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Abstract - This paper investigates the problem of H∞
filter design for 2-D stochastic systems. The stochastic
perturbation is first introduced into the well-known
Fornasini-Marchesini local state-space (FMLSS) model.
Our attention is focused on the design of full-order and
reduced-order filters, which guarantee the filtering error
system to be mean-square asymptotically stable and has
a prescribed H∞ disturbance attenuation performance.
Sufficient conditions for the existence of such filters are
established in terms of linear matrix inequalities (LMIs),
and the corresponding filter design is cast into a convex
optimization problem which can be efficiently handled
by using available numerical software. In addition, the
obtained results are further extended to more general
cases where the system matrices also contain uncertain
parameters. The most frequently used ways of dealing
with parameter uncertainties, including polytopic and
norm-bounded characterizations, are taken into consid-
eration.
Keywords: 2-D systems, H∞ filtering, linear matrix
inequality, stochastic perturbation.

I. Introduction

Many practical systems can be modeled as two-
dimensional (2-D) systems, such as those in image
data processing and transmission, thermal processes,
gas absorption and water stream heating etc. [16], [20].
Therefore, in recent years much attention has been
devoted to the analysis and synthesis problems for 2-D
discrete systems, and many important results are easily
available in the literature. See, for instance, [13], [14],
[19] investigate the stability of 2-D systems through
Lyapunov approaches, [5], [24] are concerned with the
controller and filter design problems, and [6] addresses
the model approximation problem for 2-D digital filters
etc. Very recently, owing to the development of lin-
ear matrix inequality (LMI) technique, these obtained
results have been further extended to systems with
deterministic parameter uncertainties (including norm-
bounded uncertainty as well as polytopic uncertainty).

1This work was partially supported by HKU RGC Grant
7165/03E.

On the other hand, since stochastic modeling has
come to play an important role in many branches
of science such as biology, economics and engineer-
ing applications, systems with stochastic perturbations
have drawn much attention from researchers working in
related areas. This kind of systems has been called sys-
tems with random parametric excitation [1], stochastic
bilinear systems [17], [22] and linear stochastic systems
with multiplicative noise [11], [12], [23]. Analysis and
synthesis for stochastic systems have been investigated
extensively and many fundamental results for determin-
istic systems have been extended to stochastic cases. To
mention a few, the analysis of asymptotic behaviour
can be found in [18]; the optimal control problems
were reported in [12], [23]; and very recently the robust
control and filtering results have also been extended
to stochastic systems [7], [15], [22]. However, most
of the aforementioned results are concerned with 1-
D stochastic systems, and to the best of the authors’
knowledge, no effort has been made toward investigating
the problems arising in 2-D stochastic systems.

In this paper, we make an attempt to solve the
H∞ filtering problem for 2-D systems with stochas-
tic perturbations. More specifically, the 2-D stochas-
tic system model under investigation is established
by introducing stochastic perturbations into the well-
known Fornasini-Marchesini local state-space (FMLSS)
model. These perturbations are governed by a white-
noise signal and cause the system matrices fluctuate
above their deterministic nominal values. Our attention
is focused on the design of full-order and reduced-
order filters, which guarantee the filtering error system
to be mean-square asymptotically stable and has a
prescribed H∞ disturbance attenuation performance.
Sufficient conditions for the existence of such filters are
established in terms of LMIs, and the corresponding
filter design is cast into a convex optimization problem
which can be efficiently handled by using available
numerical software. In addition, the obtained results
are further extended to more general cases where the
system matrices also contain uncertain parameters. The
most frequently used ways of dealing with parameter
uncertainties, including polytopic and norm-bounded



characterizations, are taken into consideration.
The remainder of this paper is organized as follows.

