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Abstract— This article addresses the compensation for the
dynamics-coupling effects in piezo-actuators used for positioning in
atomic force microscopes (AFMs). Piezo-actuators are used to position
the AFM probe (relative to the sample) both parallel to the sample
surface (x-y-axes) and perpendicular to the sample surface (z-axis).
During AFM operation, such as nanofabrication and imaging of soft
biological samples, the probe-sample distance (in thez-axis) needs to
be precisely controlled to maintain the probe-sample interaction at a
desired value; otherwise, large variation of the probe-sample distance
will result in distortions of the fabricated parts (in nanof abrication)
and can cause sample damage (in imaging soft biological samples). In
this article, we show that dynamics-coupling from thex-y-axes (the
scanning axes) to thez-axis, referred to asx-to-z dynamics-coupling,
can generate significant variations in the probe-sample distance when
operating AFM at high speed, i.e., when the sample is scannedat high
speed. We present an inversion-based approach to compensate for
these dynamics-coupling effects. Additionally, for applications where
the x-y-axes movement is repetitive (as in AFM scanning operations),
an iterative approach is proposed to further reduce the coupling-
caused positioning errors. Convergence of the iterative approach is
investigated and experimental results show that the coupling-caused
errors can be reduced to the noise level using the proposed approach.
Thus, the main contribution of this article is the development of
an approach to substantially reduce the coupling-caused positioning
errors and thereby, enable high-speed high-precision positioning of
piezoscanners used in AFMs.

I. INTRODUCTION

This article addresses a critical dynamics-coupling problem that
arises during high-speed nano-precision positioning using piezo
tube-scanners (piezoscanners). It is noted that piezoscanners are
extensively used in scanning-probe microscopes such as the atomic
force microscope(AFM). For example, in AFM applications, the
piezoscanner is used to position a probe over a sample, both
parallel to the sample surface (x-y-axes) and perpendicular to the
sample surface (z-axis). As the probe is scanned across the sample
(in the x-y-axes), the probe-sample interactions (such as probe-
sample forces) can be used (a) to investigate nano-scale surface
properties in imaging applications (e.g., [1], [2]) and (b) to modify
the surface properties in nano-fabrication applications (e.g., [3],
[4]). During such nano-imaging and nano-fabrication operations, it
is important to precisely control the probe-sample interactions be-
cause large variations in probe-sample interactions result in the dis-
tortions of the fabricated parts in nanofabrication and cause sample
damage when imaging soft biological samples. Since the probe-
sample interaction depends on the distance between the probe and
the sample (referred to as the probe-sample distance) [4], it is
important to precisely control thez-axis position during high-
speed AFM operations. However, thex-to-z dynamics-coupling,
that is the input of the scanning movement in the horizontalx-y-
axes excites the dynamics of the piezo actuator in the verticalz-
axis and generates thez-axis displacement and errors in thez-axis
positioning (i.e., variation in the probe-sample distance), resulting
in loss of precision control over the probe-sample interaction.
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These movement induced positioning errors become significant
during high-speed operation of the AFM; thus, dynamics-coupling
effects limit the throughput of AFMs. This article shows that
the dynamics-coupling effects can be effectively modeled and
compensated-for by using an inversion-based approach which
reduces the error in thez-axis positioning. Additionally, for
applications where thex-y-axes movement is repetitive (as in
AFM scanning operations), an iterative inversion-based approach
is proposed to further reduce the coupling-caused positioning
errors. Convergence of the iterative approach is investigated and
experimental results show that the coupling-caused errors can be
reduced to the noise level with the proposed approach. Thus, the
main contribution of this article is the development of an approach
to substantially reduce coupling-caused errors and thereby, enable
high-speed high-precision positioning with piezoscanners used in
AFMs.

Compensating for the coupling-caused positioning error in the
probe-sample distance (i.e.,z-axis) is important in AFM appli-
cations such as nanofabrication (to avoid distortion of fabricated
parts) and imaging of soft biological samples (to avoid sample
damage and tip contamination). For example, nano-scale parts
can be fabricated by using the AFM probe as an electrode to
induce local-oxidation [4] by applying a voltage between the AFM
probe and the surface. Since the probe-sample distance has a
dominant effect on the formation of the oxide, coupling-caused
positioning errors lead to the distortions in the size and shape of the
nanofabricated parts [4]. Similarly, precision control of the probe-
sample distance is needed to maintain small probe-sample forces
when imaging soft biological samples such as living cells with an
AFM [5], [6]. It is noted that the probe-sample force depends on
the probe-sample distance. Therefore, errors in the probe-sample
distance can lead to large probe-sample forces which cause the
AFM-probe to protrude into the soft biological sample, damage
the sample and contaminate the tip. Therefore, there is a need
to develop techniques that reduce the coupling-caused positioning
errors in high-precision AFM applications such as nanofabrication
and imaging of soft biological samples.

