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Abstract— Parameter Governors are add-on control
schemes that adjust parameters (such as gains or offsets)
in the nominal control laws so that to avoid violation of
pointwise-in-time state and control constraints and to improve
the overall system performance. As compared to more general
Model Predictive Controllers, parameter governors tend to
be more conservative but the computational effort needed to
implement them on-line can be relatively low. In this paper
we study the properties of two particular classes of parameter
governors, namely, the feedforward governors and the gain
governors.

I. INTRODUCTION

This paper is motivated by the observation that reference
governor-like schemes [1], [2], [4], [5], [6] can adjust
parameters in nominal control laws other than the true
reference commands. In this way, generalized Parameter
Governors can be constructed that enforce pointwise-in-time
constraints and improve system performance with a rela-
tively low on-line computational effort. Figure 1 illustrates
the application of a parameter governor to a discrete-time
nonlinear system which is controlled by a nominal feedback
law dependent on a parameter:

x(t + 1) = f(x(t), u(t), r(t), θ(t)),
u(t) = uc(x(t), r(t), θ(t)). (1)

Here x is the state, r(t) is the reference command, u(t)
is the control input and θ(t) is a parameter in the control
function uc. The state vector x(t) may include both plant
states and controller states and depending on the form of
the control law and parameter governor, f may explicitly
depend on r(t) and θ(t). As Figure 1 suggests the parameter
governor is mainly intended to modify parameters, θ(t), of
the closed-loop system and not the reference command.

The basic mechanism for the adjustment of θ(t) is similar
to the reference governor: The θ(t) is selected so that
with θ(t + k) ≡ θ(t), the constraints are satisfied for
k ∈ Z+ and a cost functional is minimized. The assumption
θ(t + k) = θ(t) for k ∈ Z+ is conservative as a basis for
selecting the value of θ(t), but it helps to keep the on-line
computational effort low. Examples of parameter governors
that we subsequently study in more detail in this paper
include Feedforward Governors and Gain Governors.

A constant reference command assumption, r(t) ≡ r for
all t ∈ Z+, will be made in this paper for the analysis
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of the properties of the feedforward governor and of the
gain governor. These schemes, however, also function when
r(t) changes with time. In fact, as we discuss later, both
for the feedforward governor and for the gain governor the
adjustment of θ(t) can provide an effective mechanism for
dealing with large changes in r(t) and the augmentation of
a separate reference governor to assure feasibility may be
unnecessary.

x(t+1)=f(x(t),u(t),r(t),θ(t))
    u(t)=u  (x(t),r(t),θ(t))c
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Fig. 1. The parameter governor.

It is important to the development of both feedforward
governor and gain governor that with θ(t + k) ≡ θ(t) and
r(t + k) = r(t) for k > 0 the outputs of the system
converge to the same steady-state value, ye(r(t)), which is
independent of θ(t). This property enables the treatment of
stage-additive cost functionals that unlike the cost function-
als in [2] penalize the deviation of the system output from
the desired steady-state value, ye(r(t)), corresponding to
the actual reference command, r(t). Explicit terminal set
conditions can be avoided even though the horizon over
which the cost is computed is finite, provided this horizon
satisfies appropriate assumptions.

II. THE FEEDFORWARD GOVERNOR

In the feedforward governor case, x = (xp, xi) in (1),
r(t) ≡ r ∈ Rm for all t ∈ Z+ and

xp(t + 1) = fp(xp(t), u(t)), (2)

xi(t + 1) = xi(t) + y(t) − r, y(t) = h(xp(t)), (3)

so that f in (1) depends on x(t), u(t) and r:

x(t + 1) = f(x(t), u(t), r). (4)

Here xp(t) ∈ Rp is referred to as the state of the plant
(although in reality xp may also include controller states),
u(t) ∈ Rm is the control input, y(t) ∈ Rm is an output of
the system of the same dimension as the control input, and



xi(t) ∈ Rm is the state of a discrete-time integrator. The
functions fp and h are assumed to be continuous in their
arguments. We assume that corresponding to the reference
command signal r(t) ≡ r there is a unique steady-state
equilibrium for the plant state, denoted by xpe(r), and for
the control input, denoted by ue(r), such that

ye(r) = h(xpe(r)) = r, fp(xpe(r), ue(r)) = xpe(r).