The problem of H∞ filtering for 2-D stochastic systems
is formulated in Section 2. In Section 3, both analysis
and synthesis results are presented for systems with
exactly known matrix data. These obtained results
are further extended in Section 4 to more general
cases whose system matrices also contain uncertain
parameters, and we conclude this paper in Section 5.
For space limitation, all the proofs are omitted which
can be found in the full version of this paper.
Notations: The notations used throughout the paper

are fairly standard. The superscript “T” stands for
matrix transposition; Rn denotes the n-dimensional
Euclidean space, Rm×n is the set of all real matrices
of dimension m × n and the notation P > 0 means
that P is real symmetric and positive definite; I and 0
represent identity matrix and zero matrix; | · | refers to
the Euclidean vector norm; and λmin(·),λmax(·) denote
the minimum and the maximum eigenvalue of the
corresponding matrix respectively. In symmetric block
matrices or long matrix expressions, we use an asterisk
(∗) to represent a term that is induced by symmetry and
diag{. . .} stands for a block-diagonal matrix. Matrices,
if their dimensions are not explicitly stated, are assumed
to be compatible for algebraic operations. In addition,
E{x} and E{x| y} will, respectively, mean expectation
of x and expectation of x conditional on y.

II. Problem Formulation

Consider the following 2-D stochastic system S:

S : xi+1,j+1 =

µ
A1xi,j+1 +A2xi+1,j
+B1ωi,j+1 +B2ωi+1,j

¶
+

µ
M1xi,j+1 +M2xi+1,j
+N1ωi,j+1 +N2ωi+1,j

¶
vi,j(1)

yi,j = Cxi,j +Dωi,j

zi,j = Hxi,j

where xi,j ∈ Rn is the state vector; yi,j ∈ Rm is
the measured output; zi,j ∈ Rp is the signal to be
estimated; ωi,j ∈ Rl is the disturbance input which
belongs to l2[0,∞); vi,j is a standard random scalar
signal satisfying E {vi,j} = 0 and½

E {vi,jvm,n} = 1 for (i, j) = (m,n)
E {vi,jvm,n} = 0 for (i, j) 6= (m,n)

and A1, A2, B1, B2, M1, M2, N1, N2, C, D, H are
system matrices with compatible dimensions.
Remark 1: Recall the well known 2-D discrete system

described by the FMLSS model [8]

xi+1,j+1 = A1xi,j+1 +A2xi+1,j +B1ωi,j+1 +B2ωi+1,j
(2)

and rewrite the dynamic equation of system S in the
following form

xi+1,j+1 = [A1 +M1vi,j ]xi,j+1 + [A2 +M2vi,j ]xi+1,j

+ [B1 +N1vi,j ]ωi,j+1 + [B2 +N2vi,j ]ωi+1,j

then we can see that system S is established by
introducing stochastic uncertainty into the 2-D FMLSS
model, and the terms M1vi,j , M2vi,j , N1vi,j , N2vi,j
can be seen as stochastic perturbations to the system
matrices A1, A2, B1, B2 respectively. These perturba-
tions are usually caused by some stochastic environment
and cause the system matrices to fluctuate above their
deterministic nominal values. The FMLSS model in (2)
has been well studied in many references, while the 2-D
stochastic system S has not been fully investigated.
Throughout the paper, we make the following as-

sumption on the boundary condition:
Assumption 1: The boundary condition is indepen-

dent of vi,j and is assumed to satisfy

lim
N→∞

E

(
NX
k=1

(|x0,k|2 + |xk,0|2)
)
<∞

Here, we are interested in estimating the signal zi,j
by a linear dynamic filter of general structure described
by F :

F : x̃i+1,j+1 = G1x̃i,j+1 +G2x̃i+1,j (3)

+K1yi,j+1 +K2yi+1,j

z̃i,j = Lx̃i,j

x̃i,j = 0 for i = 0 or j = 0

where x̃i,j ∈ Rk is the filter state vector and
(G1,G2,K1,K2, L) are appropriately dimensioned filter
matrices to be determined. It should be pointed out that
here we are interested not only in the full-order filtering
problem (when k = n), but also in the reduced-order
filtering problem (when 1 ≤ k < n). As can be seen in
the following, these two filtering problems are solved in
a unified framework.
Augmenting the model of S to include the states of

the filter, we obtain the filtering error system E :