Accounting-for the coupling-caused positioning errors is critical
to increase AFM’s throughput because the effects of these position-
ing errors become significant as the operating speed is increased.
In particular, the coupling-caused positioning error becomes large
when the scan frequency (at which the probe is scanned over
the sample surface) is increased and approaches the vibrational-
resonant frequency of the piezoscanner. The resulting movement-
induced vibrations in the scan axes cause errors in the probe-
sample distance due to dynamics-coupling (e.g., see [7]). One
approach to avoid the dynamics-coupling effect is to constrain
the AFM operation to low speeds. However, high-speed operation
of the AFM is necessary in applications such as nanofabrication
and imaging of biological samples. For example, high-speed AFM
imaging is needed to study the time evolution of fast biological
processes such as the rapid dehydration and denaturation of colla-



gen and the movement of human cells [5], [6]. Lack of sufficiently
high-speed AFM results in image distortions because the sample
topography and properties can change significantly during the time
needed to acquire an image. Similarly, it is important to increase
the AFM-operating speed to increase the throughput of AFM-
based nanofabrication. Therefore, reducing the coupling-caused
positioning errors will enable the development of high-throughput
AFMs.

Compensating for the dynamics-coupling-caused positioning
error is challenging because AFM-systems tend to have low
gain margins. For example, feedback based techniques, such as
the standard Proportional-Integral-Derivative (PID) or Integral (I)
controller [8], can be used to reduce piezo positioning errors
such as dynamics coupling effects [7]. In general, high-gain
feedback can lead to substantial reduction of the positioning
errors. However, feedback techniques have had limited success
in compensating for piezo-positioning errors because the low gain
margin of the piezoscanner limits the maximum feedback gain in
order to ensure the stability of the closed-loop system [9], [10].
Recent development of advanced feedback controllers has lead to
substantial improvement in AFM probe positioning [11], [12],
[13]; however, the overall performance of feedback controllers
continues to be limited by the low-gain-margin of piezoscanners.

The low-gain-margin limitation of feedback controllers can be
alleviated by augmenting the feedback controller with feedforward
inputs [13], [14]. For example, in the inversion-based feedforward
approach, the dynamics of the piezoscanner is modeled and then
inverted to find an input that achieves precision positioning of
the piezoscanner [15], [16]. It is noted that the addition of
this inversion-based feedforward input can improve the tracking
performance of any feedback controller — even in the presence
of computational errors due to modeling uncertainties (the size of
acceptable uncertainties has been quantified in Ref. [17]). Previous
results show that the feedforward input can be used to account
for positioning errors in the scan axes (e.g., [14]). This article
shows that the feedforward approach can also be used to reduce the
coupling-caused positioning errors in verticalz axis and thereby, to
reduce the variations in the probe-sample distance. Additionally,
we use an inversion-based iterative control technique to further
reduce the coupling-caused errors in the probe-sample distance
in applications where these errors are repetitive. For example,
during AFM imaging, the piezoscanner is used to repetitively scan
the AFM probe over the sample, back and forth, resulting in the
repetitivecoupling-caused positioning errors in thez-axis — we
show that these repetitive coupling errors can be substantially
reduced using an iterative control approach. In particular, we
present a frequency domain interpretation for the convergence of
an inversion-based iterative approach proposed in [18], [19] and
use the analysis to design the iteration procedure. The inversion-
based iterative feedforward approach was implemented on an
example piezoscanner and experimental results are presented to
show that the dynamic-coupling-caused positioning error can be
significantly reduced, close to the noise level of the sensors, by
using the proposed iterative control method.

The rest of the article is organized as follows. The coupling
problem is formulated in Section 2. The inversion-based iterative
control algorithm and the convergence analysis are presented
in Section 3. The proposed control technique is applied to an
example piezoscanner and experimental results are presented with
discussions in Section 4. Our conclusions are in Section 5.

