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Abstract— In this paper we tackle the problem of de-
coupling the dynamics of closely spaced microcantilevers
by using feedback control. In particular, the device
we consider consists of two electrostatically actuated
cantilevers, that are coupled both mechanically and
electrostatically. For this pair, which is described by
a time-varying periodic system of equations, we design
an optimal H∞ observer, based on the measurement of
the current induced on the cantilevers by the voltage
applied. The estimate of the cantilevers displacement
is then used to generate the control signal that effec-
tively decouples their dynamics. Simulation results are
provided that demonstrate the efficacy of the control
scheme proposed.

I. INTRODUCTION

Over the past years, research in the field of scanning
probe technology and electro-mechanical devices in
general, has been characterized by two main trends,
namely miniaturization and parallelizing. Indeed, the
use of array architectures of micro probes not only
significantly increases the throughput of the device,
it enhances its functionality as well, allowing for
more complex, multipurpose instruments. Examples
of such devices can be found in data storage and
retrieval applications [1], biosensors [2], and multi-
probe scanning devices [3] to cite but a few.

Currently, these multi-probe devices are designed
with large spacing between the individual elements.
This essentially decouples the dynamics of the indi-
vidual probes, that can be considered to behave as
isolated units. The drawback of this configuration is,
of course, a decrease in the potential throughput of the
system.

The device that we consider in this paper consists
of a pair of closely spaced microcantilevers, that can
be independently actuated and sensed. The extension
to the case of an array of tightly packed cantilevers
is not conceptually difficult and is obtained as a
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generalization of the analysis we present here. In our
design each microcantilever constitutes the movable
plate of a capacitor and its displacement is controlled
by the voltage applied across the plates. We have
preferred capacitive actuation over other integrated
schemes (e.g. piezoelectric [4], [5], [6], piezoresistive
[7], [8], thermal [9]) because, as we show in this
paper, it offers both electrostatic actuation as well as
integrated detection, without the need for an additional
position sensing device.

The dynamical behavior of the cantilever pair has
been characterized in detail elsewhere [10]. Here we
just recall the main results for the readers’ benefit.
In [10] it was demonstrated that the close spacing and
the fact that the cantilevers are connected to a common
base introduces a coupling in their dynamics, which
is both electrostatic and mechanical. Moreover, it was
shown that the system is described by a pair of second
order periodic differential equations.

In this paper we focus on the problem of design-
ing a controller able to ”electronically” decouple the
cantilevers. In fact, the approach that we propose, an
observer based feedback controller, involves at the
same time the synthesis of a novel sensing scheme
to reconstruct the displacement of the cantilevers : a
dynamical state observer, whose input is the current
through the cantilevers. By using an optimal observer,
or by tuning the observer gains, it is conceivable that
a high fidelity position measurement can be obtained,
thus improving resolution in atomic force microscopy
applications. The results shown in Section 3 prove our
claim.

We formulate and solve the optimal observer prob-
lem as an H∞ filtering problem for periodic systems.
Simulation results demonstrate its excellent perfor-
mance in estimating the cantilevers displacement. As
a second step, this estimate is used by a feedback
controller to decouple the dynamics of the cantilevers,
so that they can be effectively operated as independent
units, in spite of the physical coupling. The perfor-
mance of the decoupling controller is tested in simu-
lations, which indeed demonstrate a very satisfactory



performance, even in the presence of noise.
The paper is organized as follows: In Section 2

we describe the mathematical model of the electro-
statically actuated cantilever pair. In Section 3 we
formulate and solve the optimal observer problem. In
Section 4 we design the decoupling controller based
on the observer estimate of the cantilever displace-
ment. Simulation results are provided to prove the
efficacy of the control scheme proposed. Finally, we
present our conclusions in Section 5.

II. MODEL DESCRIPTION

Fig.(1) shows the geometry of our device. It consists
of two microbeams connected to the same base, each
forming a micro-capacitor, with the second (rigid)
plate placed underneath the (movable) cantilever vis-
ible in the picture. The vertical displacement of each
cantilever can be controlled by applying a voltage
across the plates. Though each cantilever is indepen-

Fig. 1. SEM micrograph of the device. The insets show details of
the mechanical connection to the base and between the cantilevers.

dently actuated, its dynamics are influenced by the
presence of the other cantilever. More precisely, the
coupling is both mechanical, because the microbeams
are connected to the same base, and electrical, due to
the fringing fields generated by the capacitor nearby.