E : ξi+1,j+1 =

µ
Ā1ξi,j+1 + Ā2ξi+1,j
+B̄1ωi,j+1 + B̄2ωi+1,j

¶
+

µ
M̄1ξi,j+1 + M̄2ξi+1,j
+N̄1ωi,j+1 + N̄2ωi+1,j

¶
vi,j (4)

ei,j = C̄ξi,j

where ξi,j =
£
xTi,j x̃Ti,j

¤T
, ei,j = zi,j − z̃i,j and

Ā1 =

∙
A1 0
K1C G1

¸
, Ā2 =

∙
A2 0
K2C G2

¸
,

B̄1 =

∙
B1
K1D

¸
, B̄2 =

∙
B2
K2D

¸
,

M̄1 =

∙
M1 0
0 0

¸
, M̄2 =

∙
M2 0
0 0

¸
,



N̄1 =

∙
N1
0

¸
, N̄2 =

∙
N2
0

¸
,

C̄ =
£
H −L ¤

(5)

Before presenting the main objective of this paper, we
first introduce the following definitions for the filtering
error system E in (4), which will be essential for our
derivation.
Definition 1: The filtering error system E in (4) with

Assumption 1 and ωi,j = 0 is said to be mean-
square asymptotically stable if for every initial condition
E
n¯̄
ξ0,0

¯̄2o
<∞

lim
i+j→∞

E
n¯̄
ξi,j
¯̄2o

= 0

Definition 2: Given a scalar γ > 0, the filtering error
system E in (4) is said to be mean-square asymptotically
stable with an H∞ disturbance attenuation level γ if it
is mean-square asymptotically stable and under zero
initial and boundary conditions, kekE < γ kωk2 for all
nonzero ωi,j ∈ l2[0,∞) where

kekE :=

vuuutE
⎧⎨⎩
∞X
i=0

∞X
j=0

|ei,j |2
⎫⎬⎭, kωk2 :=

vuut ∞X
i=0

∞X
j=0

|ωi,j |2

Our objective is to develop full-order and reduced-
order filters of the form F in (3) such that the filtering
error system E in (4) is mean-square asymptotically
stable with an H∞ disturbance attenuation level γ.
Filters guaranteeing such a performance are called H∞
filters.
Another assumption is made as follows:
Assumption 2: System S in (1) is mean-square as-

ymptotically stable.
Remark 2: For brevity, we have omitted the known

control input terms in S since it is well known that this
does not affect the generality of the discussion on the
filter design. Consequently, the original system to be
estimated has to be mean-square asymptotically stable,
which is a prerequisite for the filtering error system E
to be mean-square asymptotically stable.

III. Filtering for Systems with Exactly Known
Matrices

This section is devoted to the H∞ filtering problem
for system S in (1) with exactly known matrices, that is,
there is no uncertain parameter in the system matrices
(A1, A2, B1, B2,M1,M2,N1, N2, C,D,H).

A. Filter Analysis

This subsection is concerned with the filter analysis
problem. More specifically, assuming that the filter
matrices (G1, G2,K1,K2, L) in (3) are exactly known,
we shall study the conditions under which the filtering
error system E in (4) is mean-square asymptotically
stable with an H∞ disturbance attenuation level γ. The
following theorem shows that the H∞ performance of

the filtering error system can be guaranteed if there
exist some positive definite matrices satisfying certain
LMIs. This theorem will play an instrumental role in
the filter design problems.