II. DYNAMICS-COUPLING EFFECTS INPIEZOSCANNER

A. Modeling the Dynamics-Coupling Effect

The piezoscanner is used to spatially position and scan the
AFM-probe relative to the sample surface. The piezoscanner
enables positioning of the AFM probe both parallel (along the
x andy-axis) and perpendicular (along thez-axis) to the sample
surface. Coupling-caused positioning errors in thez-axis can arise
due to the scanning movement in thex andy axes. However, the
effect of y-axis movement on thez-axis position tends to be less
significant because the scan frequency in they-axis is substantially
smaller than the scan frequency in thex-axis. Therefore, the
most prominent movement-induced coupling vibration in AFM
is caused in thez-axis due to the scanning movement in the
x-direction. Although the inversion-based approach can be used
to correct movement-induced vibrations from both x and y scan
axes, we focus this article on the reduction of thex-axis coupling
effects to illustrate the proposed approach. Therefore, thez-axis
displacement of the piezoscannerz(t) is modeled as the linear
combination of the displacements due to thez-axis input uz(t)
and the coupling effect from thex-axis inputux(t), i.e., thez-
axis displacement can be written in the frequency domain as

z(jω) = Gzz(jω)uz(jω) + Gzx(jω)ux(jω)

, zz(jω) + zx(jω) (1)

where z(jω), uz(jω), ux(jω) are the Fourier Transform of
z(t), uz(t) and ux(t) respectively,Gzz(jω) = zz(jω)/uz(jω)
is the transfer function that describes the linear dynamics in the
z-axis direction, andGzx(jω) = zx(jω)/ux(jω) is the transfer
function that describes thex-to-z coupling dynamics.
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Fig. 1. Bode plots of the example piezoscanner:x-to-z coupling dynamics
Gzx(jω) (solid line) and thez-to-z dynamicsGzz(jω) (dashed line)

Dynamics-Coupling Becomes Significant During High-
Speed Scanning.The increase inx-to-z dynamics-coupling
effect with scan frequency can be evaluated by comparing the
relative magnitudes of the frequency responses of thex-to-z
coupling dynamicsGzx(jω) at different scan frequencies. The
frequency responses (Gzx(jω) and Gzz(jω)), for the example
piezoscanner studied in this article, are shown in Fig. 1. Note
that the x-to-z dynamics-coupling effect is relatively small at
small scan frequencies. For example, at10Hz, the magnitude
of the x-to-z coupling dynamicsGzx(jω) is −39.7 db which is
about 52% of the magnitude−34.1db of the z-to-z dynamics
Gzz(jω). However, as scan frequency increases, the magnitude
of x-to-z coupling dynamicsGzx(jω) becomes substantially
larger than thez-to-z dynamics Gzz(jω). For example, at



313 Hz (the first resonant peak in Fig. 1), the magnitude
of coupling effect Gzx(jω) is −8.5 db, which is 6.5 times
larger than the magnitude−24.8 db of the z-to-z dynamics
Gzz(jω). The coupling effect has increased from−39.7 db
to −8.5 db as the scan frequency is increased from10Hz to
313Hz; therefore, thex-to-z coupling effect becomes significant
and should be compensated-for as the scan frequency is increased.

Dynamics-Coupling Can Cause Large Errors in the z-axis
Displacement. The relatively large magnitude of thex-to-z
dynamics-coupling effects is show in Figure 2, which presents
the x-axis displacement and the corresponding coupling-caused
z-axis displacement. For a100Hz, 30 µm (peak-to-peak) scan
in the x-axis (see upper plot in Fig. 2), the coupling-caused
z-axis displacement is about1 µm (bottom plot in Fig. 2).
It is noted that thex-axis scan range of30 µm is consistent
with the scan range needed to image relatively-large biological
sample such as living cells [1]. However, the1 µm coupling-
caused positioning errors in thez-axis is not acceptable in nano-
positioning applications such as AFM imaging of soft biological
samples that requires nanometer-range control of the probe-sample
distance [5]. Therefore, the experimental data in Fig. 2 shows that
the x-to-z dynamics coupling must be accounted-for to enable
high-precision high-speed positioning with piezoscanners.
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Fig. 2. Experimental Results:x-axis displacement with a scan range
of 30 µm (upper plot) and the correspondingx-to-z coupling-caused
positioning error in thez-axis of the piezoscanner.

