of an approximate inversion of the dynamics
(θ̂πϕ (x, t)) as well as feedforward control,̇xr. If θ̂π is
replaced with a nominal approximation or best guess for
θ, SMC is recoverd.

The vector θπ = (θπ1, . . . , θπp). The (·)πi function
denotes a projection mapping of a variable ontoΩθi . One
possible implementation is the following.

θπi =





θ θ ∈ Ωθi

θi,max θ > θi,max

θi,min θ < θi,min

(8)

The functionµ
(
h (x, t) , z

)
is the effective sliding mode

portion of the control. If µ(h, z) = h(x, t)sgn(z), one
is assuming infinitely fast switching and a discontinous
control law (standard SMC). A continuous approximation
is made for the signum function, resulting inµ(h, z) =
h(x, t)sat(z/ε). The following is a sufficient condition to
guarantee convergence to the sliding surface (or a boundary
layer in the case ofµ(h, z) =h(x, t)sat(z/ε)).

|h(x, t)| ≥
∣∣∣
(
θ − θ̂π

)
ϕ(x, t) + ∆(x, t, u)

∣∣∣ (9)

The γ term in equation (4) is a positive constant (or if
ϕ(x, t) is a vector, it is a diagonal positive definite matrix).
Proof of stability for this control law can be found in [1]
(as the proof to Theorem 4 in Chapter 2).

IV. W HY USE ARC INSTEAD OF SMC?

In flight control applications of SMC it is common to
include an integrator as part of the sliding surface [6], [4],
[5], [8], [9], [10]. The objective of this inclusion is to deal
with steady state errors. SMC regulates the filtered error
response (z → 0). The stability of the linear differential
equation governing the sliding surface requires that every
term that makes up the surface must decay to zero when
z = 0. If an integrator is included as part of the surface and
the SMC forces the system onto the sliding surface, the
integral of the error must go to zero ast →∞. In essence,
the control variable becomes the integral of the error instead
of tracking error. On face, this does not sound out of the
ordinary. However, if the dynamics of the system were to
suddenly change resulting in a positive integral of the error,
the system must undershoot by the same amount to allow



the sliding surface to decay to zero. If a saturation function
is used, removing steady state error is accomplished by
maintaining a steady-statez value.

Using a signum function, there is an obvious difference
between ARC and SMC. With a saturation function, it might
seem that these control laws would be equivalent to one
another. This is not the case. As an example, consider the
following dynamic system:

ẋ = d(t) + ν (10)

|d(t)| ≤ D

The objective is to regulate the state, (x → 0). The
magnitude of the disturbance,d(t), is bounded byD.
The continous approximation of SMC with an integrator
included as part of the sliding surface has the following
form:

ν1 = −k1z1 −D1sat(z1/ε) (11)

z1 = x(t) + λ

∫ t

0

x(t)dt

When the saturation operates in the linear region the above
control law becomes:

ν1 = − (k1 + D1/ε + λ) x− (k1 + D1/ε)λ

∫ t

0

xdt (12)

When the saturation function reaches its upper limit the
SMC law becomes the following:

ν1 = − (k1 + λ)x− k1λ

∫ t

0

xdt−D1 (13)

The ARC control law with continuous approximation is
given by the following (d is modeled with âθ):

ν2 = −k2z2 −D2sat(z2/ε)− θ̂π (14)

z2 = x(t)
˙̂
θ = γz2 = γx

When the saturation operates in the linear region, andθ̂π is
not saturated:

ν2 = − (k2 + D2/ε)x− γ

∫ t

0

x(t)dt (15)

If the saturation function is at its upper limit, but̂θπ has
not reached a limit:

ν2 = −k2x− γ

∫ t

0

x(t)dt−D2 (16)

In both control laws, when operating in the linear region
of the saturation function, the result is porportional-integral
control. Using Equations (12) and (15) gains can be selected
that make the control laws equivalent for this case. Upon
reaching a saturation limit, the gains that the two control
laws equivalent do not make Equations (13) and (16)
equivalent. There are three major differences between ARC
and SMC. First, the integral gain forν1 changes when
|z| > ε, but does not change forν2. Second,θ̂π can be

saturated meaning the integral portion ofν2 becomes zero.
The integral portion ofν1 may reduce gain but is otherwise
unbounded. Third, if more is known about the model, these
parameters can be included in the ARC law. This is not
possible with SMC.

ARC is proposed as a means to utilize the transient
performance of sliding mode control and its abilities to
reject disturbances. ARC can also account for the the steady
state errors and the slowly varying dynamics without the
drawback of including an integral as a part of the sliding
surface. This allows the system to achieve the sliding
surface (z → 0) even when using a saturation function in
the SMC portion of the control law.