Theorem 1: Consider system S in (1) and suppose
the filter matrices (G1, G2,K1,K2, L) of F in (3) are
given. Then the filtering error system E in (4) is mean-
square asymptotically stable with an H∞ disturbance
attenuation level bound γ if there exist (n+k)×(n+k)
matrices P > 0 and Q > 0 satisfying

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 0 0 PM̄1 PM̄2 PN̄1 PN̄2
∗ −P 0 0 PĀ1 PĀ2 PB̄1 PB̄2
∗ ∗ −I 0 C̄ 0 0 0
∗ ∗ ∗ −I 0 C̄ 0 0
∗ ∗ ∗ ∗ Q− P 0 0 0
∗ ∗ ∗ ∗ ∗ −Q 0 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(6)

Remark 3: Theorem 1 provides an H∞ filter analysis
result for 2-D stochastic systems, which can be seen as
an extension from previous results on H∞ performance.
When we assume vi,j = 0, that is, no stochastic
uncertainty is present in system S, LMI (6) becomes
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−P 0 0 PĀ1 PĀ2 PB̄1 PB̄2
∗ −I 0 C̄ 0 0 0
∗ ∗ −I 0 C̄ 0 0
∗ ∗ ∗ Q− P 0 0 0
∗ ∗ ∗ ∗ −Q 0 0
∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

(7)
LMI (7) is the H∞ performance condition obtained in
[24] for 2-D systems.

In the following, we will present a version of the
obtained H∞ performance condition which is more
suitable for systems with polytopic uncertain matrices.

Theorem 2: Consider system S in (1) and suppose
the filter matrices (G1, G2,K1,K2, L) of F in (3) are
given. Then the filtering error system E in (4) is mean-
square asymptotically stable with an H∞ disturbance
attenuation level bound γ if there exist (n+k)×(n+k)
matrices V , P > 0 and Q > 0 satisfying

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P − V T − V 0 0 0
∗ P − V T − V 0 0
∗ ∗ −I 0
∗ ∗ ∗ −I
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗



V T M̄1 V T M̄2 V T N̄1 V T N̄2
V T Ā1 V T Ā2 V T B̄1 V T B̄2
C̄ 0 0 0
0 C̄ 0 0

Q− P 0 0 0
∗ −Q 0 0
∗ ∗ −γ2I 0
∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0

Remark 4: It can be seen that the LMI condition
presented in Theorem 2 no longer contains product
terms between the positive definite matrix P and system
matrices. This is made possible by the introduction
of the slack matrix variable V and enables us to
obtain a parameter-dependent performance criterion
when extending Theorem 2 to system with polytopic
uncertain matrices. This idea stems from [3], following
which many works have been reported very recently. In
the following subsection, the filter synthesis problem will
be solved based on the improved performance analysis
result of Theorem 2.

B. Filter Synthesis

In this subsection, we will focus on the design of full-
order and reduced-order H∞ filters of the form F based
on Theorem 2. That is, to determine the filter matrices
(G1,G2,K1,K2, L) which will guarantee the filtering
error system E to be mean-square asymptotically sta-
ble with an H∞ performance. The following theorem
provides a sufficient condition for the existence of such
H∞ filters for system S.
Theorem 3: Consider system S in (1). Then an ad-

missible H∞ filter of the form F in (3) exists if there
exist n× n matrices P1 > 0, Q1 > 0, R, n× k matrices
P2, Q2, F , k × k matrices P3 > 0, Q3 > 0, X, Ḡ1, Ḡ2,
k ×m matrices K̄1, K̄2, and p× k matrix L̄ satisfying⎡⎢⎢⎢⎢⎣

Υ1 0 0 Υ2 Υ3
∗ Υ1 0 Υ4 Υ5
∗ ∗ −I Υ6 0
∗ ∗ ∗ Υ7 0
∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎦ < 0 (8)