The force acting on each microbeam can be split
into several components, so that the overall linearized
equation of motion for the vertical displacement zi,
i = 1, 2, of each cantilever can be written as

z̈i + νiżi + ω2
rizi = Fa,i + Fmech,i + Felec,i (1)

where νi and ωri are respectively the normalized
damping coefficient and the natural resonant frequency

of the i-th cantilever. Here

Fa,i =
εoA

2md2
(1 + 2

zi

d
)V 2

i

expresses the attractive force between the capacitor
plates of the i-th cantilever, with d gap between the
electrodes, A area of the capacitor plates, m mass, and
Vi voltage applied.

Fmech,i = Γ(zi − zj)

represents the mechanical coupling force, modeled as
a spring like force. Due to the symmetry of the device,
the coefficient of mechanical coupling Γ is the same
for both cantilevers.

Felec,i = [KiiV
2
i + Ki,jViVj + Kj,jV

2
j ](zi − zj)

is the linearized vertical component of the electro-
static interaction force, derived from a point charge
model. The interested reader can find in [10] the
details regarding the derivation of the model and its
experimental validation.

For the special case of Vi = Voi cos ωit, and for
small values of the amplitude Voi, we can neglect the
time varying terms in Eq. (1) and rewrite it as

z̈i + νiżi + ω2
i zi + γ1zj = b1V 2

i , (2)

where ω2
i = ω2

ri − Γ − (KeV 2
oi + KT ), γ1 = Γ +

KT , KT = (K11V 2
o1 + K12Vo1Vo2 + K22V 2

o2)/2, b1 =
Ked/2 and Ke = εoA/(md3).

We consider the current through the cantilevers as
the output yi of the system

yi = ii(t) =
d

dt
(CiVi) ≈ c1i(t)zi + c2i(t)żi + vf (t),

where the last term represents the first order approxi-
mation of yi, with c1i(t) = − εoAVoiwi

d2 sin ωit, c2i(t) =
εoAVoi

d2 cos ωit, and vf (t) = εoAVoiwi

d sin ωit. Note that
the peculiar dependence of the output on the input
signal forces us to treat this system as time varying,
even though in the case of small input signals the state
equations are time invariant.

III. OPTIMAL OBSERVER DESIGN

The dependence of the output on the input signal,
as illustrated in the previous paragraph, makes the
system time varying. Moreover, if the inputs have
different, non commensurable frequencies, the coupled
equations are not even periodic. This makes the design
of the observer for the coupled system much harder,
since very few theoretical results are available for
general time varying systems. We claim that this



Cantilever 1 Cantilever 2

Observer1 Observer2

x2

x1u1 u2

y1 y2

x1̂ x2̂

Fig. 2. A schematic of the observer. The dashed lines represent
the coupling interaction.

complication is unnecessary and this section is devoted
at proving it.

Fig.(2) is a schematic of the observer we propose for
the cantilever pair. The subsystems corresponding to
the observers are designed for each cantilever as if they
were decoupled, i.e. treating the coupling variables zj

in (2) as if they were exogenous inputs. Notice that
in this fashion not only we can recast the problem in
the framework of periodic systems theory. At the same
time we gain flexibility, in the sense that the design
does not depend on the number of units (cantilevers)
considered and can be easily extended to consider the
case of an array of microcantilevers.

For a single cantilever the observer problem can be
formulated, in the LFT framework, as an H∞ filter-
ing problem [11], by defining the regulated variable
z̃ = z − ẑ (estimation error), and considering the
generalized plant

Ggen :=


 A [M 0] 0

I 0 -I
C(t) [0 N] 0


=


 A B1 0

C1 0 D12

C2(t) D21 0


,

(3)
where the exogenous input w = [d n]T represents

process and measurement noise, the matrices A, C(t)
are derived from (2) and the input u = ẑ is the output
of the observer system.