B. Dynamics-Coupling Problem Formulation

An inversion-based feedforward/feedback approach is used to
compensate for thex-to-z dynamics-coupling. The control scheme
is shown in Fig. 3, where thez-axis control inputuz(jω) is the
combination of the feedback inputufb(jω) and the feedforward
input uff (jω),

uz(jω) = ufb(jω) + uff (jω) (2)

From Eqs. (1,2) (and Fig. 3), thez-axis outputz(jω) can be re-
written as

z(jω) = Gff (jω)uff (jω) + Ĝzx(jω)ux(jω) + Gfb(jω)zd(jω)

, zff (jω) + zx(jω) + ẑd(jω)
(3)

wherezd(jω) is the desiredz-axis position,̂zd(jω) is the achieved
z-position in the absence of thex-to-z dynamics-coupling, and

Gfb(jω) , Gzz(jω)Gc(jω)Sz(jω) (4)

Gff (jω) , Gzz(jω)Sz(jω) (5)

Ĝzx(jω) , Gzx(jω)Sz(jω) (6)

whereSz(jω) is thesensitivityof the closed-loop system,

Sz(jω) ,
1

1 + Gzz(jω)Gc(jω)
. (7)
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Fig. 3. The control scheme to compensate thex-to-z dynamics-coupling
of the piezoscanner, whereGzz(jω) and Gzx(jω) are the transfer
functions of thez-to-z dynamics andx-to-z dynamics, respectively

This article focuses on the development of the feedforward
input uff (t) to compensate for thex-to-z dynamics-coupling.
This feedforward input can be implemented with any feedback
controller Gc such as the more advanced feedback approaches
presented in Refs. [10-12].
Dynamics-Coupling Compensation ProblemFor a given lateral
x-axis inputux(jω) and a desired verticalz-axis trajectory, the
dynamics-coupling compensation problem is to find thez-axis
feedforward control inputuff (jω), such that the coupling-caused
z-axis displacement can be removed when this control input
uff (jω) is applied, i.e.,

Gff (jω)uff (jω) + Ĝzx(jω)ux(jω) = zff (jω) + zx(jω) = 0
(8)

III. I NVERSION-BASED DYNAMICS-COUPLING

COMPENSATION

In this section, we present an inversion-based approach to com-
pensate for thex-to-z dynamics-coupling. First, the the feedfor-
ward input is obtained by inverting the dynamics of piezoscanner.
Second, this initial inverse input is used as an initial condition for
an iterative procedure which can be used in applications where
the lateralx-axis operation isrepetitive. Then, the convergence of
the iterative approach is analyzed and used to select parameters
of the iteration algorithm.

A. Inversion-based Feedforward Control

The inverse input to compensate for thex-to-z dynamics-
coupling can be obtained by using Eq. (8) as

uff,i(jω) = −G−1
ff (jω)Ĝzx(jω)ux(jω) (9)

Exact cancelation of the coupling-causedz-axis displacement can
be obtained, provided that there is no error in the dynamics models
Gff (jω) andĜzx(jω). Even in the presence of modeling errors,
this inversion-based feedforward method can reduce the coupling-
causedz-axis displacement if the modeling error is small —
as noted before, the acceptable modeling error for applying the
inversion-based feedforward input has been quantified in [17].

B. Inversion-based Iterative Control

To account for modeling errors in the computation of the inverse
input in Eq. (9), we present a frequency domain interpretation for
the convergence of an inversion-based iterative approach proposed



in [18], [19] and use the analysis to design the iteration procedure.
The iterative control law is given as

uff,0(jω) = 0, (10)

uff,k(jω) = uff, k−1(jω) (11)

+ρG−1
ff (jω) [zff (jω) − zff,k−1(jω)] (k ≥ 1)

whereuff,0(jω) is the initial condition,ρ ∈ ℜ is the iteration
coefficient used at each iteration,zff (jω) is defined in Eq. (8),
uff,k(jω) is the Fourier Transform of thez-axis feedforward input
at thekth iteration,uff,k(t), andzff,k(jω) is the corresponding
z-axis displacement.

Remark 1:During repetitive operations,zff (jω) = −zx(jω)
can be obtained from experimental measurements when thex-axis
input ux(jω) is applied alone.