∙
P1 P2
∗ P3

¸
> 0 (9)

where

Υ1 =

∙
P1 −RT −R P2 −EX − F

∗ P3 −X −XT

¸
,

Υ2 =

∙
RTM1 0 RTM2 0
FTM1 0 FTM2 0

¸
,

Υ3 =

∙
RTN1 RTN2
FTN1 FTN2

¸
,

Υ4 =

∙
RTA1 +EK̄1C EḠ1
FTA1 + K̄1C Ḡ1

RTA2 +EK̄2C EḠ2
FTA2 + K̄2C Ḡ2

¸
,

Υ5 =

∙
RTB1 +EK̄1D RTB2 +EK̄2D
FTB1 + K̄1D FTB2 + K̄2D

¸
,

Υ6 =

∙
H −L̄ 0 0
0 0 H −L̄

¸
,

Υ7 = diag

½∙
Q1 − P1 Q2 − P2
∗ Q3 − P3

¸
,

∙ −Q1 −Q2
∗ −Q3

¸¾
,

E =

∙
Ik×k

0(n−k)×k

¸
Moreover, under the above conditions, an admissible

filter can be given by⎡⎣ G1 K1
G2 K2
L 0

⎤⎦ =
⎡⎣ X−1 0 0

0 X−1 0
0 0 I

⎤⎦⎡⎣ Ḡ1 K̄1

Ḡ2 K̄2

L̄ 0

⎤⎦
(10)

Remark 5: Theorem 3 presents strict LMI conditions
for the existence of desired H∞ filters, which can be
easily tested by the available LMI toolbox in the Matlab
environment [9]. It is worth noting that the matrix
E defined in Theorem 3 plays an instrumental role in
formulating both the full-order and reduced-order filters
in a unified framework. For the full-order filtering, the
matrix E becomes an identity matrix of dimension n,
and for the reduced-order case, we have imposed certain
structural restriction on the (2,1) block entry of the
partitioned matrix V , which introduces some overdesign
into the filter design.
Remark 6: Note that (8), (9) are LMIs not only

over the matrix variables, but also over the scalar
γ. This implies that the scalar γ can be included as
an optimization variable to obtain a reduction of the
attenuation level bound. Then the minimum (in terms of
the feasibility of (8), (9)) attenuation level of H∞ filters
can be readily found by solving the following convex
optimization problem using LMI toolbox in MATLAB:
Minimize γ subject to (8), (9) over P1, Q1, R, P2,

Q2, F , P3, Q3, X, Ḡ1, Ḡ2, K̄1, K̄2 and L̄.
In the case when there is no stochastic uncertainty

in the system S, that is, vi,j is assumed to be zero,
Theorem 3 is specialized to the following corollary.
Corollary 1: Consider system S in (1) with vi,j = 0.

Then an admissible H∞ filter of the form F in (3) exists
if there exist n× n matrices P1 > 0, Q1 > 0, R, n× k
matrices P2, Q2, F , k× k matrices P3 > 0, Q3 > 0, X,
Ḡ1, Ḡ2, k ×m matrices K̄1, K̄2, and p × k matrix L̄
satisfying (9) and⎡⎢⎢⎣

Υ1 0 Υ4 Υ5
∗ −I Υ6 0
∗ ∗ Υ7 0
∗ ∗ ∗ −γ2I

⎤⎥⎥⎦ < 0 (11)

IV. Filtering for Systems with Uncertain Matrices

In this section, we consider the H∞ filtering problem
for system S in (1) with partially unknown data, that
is, uncertain parameters are present in the system



matrices (A1, A2, B1, B2, M1, M2, N1, N2, C, D, H. In
the following, we will consider two types of parameter
uncertainties: polytopic uncertainty and norm-bounded
uncertainty.