In this framework the problem amounts at finding
a dynamical system Gobs such that the H∞ norm of
the transfer function Tz̃w from w to z̃ is minimized.
In particular it has been proved [12] that if the time-
varying system has the structure of (3), then Gobs is
a standard observer, whose gain L(t) comes from the
solution of a differential Riccati equation,

Ṗ (t)=A(t)P (t) + P (t)A(t)′ − (4)

−P (t)[C(t)′R−1C(t) − 1
γ2

I]P (t) + B(t)B(t)′.

More precisely, if the periodic non-negative definite
solution of this equation, P (t), is stabilizing, the
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Fig. 3. Optimal observer performance. The parameters for the
cantilevers are as in [10]. The dashed lines represent the observer
estimate.

optimal filter is given by

˙̂z = A(t)ẑ + P(t)C(t)′[y(t) − C(t)ẑ].

This procedure requires to compute the periodic
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Fig. 4. Components of P1(t) and P2(t). The solid line represents
the first component, the dashed line the second (and third) and the
dotted line the fourth.

stabilizing solution of (4). In order to do so, we have
defined the mapping P : Rn×n → Rn×n,

P(M) = M − P (T ),

where P (T ) is the solution, computed at time T of
equation (4), with initial condition P (0) = M . If M
is a matrix corresponding to any of the steady state
periodic solutions, then P(M) = 0. Thus the problem
is converted to finding the fixed points of this equation.
This is done numerically by using the secant method
and defining the iterative scheme :

Mk+1 = Mk − [Mk− Mk−1] ·
[P(Mk)− P(Mk−1)]

−1 P(Mk).

At this point it should be noted that the fact that the
single optimal observers have stable error dynamics
is not sufficient to guarantee that when combined as



in Fig.(2) they remain stable. If we denote by e1, e2

the estimation errors on the state variables of the first
and second cantilever respectively, their dynamics are
described by the following equations

ė1 = [A − P (t)C ′(t)C(t)]e1 + Ge2,
ė2 = Ge1 + [A − P (t)C ′(t)C(t)]e2

i.e. they are coupled. G depends on the coupling
coefficient γ1. By means of the small gain theorem
we can claim the stability of this system, as long as
the norm of the two error subsystems is small enough,
condition that can be included in the optimal problem.

Fig.(3) is a simulation of the performance of the
observer obtained with the procedure outlined above.
Fig.(4) shows the components of P1(t) and P2(t),
obtained as a solution to (4) for γ = 10 and the
parameters corresponding respectively to cantilever 1
and 2 as identified in [10]. In Fig.(3) the cantilevers are
excited at their resonant frequency, which is assumed
to be different. The other parameters of the simulation
are reported in the figure. Observe the fast convergence
of the estimate within few tens of nanometers from the
exact value.

IV. THE DECOUPLING CONTROLLER

Observer1 Observer2x1̂

Cantilever 1 Cantilever 2

x2

x1u1 u2

y1 y2

x2^

Control 1 Control 2

+ +

Fig. 5. Schematic of the observer based decoupling controller.
The dashed lines represent internal coupling.

It is evident that in order to increase the throughput
of a multi probe device, it is desirable to have the
largest number of probes in the smallest possible
space. On the other side, the proximity of the probes
induces coupling in their dynamics, which increases
the complexity of the overall device and can deterio-
rate its performance. For these reasons multi probe
devices are currently designed with large spacings
between the individual elements.

Our approach is radically different. We believe
that one should not worry about coupling at the

design stage of the device. As a matter of fact, we
demonstrate that coupling can be removed by using an
appropriate control action. Indeed if we consider our
system, from equation (2) it is clear that we would be
able to cancel out the effects of coupling if we could
generate an input signal of the form

Vi(t) =
√

VDC + VAC cos(ωit) +
γ1

b1
zj ,

where the DC offset needs to be large enough so that
Vi is always well defined. Note that this does not
represent an unfeasible constraint since, in the linear
regime of operation, both zj and VAC are small. This
strategy, however, requires the direct measurement of
zj which is something we want to avoid, since it
requires a cumbersome apparatus (see optical lever
methods commonly used in AFM, or scanning vibrom-
etry), defeating the efforts of reducing the scale of the
device.
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Fig. 6. Steady state oscillation of Cantilever 1 (a) and Cantilever
2 (b) and detail of the transient when the controller is switched
on. The solid line is the cantilever oscillation, the dotted line its
estimate. Notice the fast transient of the observer.

