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Abstract: This paper deals with the robust stability

and the robust stabilizability problems for the class

of uncertain Markovian jump continuous-time singular

systems with Wiener process. Our attention is focused

on developing sufficient conditions on robust stability

and the design of a state feedback controller such that the

robust stochastic stability is assured, even if the singular

system incorporates both Wiener process disturbance

and norm-bounded uncertainties. The obtained suffi-

cient conditions are based on linear matrix inequality

technique. Numerical examples are given to show the

usefulness of the proposed results.
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I. Introduction

During the past decades, singular systems has received

considerable interest, because this class is more suitable

than the conventional ones in modelling practical sys-

tems in different areas such as power systems, chemical

systems, economics systems, robotics, etc., (see for

instance, [6], [7]). When the system incorporates also

abrupt changes in its structure, the Markovian jump lin-

ear system is very appropriate to describe its dynamics.

For more details regarding this class of systems, we

refer the reader to [8], [3] and the references therein.

Many contributions related to problems like stability,

stabilizability and their robustness, H∞ control, output-

feedback, filtering, have been reported in the litera-

ture, see for instance ([2], [4], [5]). For the class of

stochastic systems with Markovian jumping parameters,

a lot of works was done. In [2] sufficient conditions

guaranteeing the exponential stabilizability for the un-

certain system with Brownian motion perturbation are

provided. The robust H∞ control problem for uncertain

continuous-time linear time delay systems with Marko-

vian jumping parameters was studied in [11]. Recently,

the robust stability and robust stabilizability of jumps

linear systems with delays are developed in [4]. For the

class of uncertain singular system, stability conditions

for singular system with parameter uncertainties have

been derived by applying Lyapunov stability theory in

[5]. To the best of our knowledge, only few works have

been done on the resulting class of systems that we

call the class of linear singular systems with Markovian

jumps. However, the uncertain Markovian jump linear

singular system with Wiener process disturbance has
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never been tackled.

The aim of this paper is to derive sufficient condition

for robust stability of the uncertain Markovian jump

linear singular system with Wiener process disturbance,

by using LMI technique, furthermore, a state feedback

controller design method that robustly stochastically

stabilizes the system under study is designed. The results

obtained in this paper extend those developed on the

Markovian jump linear singular systems with Wiener

process disturbance in [10], to Markovian jump linear

singular systems with both parameter uncertainties and

Wiener process disturbance.

The rest of this paper is organized as follows. Section

II states the problem to be studied and provides some

assumptions. In section III, sufficient conditions are es-

tablished to check the robust stability and stabilizability

of the system under consideration. While section IV

presents numerical examples.

Throughout this paper, the following notations will be

used. The superscript ”T ” denotes matrix transposition

and for symmetric matrices X and Y the notation

X > Y (respectively X < Y ) means that (X − Y ) is

positive-definite (resp. negative-definite). I denotes the

identity matrix with the appropriate dimension that may

be understood from the context. diag [.] denotes a block

diagonal matrix.

II. Problem statement

Let us consider the class of uncertain Markovian

jump continuous-time singular linear system defined

on the probability space (Ω, z, P), with the following

dynamics:






















Edxt = A(rt, t)xtdt + B(rt, t)utdt

+W(rt, t)xtdw(t)

x(0) = x0

(1)

where xt ∈ Rn is the state, ut ∈ Rp is the control

at time t, w(t) ∈ Rm is a standard Wiener process on

the given probability space, which is supposed to be

independent of the Markov process {rt, t ≥ 0}, W(rt) is

the Wiener process matrix that is supposed to be known

for each rt ∈ S, for more details related to Wiener

process, see ([1], [3]). The matrix E ∈ RnE∗nE may

be singular, with rank(E) = nE ≤ n, A(rt, t) is the

state matrix, B(rt, t) is the control matrix, supposed to

have the following forms:










A(rt, t) = A(rt) + DA(rt)FA(rt, t)EA(rt)

B(rt, t) = B(rt) + DB(rt)FB(rt, t)EB(rt)

(2)

with A(rt), DA(rt), EA(rt), B(rt), DB(rt) and EB(rt)

are real known matrices with appropriate dimensions,

and FA(rt, t) and FB(rt, t) are unknown matrices that

satisfy the following:










FA(rt, t)F
T
A (rt, t) < I

FB(rt, t)F
T
B (rt, t) < I

(3)

The continuous-time Markov process {rt, t ≥ 0} takes

its values in a finite set S = {1, 2, . . . , N} with the

transition probability given by:

P [rt+∆t = j|rt = i] =











λij∆t + o(∆t) i 6= j

1 + λii∆t + o(∆t) i = j

(4)

where ∆t > 0, lim∆t→0
o(∆t

∆t
= 0, and λij is the

transition probability rate from the mode i to the mode

j at time t, which satisfies λij ≥ 0,∀i, j, i 6= j, and

λii = −
∑N

j=1,j 6=i λij .