A. Polytopic Uncertain Case

Theorem 3 addresses the H∞ filtering problem for
system S in (1) where the system matrices are all
known. However, since LMIs (8) and (9) are affine in the
system matrices, the theorem can be directly used to
solve the filtering problem in the case where the system
matrices are not exactly known and they reside within
a given polytope.
Assumption 3: The matrices A1, A2, B1, B2, M1, M2,

N1, N2, C, D, H of system S in (1) contain partially
unknown parameters. Assume that

Ω := (A1, A2, B1, B2,M1,M2,N1, N2, C,D,H) ∈ R
where R is a given convex bounded polyhedral domain
described by s vertices:

R :=
(
Ω(λ)

¯̄̄̄
¯Ω(λ) =

sX
i=1

λiΩi;
sX
i=1

λi = 1,λi ≥ 0
)

where

Ωi := (A1i, A2i, B1i, B2i,M1i,M2i, N1i, N2i, Ci,Di,Hi)

denotes the vertices of the polytope R.
Theorem 4: Consider system S in (1) with Assump-

tion 3. Then an admissible robust H∞ filter of the form
F in (3) exists if there exist n × n matrices P1i > 0,
Q1i > 0, R, n× k matrices P2i, Q2i, F , k × k matrices
P3i > 0, Q3i > 0, X, Ḡ1, Ḡ2, k ×m matrices K̄1, K̄2,
and p × k matrix L̄ satisfying LMIs (8) and (9) for
i = 1, . . . , s, where the matrices P1, P2, P3, Q1, Q2,
Q3, A1, A2, B1, B2, M1, M2, N1, N2, C, D, H are
taken with P1i, P2i, P3i, Q1i, Q2i, Q3i, A1i, A2i, B1i,
B2i, M1i, M2i, N1i, N2i, Ci, Di, Hi respectively.
Remark 7: The parameter uncertainties considered

in this subsection are assumed to be of the polytopic-
type, entering into all the matrices of the system model.
The polytopic uncertainty has been widely used in the
problems of robust control and filtering for uncertain
systems (see, for instance, [4], [10] and the references
therein), and many practical systems possess parameter
uncertainties which can be either exactly modeled or
overbounded by the polytope R.
Remark 8: Theorem 4 solves the robust H∞ filtering

problem for 2-D stochastic systems with polytopic
uncertain matrices. It is worth noting that the ob-
tained result are based on Theorem 2, which is an
improved version of the bounded real lemma obtained
in Theorem 1. Since Theorem 2 has decoupled the
product terms involving the positive definite matrices,
the parameter-dependent Lyapunov stability idea has
been incorporated into the filter design in the sense that

different positive definite matrices Pi =
∙
P1i P2i
∗ P3i

¸
and Qi =

∙
Q1i Q2i
∗ Q3i

¸
are entailed for each vertex of

the polytopeR. Now, let Ω̄(λ) =Ps
i=1 λiΩi denotes any

given point of the polytope R, where λ := (λ1, . . . ,λs)
is a vector of dimension s. If the LMIs in Theorem 4 are
solvable, then it is not difficult to show that the positive
definite matrices for Ω̄(λ) can be recovered by P (λ) =Ps
i=1 λi

∙
P1i P2i
∗ P3i

¸
, Q(λ) =

Ps
i=1 λi

∙
Q1i Q2i
∗ Q3i

¸
,

which are dependent of the parameter λ.

B. Norm-Bounded Uncertain Case

An alternative way of dealing with uncertain systems
is to assume that the deviation of the system parameters
from their nominal values is norm-bounded, which has
also been widely used in the robust control and filtering
problems (see, for instance, [2], [21] and the references
therein). In our case, we make the following assumption.
Assumption 4: Assume that the matrices A1, A2, B1,

B2, M1, M2, N1, N2, C, D of system S in (1) have the
following form

A1 = A10 +∆A1, A2 = A20 +∆A2, (12)

B1 = B10 +∆B1, B2 = B20 +∆B2,

M1 = M10 +∆M1, M2 =M20 +∆M2,

N1 = N10 +∆N1, N2 = N20 +∆N2,

C = C0 +∆C, D = D0 +∆D

where A10, A20, B10, B20, M10, M20, N10, N20, C0,
D0 are known constant matrices with appropriate di-
mensions. ∆A1, ∆A2, ∆B1, ∆B2, ∆M1, ∆M2, ∆N1,
∆N2, ∆C, ∆D are real-valued time-varying matrix
functions representing norm-bounded parameter uncer-
tainties satisfying⎡⎢⎢⎢⎢⎣