V. PITCH EXAMPLE

A dynamic model for an aircraft can be put into the
form described in Section III. A block diagram showing
how the control would be implemented on the pitch axis is
given in Figure 1. Linear dynamic models are considered
for simplicity in this section. For small variations around
a single flight condition, the pitch dynamics of an aircraft
can be modeled by the following.




u̇
α̇
q̇


 = Aq




u
α
q


 + Bqδe y = Cq




u
α
q


 = q

(17)
It is assumed that there is a one dimensional synthetic
control, δe, which will be allocated to the pitch actuators
(for the F-15 IFCS aircraft it is the stabilators only). The
stick input is considered as the source of a pitch rate
command.

A dynamic inversion control (with respect to the dynam-
ics of q) applied to the system with dynamics given by
Equation (17), results in the following closed loop.

q̇ = Cq

(
Aq −BqP

†CqÂq

)



u
α
q


 + CqBqP

†q̇des (18)

In the above expression,̂Bq, Âq are the nominal values of
Bq and Aq respectively. The variableP representsCqB̂q.
The (·)† function is used to represent a generalized inverse.
If the plant is modeled perfectly (̂Bq = Bq and Âq = Aq),
q̇ = q̇des.

This will not be the case in the presence of either
modeling errors or disturbances. Modeling errors (Aq 6= Âq,
Bq 6= B̂q, etc.) result in governing (closed loop) equations
of the form:

q̇ = θuu + θαα + θqq + θq̇des
q̇des (19)

whereθu, θα, θq, andθq̇des
depend on the modeling errors.

If the aircraft were to experience an actuator failure where
an actuator became unresponsive we might model the closed
loop as the following.

q̇ = θuu + θαα + θqq + θq̇des
q̇des + ∆(t) (20)



In flight, variations inq are much larger than those of
α or u. Additionally, in the face of a constant exogenous
disturbance such as a stuck control surface, we will have a
new equilibrium point in terms of our uncontrolled states
α and u. Define the new trim points asαt and ut. Let
α̃ = α− αt and ũ = u− ut. Now define

θuu + θαα = θc + θuũ + θαα̃ (21)

Where θc = θuut + θααt. This allows us to model the
unknown constant perturbation as part of our shape func-
tion. The θuũ and θαα̃ terms can be used to capture the
perturbations from the new trim. The dynamics can be
expressed as follows:

q̇ = θqq + θc + θuũ + θαα̃ + θq̇des
q̇des + ∆(t) (22)

= θqq + θc + q̇des + ∆(t, q̇des, α̃, ũ)

The shape function (denoted asϕ(x, t) in Equation (1)) for
the pitch dynamics is

[
q 1

]T
. If desired, theθq term can

be treated as part of the disturbance∆ as well. This would
turn the adaptive portion of the control into pure integral
control. In this manner, we are allowed to include an integral
control without having it as part of the sliding mode. This
gives the benefit of removing steady state error without the
drawback of forcing our primary control variable to be the
integral of the error.

VI. 6-DOF RESULTS

A. Dynamic Inversion

The dynamics of an aircraft can be represented by

ẋ = A (x, y) + B (x, y) δ (23)

where x = [p, q, r]T , y is made up of all the all other
flight condition variables and aircraft parameters, andδ =
[δa, δe, δr]T . This is a generalization of the full dynamic
equations of motion for the body axis rates as given in
[7]. The terms in Equation (23) can be used to invert the
dynamics and “replace” them with the desired dynamics
(see Figure 2). Figure 2 shows a block diagram of this
implementation. The precompensator, orF (s), takes pilot
stick commands and converts them toṗ, q̇, and ṙ reference
signals. The objective of the DI inner loop is to control the
values ofp, q, and r. The controls come in the form of
theδ vector which are synthetic control commands for roll,
pitch, and yaw. These synthetic controls are then allocated
to the actuators. In our example, this is done through a static
control allocation of the form.

δ̄ = Tδ (24)

The actual surface commands are the elements of theδ̄
vector. The control allocation (be it static or dynamic)
must be included as part ofB (x, y). B (x, y) ∈ R3×3 is
invertible. The dynamic inversion control law takes the form

δdes = B (x, y)−1 (ẋdes −A (x, y)) (25)

whereẋdes = [ṗdes, q̇des, ṙdes]
T .