In this paper, our goal is to address the robust stochastic

stability for the class of system with ut = 0, further-

more, we will determine a state feedback controller and

sufficient conditions that guarantee the robust stochas-

tic stabilizability. Before establishing these results, we

begin by defining some concepts and introducing some

useful lemmas that will be used in this paper.
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For system (1), when ut ≡ 0, we have the following

definitions:

Definition 2.1: [6], [7]

a. The pair (E,A(rt)) is said to be regular if det(sE −

A(rt)) is not identically zero

b. The pair (E,A(rt)) is said to be causal if it is regular

and deg(det(sE − A(rt))) = rank(E)

Definition 2.2: System (1), with ut = 0, for all t ≥ 0,

is said to be stochastically stable if there exists a finite

positive constant T (x0, r0) such that the following holds

for any initial conditions (x0, r0):

E

[
∫ ∞

0

‖x(t)‖2dt|x0, r0

]

≤ T (r0, x0); (5)

Definition 2.3: System (1) is termed robust stabiliz-

able if there exists a linear state feedback:

u(t) = K(rt)xt (6)

with K(rt) is a gain controller for each rt ∈ S, such that

the closed-loop system is robustly stochastically stable

for every initial condition (x0, r0).

Lemma 2.1: The infinitesimal generator of the

Markov process (x(t), rt) under an admissible control

law is given by:

LV (x(t), rt) = Vx(x(t), rt) [A(rt, t)x(t) + B(rt, t)u(t)]

+
1

2
tr

[

x>(t)W>(rt)E
T Vx(x(t), rt)EW(rt)x(t)

]

+

N
∑

j=1

λrtjV (x(t), j)

For more details we refer the readers to Itô′s Theorem

quoted in reference [1].

Lemma 2.2: [9] Let H, F and G be real matrices of

appropriate dimensions then, for any scalar ε > 0 for

all matrices F satisfying F T F ≤ I , we have HFG +

GT FT HT ≤ εHHT + ε−1GT G

III. Main results

The objective of this section is to derive sufficient

conditions for robust stability and stabilizability for the

class of systems we are dealing with. Our attention is

also to synthesize a state feedback controller of the form

(6), that will robustly stochastically stabilize the system

under study.

A. Robust stability

Before establishing our results on the robust stochastic

stability of the system (1) with ut = 0 for t ≥ 0, we

need the following assumption:

Now, we give the first main result in this section.

Theorem 3.1: If there exist a set of symmetric and

positive-definite matrices P = (P (1), . . . , P (N)) and a

set of positive scalars εA = (εA(1), . . . , εA(N)) such

that the following LMI holds for every rt ∈ S:




Jw(rt) ET P (rt)DA(rt)

DA(rt)
T P (rt)E −εA(rt)I



 < 0 (7)

with Jw(rt) = ET P (rt)A(rt) + A>(rt)P (rt)E

+ W>(rt)E
T P (rt)EW(rt) + ET

[

∑N

j=1 λrtjP (j)
]

E

+ εA(rt)EA(rt)
T EA(rt) < 0

then, the system (1) is robustly stochastically stable. 2

Proof : Let us consider the generalized Lyapunov func-

tion as follows:

V (xt, rt) = x>(t)ET P (rt)Ex(t) (8)

Where P (rt), rt ∈ S is a symmetric and positive-

definite matrix.

In this case, the infinitesimal generator of the Markov

process (x(t), rt) becomes:

LV (x(t), rt) = x>(t)ET P (rt)A(rt, t)x(t)

+x>(t)A>(rt, t)P (rt)Ex(t)

+x>(t)W>(rt)E
T P (rt)EW(rt)x(t)

+x>(t)ET





N
∑

j=1

λrtjP (j)



 Ex(t) (9)

By applying Lemma (2.2), and using the fact that:
A(rt, t) = A(rt) + EA(rt)F (rt, t)DA(rt), we obtain
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the following relation:

LV (x(t), rt) ≤ x
>(t)

[

ET P (rt)A(rt) + A>(rt)P (rt)E

+W
>(rt)E

T P (rt)EW(rt) +
∑N

j=1
λrtjE

T P (j)E

+ε−1

A (rt)E
T P (rt)DA(rt)D

T
A(rt)P (rt)E

+εA(rt)E
T
A(rt)EA(rt)