∆A1 ∆B1
∆A2 ∆B2
∆M1 ∆N1
∆M2 ∆N2
∆C ∆D

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
U1
U2
U3
U4
U5

⎤⎥⎥⎥⎥⎦∆i,j £ W1 W2

¤

where ∆i,j is a real uncertain matrix function with
Lebesgue measurable elements satisfying

∆Ti,j∆i,j ≤ I
and U1, U2, U3, U4, U5,W1,W2 are known real constant
matrices of appropriate dimensions. These matrices
specify how the uncertain parameters in ∆i,j enter the
nominal matrices A10, A20, B10, B20, M10, M20, N10,
N20, C0, D0.
Now we present the robust H∞ filtering result for

system S with norm-bounded uncertainties in the fol-
lowing theorem.
Theorem 5: Consider system S in (1) with Assump-

tion 4. Then an admissible robust H∞ filter of the form
F in (3) exists if there exist n × n matrices P1 > 0,



Q1 > 0, R, n × k matrices P2, Q2, F , k × k matrices
P3 > 0, Q3 > 0, X, Ḡ1, Ḡ2, k ×m matrices K̄1, K̄2,
p×k matrix L̄ and scalar ² > 0 satisfying LMIs (9) and⎡⎢⎢⎢⎢⎢⎢⎣

Υ1 0 0 Γ2 Γ3 Γ10
∗ Υ1 0 Γ4 Γ5 Γ11
∗ ∗ −I Υ6 0 0
∗ ∗ ∗ Γ7 Γ8 0
∗ ∗ ∗ ∗ Γ9 0
∗ ∗ ∗ ∗ ∗ −²I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0
where Υ∗ is the same as in Theorem 3 and

Γ2 =

∙
RTM10 0 RTM20 0
FTM10 0 FTM20 0

¸
,

Γ3 =

∙
RTN10 RTN20
FTN10 FTN20

¸
,

Γ4 =

∙
RTA10 +EK̄1C0 EḠ1
FTA10 + K̄1C0 Ḡ1

RTA20 +EK̄2C0 EḠ2
FTA20 + K̄2C0 Ḡ2

¸
Γ5 =

∙
RTB10 +EK̄1D0 RTB20 +EK̄2D0
FTB10 + K̄1D0 FTB20 + K̄2D0

¸
,

Γ8 =

⎡⎢⎢⎣
²WT

1 W2 0
0 0
0 ²WT

1 W2

0 0

⎤⎥⎥⎦ ,

Γ7 = diag

⎧⎪⎪⎨⎪⎪⎩
∙
Q1 − P1 + ²WT

1 W1 Q2 − P2
∗ Q3 − P3

¸
,∙ −Q1 + ²WT

1 W1 −Q2
∗ −Q3

¸
⎫⎪⎪⎬⎪⎪⎭ ,

Γ9 = diag
©¡−γ2I + ²WT

2 W2

¢
,
¡−γ2I + ²WT

2 W2

¢ª
,

Γ10 =

∙
RTU3 RTU4
FTU3 FTU4

¸
,

Γ11 =

∙
Ξ1 Ξ2
Ξ3 Ξ4

¸
=

∙
RTU1 +EK̄1U5 RTU2 +EK̄2U5
FTU1 + K̄1U5 FTU2 + K̄2U5

¸
V. Concluding Remarks

The problem of H∞ filtering for 2-D systems with
stochastic perturbations is investigated in this paper.
Both full-order and reduced-order filters are designed in
a unified framework. Sufficient conditions are obtained
for the existence of desired filters in terms of LMIs,
and the filter design is cast into a convex optimization
problem. These results are further extended to more
general cases whose system matrices also contain para-
meter uncertainties represented by either polytopic or
norm-bounded approaches.
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