B. ARC Implementation

The objective of the dynamic inversion control law is
to decouple thep, q, and r axes. This means it is desired
for our system to be diagonal (when linearized) and that
any off diagonal terms can be treated as perturbations.
As a result three independent loops are utilized (one for
each axis). Figure 2 depicts a block diagram of this con-
trol implementation. For each axis (roll, pitch, yaw) the
control law presented in Equation (4) is used. For this
example, the shape function (ϕ(x, t)) used is a constant,
1. In addition, a continuous approximation to SMC is
used. The sliding mode portion of the control is set as
µ (h (x, t) , sgn(z))=h(x, t)sat

(
z
ε

)
, where ε is a positive

constant andh(x, t) obeys Equation (9). The ARC control
is of the following form:

ṗcom = ṗr − θ̂π,p − kpzp − hpsat (zp/ε) (26)

q̇com = q̇r − θ̂π,q − kqzq − hqsat (zq/ε)

ṙcom = ṙr − θ̂π,r − krzr − hrsat (zr/ε)

C. Numerical Results

Presented here are simulated F-15 IFCS aircraft responses
both before and after failures occur. A reference model that
describes desirable flying qualities and converts pilot inputs
to p, q, andr reference signals is given. The performance
of the control scheme is evaluated in terms of its ability to
track the reference signal. The ARC ensures the robustness
of the dynamic inversion control law to modeling uncer-
tainties and/or failures. The data presented here is at Mach
0.75, 20,000ft. In the course of flight a stabilator failure
occurs at 8.5 seconds. The stabilator fails to 50% of its
maximum positive value and remains here for rest of the
simulation. There is also mismatch between the simulated
model and the model used for the DI. Rate limits as well
as position limits are included in the model, though not
explicitly addressed by the ARC.

Figures 3 and 4 give the roll and pitch responses of the
aircraft respectively. The yaw response of the aircraft is not
shown here for space reasons, but closely resembles that of
Figure 3. Due to security issues the data presented in the
paper will be scaled by its maximum value. The reference
signals are selected to excite each axis both independently
and in conjuction with one another. This sequence of
synthesized references is designed to exhibit coupling in
the axes. This is important from a pilot standpoint because
it is undesirable to attempt a pitch maneuver and get a
large amount of roll or yaw. The references were also
chosen because they are fairly aggressive. At first glance,
the tracking results do not seem to be as good as one might
hope. However, it is the goal of this paper to push the limits
of the system. The inputs are rapidly varying and excite
all axes simultaneously. These results are indicative of the
response over the entire flight envelope.

Stabilator failures have the largest effect on the response
of the pitch axis. Only two actuators control the pitch re-
sponse, the left and right stabilators. The two stabilators are



also used in roll control. The result is a very large induced
roll to pitch coupling. The objective of the control scheme is
to account for this coupling without any “knowledge” of its
existence. Upon examination of Figure 3 we see that there
is little coupling in the roll axis due to pitch commands. For
example, at about 14 seconds, there is a large pitch input,
but the roll command tracks its reference closely. The same
holds true for the yaw response (although not shown here).
In the pitch response (Figure 4), we see pitch errors as
a result of roll command after the failure. This is evident
at t =15s in Figure 4. This is because the commanded
maneuvers are aggressive enough to reach actuator rate
limits consistently.

These figures also demonstrate the transient response of
the aircraft to the failure. The simulated pilot does nothing
to bring the aircraft under control. In this sense, the aircraft
should be “hands-off” stable at the occurance of a failure.
Figures 5 and 6 show the tracking error responses of the
system. For roll and yaw (Figure 5), the error just after the
time of failure (t = 8.5) is of the same magnitude as the
time previous to the error. The sudden introduction of a
failure into the system has a small impact on the tracking
error. The impact on the pitch axis is larger. The result is a
lag-like behavior that occurs after a failure (see Figure 4).

Figure 7 shows the stabilator responses for the simulation.
At the time of failure (8.5 seconds), the right stabilator
moves to its failure position and sticks. This leaves only
one pitch actuator to both deal with the steady state pitch
moment and to track pitch commands. The stuck stabilator
also induces a constant roll rate disturbance. This is coun-
tered both by the ailerons and the other stabilator. Figure 8
shows the left aileron response of the aircraft. The ailerons
are used differentially, so the right aileron response is the
negative of the left.

VII. C ONCLUSION

Adaptive Robust Control is used to control an aircraft
in the presence of uncertainty in model parameters and
actuator failures. ARC is implemented as an outer loop
to a full nonlinear dynamic inversion control law. Pilot
commands are converted to desired roll, pitch, and yaw
rates which are tracked by the combination of ARC and the
dynamic inversion control law. The control maintains good
tracking accuracy during fairly aggressive maneuvers in the
presence of actuator failures. This is accomplished without
requiring any control reconfiguration or failure detection
algorithms. Simulation study of the response of a 6-DOF
full nonlinear model of the F-15 IFCS under ARC control
(with actuator rate and position limits included) allowed
trained pilots to acheive performance in the presence of
failures that could not be achieved in the absence of this
technique.
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Fig. 5. Roll error response
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Fig. 6. Pitch error response
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