]

x(t)

= x
>(t)Θ(rt)x(t)

with Θ(rt) = A>(rt)P (rt)E + ET P (rt)A(rt)

+ W>(rt)E
T P (rt)EW(rt) + εA(rt)E

T
A(rt)EA(rt)

+ ε−1
A (rt)E

T P (rt)DA(rt)D
T
A(rt)P (rt)E

+ ET
[

∑N

j=1 λrtjP (j)
]

E

Using (3.1), we conclude that, for each mode rt,

Θ(rt) < 0. Therefore, if this inequality holds, it results

that:

LV (x(t), rt) ≤ −mini∈S [λmin (−Θ(i))] x>(t)x(t)

Now this together with Dynkin’s formula yield:

E [V (x(t), rt)] − E [V (x(0), r0)]

= E

[
∫ t

0

LV (x(s), rs)ds|(x0, r0)

]

≤ −min
i∈S

{λmin(−Θ(i))}E

[
∫ t

0

x
>(s)x(s)ds|(x0, r0)

]

,

implying, in turn,

min
i∈S

{λmin(−Θ(i))}E

[
∫ t

0

x>(s)x(s)ds|(x0, r0)

]

≤ E [V (x(0), r0)] − E [V (x(t), rt)]

≤ E [V (x(0), r0)] .

This yields that:

E

[
∫ t

0

x>(s)x(s)ds|(x0, r0)

]

≤
E [V (x(0), r0)]

mini∈S{λmin(−Θ(i))}
(10)

holds for any t > 0. 2

B. Stabilization

This section is devoted to the design of a suitable

state feedback controller that robustly stochastically sta-

bilizes the uncertain Markovian jump singular system

with Wiener process disturbance (1). Using the robust

stability condition of the theorem (3.1), we will establish

an LMI approach to compute the controller’s gain. By

setting u(t) = K(rt)x(t) in the system dynamics yields

the following closed loop system:























Extdt = A(rt, t)xtdt + B(rt, t)K(rt)xtdt

+W(rt)xtdw(t),

= Ac(rt, t)xtdt + W(rt)xtdw(t)

(11)

with Ac(rt, t) = A(rt, t) + B(rt, t)K(rt).

The following theorem gives a robust stochastic stabi-

lizability condition and stabilizing feedback gain:

Theorem 3.2: Let M be given symmetric matrices.

The system (1) is robustly stochastically stable if there

exist a set of symmetric and positive definite matrices

P = (P (1), . . . , P (N)) and L = (L(1), . . . , L(N)),

a matrix Y = (Y (1), . . . , Y (N)) and a set of pos-

itive scalars εA = (εA(1), . . . , εA(N)) and εB =

(εB(1), . . . , εB(N)) such that the following holds for

each rt ∈ S:

P (rt)B(rt) = B(rt)L(rt) (12)
















Υw(rt) ET P (rt)DA(rt)

DT
A(rt)P (rt)E −εA(rt)I

DT
B(rt)P (rt)E 0

P (rt)EW (rt) 0

ET P (rt)DB(rt) W>(rt)E
T P (rt)

0 0

−εB(rt)I 0

0 −P (rt)

















< 0 (13)

where Υw(rt) = ET [P (rt)A(rt) + B(rt)Y (rt)]

+ [P (rt)A(rt) + B(rt)Y (rt)]
T

E

+ εA(rt)E
T
A(rt)EA(rt) + ET

[

∑N

j=1 λrtjP (j)
]

E < 0

The controller gain is given by K(rt) = L−1(rt)Y (rt).
Proof: Under the condition of the theorem (3.1), the
closed-loop system is robustly stochastically stable if the
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following condition holds for every rt ∈ S:

A
>

c (rt, t)P (rt)E + E
T
P (rt)Ac(rt, t)

+W
>(rt)E

T
P (rt)EW(rt) + E

T

[

N
∑

j=1

λrtjP (j)

]

E < 0 (14)

By applying Lemma (2.2), replacing Ac(rt, t) by
its expression, and taking into consideration that
εB(rt)K

T (rt)E
T
B(rt)EB(rt)K(rt) > 0, the inequality

(14) will be satisfied if the following one holds:

A
>(rt)P (rt)E + E

T
P (rt)A(rt)

+K
T (rt)B

T (rt)P (rt)E + E
T
P (rt)B(rt)K(rt)

+εA(rt)E
T
A(rt)EA(rt)