Remark 2:The inverse feedforward input from Eq. (9) can be
chosen as the initial inverse inputuff,0(jω) for the iteration
process. Such choice of initial value of the iterative control input
can reduce the number of iterations.

C. Convergence Analysis for the Iterative Control Law

In the following, the convergence of the iterative learning
control law Eqs. (10, 11) is quantified in terms of the error
in modeling the system’s dynamics. Let the variation∆G(jω)
between the model of the system’s dynamicsGff (jω) and the
actual system’s dynamicsGff,o(jω) be described by

∆G(jω) = Gff (jω)−1Gff,0(jω)

=
rff,0(ω) ejθ(ω)

rff (ω)ejθ̃(ω)
= ∆r(ω)ej∆θ(ω) (12)

where∆r(ω) represents the magnitude variation and∆θ(ω) ∈ ℜ
represents the phase variation at frequencyω. The convergence
of the iterative control law (Eq. (11)) is given by the following
lemma.

Lemma 1:Let the actual system dynamicsGff,o(jω) and its
model Gff (jω) be stable, and letω be a frequency where
both Gff,o(jω) and Gff (jω) do not have zeros at±jω (i.e.,
∆r(ω) > 0 in Eq. (12)). Then, the output converges to the desired-
feedforward trajectory, i.e.,limk→∞ zff,k(jω) = zff (jω), by
using the iterative control law (Eq. (11)), if and only if

1) The magnitude of phase variation is less thanπ/2, i.e.,
|△θ(ω)| < π/2, at frequencyω;

2) The iteration coefficientρ in Eq. (11) is chosen as

0 < ρ < 2 cos(∆θ(ω))
∆r(ω) (13)

Proof: The iterative control law Eq. (11) can be re-written using
Eq. (12) as

uff,k(jω)

= uff,k−1(jω) + ρG−1
ff (jω) [zff (jω) − zff,k−1(jω)]

= uff,k−1(jω) + ρG−1
ff (jω) ×

[Gff,0(jω)uff (jω) − Gff,0(jω)uff,k−1(jω)]

= uff,k−1(jω) + ρ∆G(jω) [uff (jω) − uff,k−1(jω)](14)

Then, for any givenω ∈ ℜ, the difference between the feedforward
input uk(jω) computed atk-th iteration and the desired input,
uff (jω) can be written using Eq. (14) as,

|uff,k(jω) − uff (jω)| = |uff,k−1(jω) − uff (jω)

− ρ∆G(jω) [uff,k−1(jω) − uff (jω)] |

= |uff,k−1(jω) − uff (jω)||1 − ρ∆G(jω)|

= |uff,k−1(jω) − uff (jω)||1 − ρ∆r(ω)ej∆θ(ω)|(15)

Repeated application of Eq. (15) leads to

|uff,k(jω) − uff (jω)|

= |1 − ρ∆r(ω)ej∆θ(ω)|k|uff,0(jω) − uff (jω)| (16)

Therefore, the iterative control law converges, i.e.,

lim
k→∞

|uff,k(jω) − uff (jω)| = 0

if and only if the mapping coefficient|1 − ρ∆r(ω)ej∆θ(ω)| < 1,
or equivalently,

|1 − ρ∆r(ω)ej∆θ(ω)|2

= |1 − ρ∆r(ω)[cos(∆θ(ω)) + j sin(∆θ(ω))]|2

= (1 − ρ∆r(ω) cos(∆θ(ω)))2 + (ρ∆r(ω) sin(∆θ(ω)))2

= 1 − 2ρ∆r(ω) cos(∆θ(ω)) + ρ2(∆r(ω))2 < 1 (17)

Eq. (17) can be simplified as

ρ (ρ∆r(ω) − 2 cos(∆θ(ω))) < 0 (18)

Since ∆r(ω) > 0, the Eq. (18) is satisfied if and only if 1)
cos(△θ(ω)) 6= 0, i.e., △θ(ω) 6= π/2 and its multiples; 2) the
iterative coefficientρ is choosen as

0 < ρ < 2 cos(∆θ(ω))
∆r(ω)

, for cos(∆θ(ω)) > 0
2 cos(∆θ(ω))

∆r(ω)
< ρ < 0, for cos(∆θ(ω)) < 0

(19)

However, since the variation of system dynamics is continuous, the
phase variation with a magnitude larger thanπ/2 will result in the
sign-flip of the functioncos(△θ(ω)) (i.e., fromcos(△θ(ω)) > 0
to cos(△θ(ω)) < 0, or vice versa) during the iteration process.
Note that, this sign-flip is not known a priori because it can be
caused by unknown factors such as disturbances. Therefore, it is
not realistic to changeρ to accommodate such sign-flip during the
iteration process. This completes the proof of Lemma 1.