The method that we propose is represented schemat-
ically in Fig.(5). Here the i-th controller uses an
estimate of the displacement of the j-th cantilever,
produced by the corresponding observer, so that the
input signal is

Vi(t) =
√

VDC + VAC cos(ωit) +
γ1

b1
ẑj .

Notice that, given the dependence of the current from
the input, this choice of control signal represents a
problem for the synthesis of the optimal oberver gain.
In fact, it requires to know a priori ẑj . On the other



side, in the linear regime of operation of the device,
this signal is much smaller than VDC and VAC , so that
we can neglect it in the computation of P (t), without
compromising the performance of the observer.

Fig.(6) shows the result of a simulation where one
of the cantilevers (Cantilever 1) is excited close to
its resonance frequency (VDC = .1V , VAC = 10mV ,
f1 = 50kHz), while the other has a constant input
(VDC = .1V ). In particular, we show the instant when
the observer/controller is switched on. Notice how
prior to this time, as a consequence of coupling, both
cantilevers are oscillating (at the same frequency).
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Fig. 7. Oscillation of Cantilever 1 (a) and Cantilever 2 (b) after
the controller is switched on, showing the controller transient. This
longer transient is dominated by the system’s time constant.
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Fig. 8. Comparison between the decoupled cantilevers oscillations
and equal single (uncoupled) cantilevers subject to the same
external inputs : a) Cantilever 1, b) Cantilever 2.

Fig.(7) shows the transient of the controller. In
spite of the very fast response of the observer, whose

estimation error goes to zero almost instantaneously,
the time constant of the controller is much longer. This
is due to the fact that, after removing the coupling,
the evolution of each cantilever is dictated by its own
time constant, and because of its very lightly damped
modes, it takes some time to reach steady state.

Fig.(8) is a comparison of the steady state oscil-
lation of the now decoupled cantilevers, with the os-
cillation that isolated (uncoupled) identical cantilevers
would exhibit if excited by the same input. Notice
the excellent performance of the decoupling controller,
confirmed also in Fig.(9), which shows the decoupling
error, defined as the difference between the outputs of
the corresponding coupled and uncoupled cantilevers
: at steady state this error amounts only to few pm.

0 10 20 30 40
−400

−200

0

200

400

 P
o

si
ti

o
n

 1
 E

rr
o

r 
[n

m
]

39.9 39.92 39.94 39.96
−5

0

5
x 10

−3

0 10 20 30 40
−300

−200

−100

0

100

200

300

 P
o

si
ti

o
n

 2
 E

rr
o

r 
[n

m
]

 Time [ms]
39.9 39.92 39.94 39.96

−5

0

5
x 10

−3

 Time [ms]

Fig. 9. Decoupling error. Note that the scale is nm.
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Fig. 10. Simulation of sensor noise : current measured on both
cantilevers.

Simulations were performed also to check the effect



of measurement noise on the performance of the de-
coupling controller. Keeping all other parameters un-
changed, noise has been added to the output signal, as
shown in Fig.(10). Fig.(11) compares the oscillations
of the coupled cantilever pair, decoupled by the con-
troller action, and the oscillation of single uncoupled
cantilevers subject to the same input. Fig.(12) repre-
sents the decoupling error. Compared to the noiseless
case, the performance of the decoupling controller is
certainly degraded, but remains satisfactory, with a
decoupling error in the order of few nm.
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Fig. 11. Comparison between decoupled and uncoupled oscilla-
tion of same cantilevers in the presence of measurement noise.
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Fig. 12. Decoupling error in the presence of measurement noise.

V. CONCLUSIONS

In this paper we have considered the problem of
designing a controller able to decouple the dynamics
of closely spaced cantilevers. The device we have

considered consists of two independently actuated
microcantilevers, that are coupled both mechanically
and electrostatically. Using a current measurement,
we have shown the design of an optimal observer,
which can reconstruct the position of the cantilevers
with very high accuracy. Based on this observer a
decoupling controller has been designed and its perfor-
mance has been verified in simulations. Even though
the performance of the control scheme has been tested
only in the case of two cantilevers, the methodology
proposed here lends itself to an easy extension to the
case of arrays of probes.
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