+ε
−1

A (rt)E
T
P (rt)DA(rt)D

T
A(rt)P (rt)E

+ε
−1

B (rt)E
T
P (rt)DB(rt)D

T
B(rt)P (rt)E

+W
>(rt)E

T
P (rt)EW(rt) + E

T

[

N
∑

j=1

λrtjP (j)

]

E < 0 (15)

Let us now transform the condition (15) in the LMI

form. For this purpose, we assume that there exists a

symmetric and definite positive matrix L(rt) such that:

P (rt)B(rt) = B(rt)L(rt) (16)

this requires that B(rt) is full column rank for

each mode. Substituting (16) in (15) and letting

L(rt)K(rt) = Y (rt), then by and using Schur com-

plement, the previous inequality becomes:
















Υw(rt) ET P (rt)DA(rt)

DT
A(rt)P (rt)E −εA(rt)I

DT
B(rt)P (rt)E 0

EW (rt) 0

ET P (rt)DB(rt) W>(rt)E
T

0 0

−εB(rt)I 0

0 −P−1(rt)

















< 0 (17)

where Υw(rt) = ET [P (rt)A(rt) + B(rt)Y (rt)]

+ [P (rt)A(rt) + B(rt)Y (rt)]
T

E

+ εA(rt)E
T
A(rt)EA(rt) + ET

[

∑N
j=1 λrtjP (j)

]

E < 0.

Let us pre- and post-multiplying (17) by

diag[I, I, I, P (rt)], this yields to LMI (13). 2

In the following section, we give a numerical example

to demonstrate the validity of the proposed results,

which shows how we can compute a state feedback

controller that robustly stochastically stabilizes the

system under study.

IV. Examples

let us suppose that the transition probability rate

matrix and the matrix E are given by:

Λ =





−2.00 2.00

1.00 −1.00



 , E =











1.00 0.00 1.00

0.00 0.00 1.00

0.00 0.00 0.00











Example 4.1: Let us consider a system with two

modes with the dynamics described by (1), and suppose

that the system data is as follows:

• mode 1:

A(1) =









−1.00 0.00 1.00

0.00 0.00 1.00

0.00 −1.00 −1.00









,

B(1) =









0.30 0.00 1.00

0.00 0.30 0.00

0.10 0.00 0.30









,

W (1) =









0.36 0.00 1.20

0.00 0.36 0.0

0.12 0.0 0.36









,

EA(1) =
[

0.20 0.10 0.01
]

,

DA(1) =









0.0001

0.0020

0.0012









, DB(1) =









0.0100

0.2000

0.1000









,

εB(1) = 0.01, εA(1) = 0.50
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• mode 2:

A(2) =









−1.00 0.00 1.00

0.00 0.00 −1.00

0.00 1.00 −1.00









,

B(2) =









0.10 0.00 1.00

1.00 0.00 0.40

0.00 0.00 0.30









W (2) =









0.12 0.00 1.20

1.20 0.00 0.48

0.00 0.00 0.36









,

EA(2) =
[

0.03 0.01 0.02
]

,

DA(2) =









0.0013

0.0010

0.0010









, DB(2) =









0.20

0.30

0.10









,

εA(2) = 0.30εB(2) = 0.01,

Using theorem 3.2 yields the following matrices:

P (1) =









570.4145 −0.0000 2.7212

−0.0000 553.3931 0.0002

2.7212 0.0002 562.2511









,

P (2) =









561.7627 −16.2165 −27.3174

−16.2165 551.5207 −1.9652

−27.3174 −1.9652 642.3248

,









,

L(1) =









562.2484 0.0000 2.7220

0.0000 553.3931 0.0000

2.7220 0.0000 570.4143









,

L(2) =









556.1616 0.0000 −15.6564

0.0000 449.9976 0.0000

−15.6564 0.0000 548.6464









,

the corresponding gain matrices are given by:

K(1) = 104









−501.30 −0.00 −508.80

−334.60 −0.00 −1390.20

−417.40 −0.00 −476.70









,

K(2) = 104









−179.80 −0.00 −854.36

−683.00 −683.00 −683.00

−386.16 0.00.00 −234.23









Based on the results of Theorem 3.2, we conclude that

we can design a robust stabilizing state feedback con-

troller of the form (6) by using the developed method.

V. Conclusion

In this paper, we studied the problem of robust sta-

bility and stabilizability for stochastic uncertain singular

systems with both Markovian jumping parameters and

Wiener process disturbance. Sufficient LMI based con-

dition that assures the robust stability of the class of

systems under study has been presented. LMI approach

has also been developed to design a robust stabilizing

state feedback controller which guarantees the robust

stabilizability of the systems.
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