Lemma 2:Let Sω be set of frequencies where the modeling
error satisfies the following

Sω , {ω | 0 < ∆r(ω) and |∆θ(ω)| ≤ ∆θmax < π/2}

then the iterative control law converges if the iteration coefficient
ρ(ω) is chosen as

0 < ρ(ω) < ρmax, for ω ∈ Sω

ρ(ω) = 0, otherwise
(20)

where

ρmax = inf
ω∈Sω

2 cos(∆θ(ω))

∆r(ω)
.

Proof: The convergence of the iteration for frequencyω in the
setSω follows from Lemma 1; and the iteration converges in the
first step ifρ(ω) = 0.

IV. EXPERIMENTAL EXAMPLE : PIEZOSCANNER

The proposed inversion-based approach to compensate for the
x-to-z dynamics-coupling is applied to an example piezoscanner
and experimental results are presented.

A. Experiment Set Up and Modeling

Experiment Set Up The piezoscanner studied in the experi-
ment is shown in Fig. 4. The displacements at the end of the
piezoscanner, in thex-axis andz-axis direction, are measured by
inductive sensors. The feedback controller used to control thez-
axis is a proportion-integral (PI) controller given byGc(s) =
Kp + KI/(s + a), where the controller parameters were tuned
experimentally to reduce overshoot and rise time (Kp = 10,
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Fig. 5. The phase difference (plots (a1) and (a2)) and the magntiude
difference (plots (b1) and (b2)) between the dynamics obtained at fixed
output range of0.8 µm (dotted line),1.2 µm (solid line) and the dynamics
obtained at output range of0.2 µm. Plots (c1) and (c2) show the upper
bound ofρ(ω) computed according to Eq. (13) forω ∈ Sω andρ(ω) = 0
otherwise (see Lemma 2).

KI = 3393, anda = 10).
Modeling the Dynamics We obtained the model of thex-to-z
coupling dynamics,̂Gzx(jω), and thez-axis dynamics,Gff (jω)
experimentally by using a digital signal analyzer (DSA). To reduce
the range-dependent hysteresis effects, the linear modelsĜzx(jω)
and Gff (jω) were obtained by fixing the output-displacement
range at a low value of0.2 µm, which is about5% of the available
displacement range in thez-axis. In addition, to quantify the
magnitude and phase variation due to range-dependent effects, we
obtained thez-axis dynamics modelGff (jω) at different displace-
ment ranges. For example, the phase and magnitude variations for
output ranges of0.8 µm and1.2 µm are shown in Fig. 5; these are
used to estimate the phase and magnitude variations (∆θ(ω) and
∆r(ω)) needed to design the iterative control law (see Lemma 2).

B. Implementation and Results

Coupling Effect: Experiment Results The x-to-z dynamics
coupling caused displacement in thez-axis of the piezoscanner
is shown in Fig. 6(a) when noz-axis control input is used to
compensate for the coupling error. It is noted that the set point
for the desiredz-axis displacement was chosen to be zero for
all the experiments. Next, the reduction of the coupling effects
with the use of feedback is shown in Fig. 6(b); and the reduction
of the coupling-caused errors with the addition of the inverse
feedforwarduff (t) is shown in Fig. 6(c) (with the PI controller
on).
Implementation of the Inversion-based iterative controlNext

we further reduced the coupling-causedz-axis errors by using

the proposed iterative control law. We begin by quantifying
the iteration coefficientρ(ω) for frequencyω ∈ [0, 500] Hz
(see Fig. 5). Note that plot (a1) shows that the phase variation
∆θ(ω) in the frequency range[0, 350] Hz is less thanπ/2,
i.e., cos(∆θ(ω)) > 0 for ω ∈ [0, 350] Hz; therefore, the
maximum-valueρmax of the iteration coefficientρ(ω) can be
computed from Lemma 2. This maximum value ofρmax was 0.6
in the frequency range[0, 350] Hz; a smaller valueρ(ω) = 0.3
was chosen as the iteration constant in the frequency range
ω ∈ [0, 350] Hz for our experiment. On the other hand, plot
(a2) shows that the phase variation becomes larger thanπ/2 after
frequency around410 Hz; therefore,ρ(ω) should be chosen
as zero at those frequencies. To account for possible errors in
quantifying the phase and magnitude variations, we setρ(ω) = 0
for frequency ω ∈ [350, 500] Hz. This iteration coefficient
ρ(ω) is used to implement the inversion-based iterative control
law Eqs. (10, 11). The inverse feedforward inputuff (jω) given
by Eq. (9) is applied as the input at the initial iteration (k=0),
i.e., uff,0(jω) = uff,i(jω).

Results with the Inversion-based iterative controlThe coupling-
causedz-axis displacement is shown in Fig. 7(a) (when the
inverse feedforward inputuff (t) is applied), the results for4th

iteration and7th iteration are shown in Fig. 7, plots (b) and (c)
respectively. To quantify the reduction of the coupling-causedz-
axis displacement, the root-mean-square (RMS) error,erms, and
maximum peak-to-peak error,emax, are tabulated in Table I, where

erms =

√

[

∫ 1.1

0

(z(t) − z̄)2dt]/1.1

emax = | max
t∈[0, 1.1]

z(t) − min
t∈[0, 1.1]

z(t)| (21)

z̄ denotes the average value ofz(t) and[0, 1.1] is the time window
during which the input were applied (and outputs were measured).

C. Discussion

Note that the experimental results show that significant
coupling-caused displacement was generated in thez-axis (see
Fig. 6(a)) due to the scanning movement in the lateralx-
axis. By applying the inversion-based feedforward input, this
coupling-causedz-axis displacement was dramatically reduced
(see Fig. 6(c)). As shown in Table I, the RMS errorerms and the
maximum peak-to-peak erroremax are reduced from0.1112 µm
and 1.1696 µm to 0.0091 µm and 0.1225 µm respectively —
reductions of92% and 90% respectively. The inversion-based
iterative control can be used to further eliminate the coupling-
caused errors in thez-axis displacement. For example, the maxi-
mum erroremax due to coupling at7th iteration (see Table I) is
comparable with the noise level of the signal. Therefore, by apply-
ing the inversion-based iterative control, we substantially reduced
the coupling-causedz-axis displacement errors in piezoscanner
during high-speed positioning— from micron range to the tens
of nanometer range (which is the resolution of the inductive
sensor). Further reduction is possible by using sensors with higher
resolution such as the optical sensors used in AFMs. Therefore,
the proposed inversion-based iterative control method can be used
to enable high-speed high-precision AFM applications such as
imaging of soft biological samples and nanofabrication.

V. CONCLUSIONS

This article showed that an inversion-based feedforward control
can be used to compensate for thex-to-z dynamics-coupling errors
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Fig. 6. The coupling-causedz-axis displacement without any control (plot
(a)), with feedback PI-controller alone (plot (b)), and with the feedback
PI-controller plus inversion-based feedforward input (plot (c)).
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Fig. 7. The coupling-causedz-axis displacement by using the inversion-
based feedforward input(plot (a)), at4th iteration (plot (b)) and at7th

iteration (plot (c))(feedback controller is on in all cases).

TABLE I
z-AXIS DISPLACEMENT UNDER DIFFERENT CONTROL CONDITIONS.

Item ρ emax(µm) erms(µm)

No control N/A 1.1696 0.1112
Feedback Only N/A 0.9519 0.0917

Inversion N/A 0.1225 0.0091
1st Iter. 0.3 0.0886 0.0074
2nd Iter. 0.3 0.0581 0.0052
3rd Iter. 0.3 0.0398 0.0043
4th Iter. 0.3 0.0350 0.0044
5th Iter. 0.3 0.0288 0.0038
6th Iter. 0.3 0.0274 0.0039
7th Iter. 0.3 0.0257 0.0038

Noise Level N/A 0.0108 0.0018

in piezoscanners during high-speed positioning. Additionally, an
inversion-based iterative approach was used to further reduce
effects of unmodeled dynamics. Convergence of the iterative
approach was investigated and used to design the parameters of
the iteration algorithm. Experimental results were presented to
demonstrate (a) the presence of significantx-to-z coupling effects;
and (b) substantial reduction of such coupling caused positioning
errors (to the noise level) by using the proposed inversion-based
iterative-feedforward approach.
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