The control signal u(t) is generated as a sum of the
feedforward, ue(r), a feedback function ufb, dependent
continuously on the states xp(t) and xi(t), and an adjustable
offset θ(t):

u(t) = ue(r) + ufb(xp(t), xi(t), r) + θ(t). (5)

The integrator (3) is essential to the feedforward governor
operation and it is intended to eliminate the influence of the
constant offset term, θ(t), on the steady-state values of xp

and u.
The pointwise-in-time constraints are imposed on the

state of the system and on θ(t) that have the following
form

(θ(t), x(t)) ∈ C, ∀t ∈ Z+, (6)

where C ⊂ Rm+p+m. Because of (5), the control con-
straints can always be recast as equivalent constraints on
x(t) and θ(t) and transformed into the form (6). Addition-
ally, we assume that the offset is selected from a given set
Θ, θ(t) ∈ Θ.

The on-line selection of θ(t) ∈ Θ for each t ∈ Z+ is
based on the minimization of a cost function subject to
the constraints imposed by (6). The cost function has the
following form,

J(x(t), θ(t), r, T ) = ||θ(t)||2Ψθ
+

k=t+T∑
k=t

Q

(
xp

(
k − t|x(t), r, θ(t)

) − xpe(r),
u
(
k − t|x(t), r, θ(t)

) − ue(r)

)
,

(7)

where Q(a, b) ≥ 0 is the incremental cost; Ψθ = (Ψθ)T ≥
0, ||θ(t)||2Ψθ

= θ(t)TΨθθ(t); xp(k − t|x(t), r, θ(t)) denotes
the plant state and u(k− t|x(t), r, θ(t)) denotes the control
input predicted k − t steps ahead given initial state x(t),
reference command r and assuming θ(t + s) = θ(t) for
s ∈ Z+. The T > 0 is the finite horizon that needs to
be selected in agreement with our subsequent assumptions.
The cost function (7) must be minimized with respect to
θ(t) ∈ Θ subject to meeting constraints (6) restricted to the
same finite horizon:(

θ(t), x(k−t|x(t), r, θ(t))
)

∈ C, k = t, t+1, · · · , t+T,

(8)
where x(k−t|x(t), r, θ(t)) denotes the state of (4) predicted
k−t steps ahead given initial state x(t), reference command
r and assuming θ(t + s) = θ(t) for s ∈ Z+. Note that (7)
and (8) can be evaluated on-line using predictions of x(k−
t|x(t), r, θ(t)), u(k−t|x(t), r, θ(t)) based on the model (2)-
(5). If C has an inequality characterization

C = {(θ, x) ∈ Rm+p+m : gj(θ, x, r) ≤ 0, j = 1, · · · , q},

then the constraint (8) becomes

max
j=1,···,q;k=t,···,t+T

gj(θ(t), x(k − t|x(t), θ(t), r), r) ≤ 0.

The mechanism by which changing θ(t) may prevent
constraint violation and enhance the performance can now
be made intuitively clear. To simplify the exposition of the
basic idea, suppose that ufb has the form ufb(xp, xi, r) =
ūfb(xp, r)−ε·xi+θ and let x̄pe(r; θ) denote the equilibrium
of (2), (5) with xi(t + k) = 0, θ(t + k) = θ, k ∈
Z+. If ε > 0 is sufficiently small and the steady-state
output monotonicity condition [3] holds then the closed loop
system is singularly perturbed, the variable xi is a slow
variable, the variable xp is a fast variable, and xp(t) →
x̄pe(r) [3]. Suppose now that the constraints are imposed
on plant states only, i.e., we require that xp(t) ∈ Cp for
all t ∈ Z+. With θ(t + k) ≡ θ(t) for all k ∈ Z+ in
(5), xp(t + k) for k ∈ Z+ first rapidly converges to a
neighborhood of x̄pe(r; θ(t) − εxi(t)), and then progresses
along the manifold M = {ζ ∈ Rp : ∃θ s.t. ζ = x̄pe(r; θ)}
towards x̄pe(r; 0) = xpe(r). By a proper selection of θ(t),
the fast part of the trajectory of xp(t + k) convergent to
a neighborhood of x̄pe(r; θ(t) − εxi(t)) can be made to
avoid the constraints while the slow part of this trajectory
satisfies the constraints if the constraints are satisfied near
M. Through the on-line adjustment of θ(t) for each t ∈ Z+

the advantage can repeatedly be taken of the fast dynamics
of the system (as opposed to slower drift along M), and
therefore the performance and convergence speed can be
significantly enhanced. Furthermore, since changes in θ
shift x̄pe(r; θ) in a similar manner as r does, it may be
possible to effectively accommodate even large changes in
r with this approach, without a need for a separate reference
governor.

Figure 2 illustrates this intuitive picture with simulation
results for an example second order system. Here xp =
(xp1, xp2), y = xp1, where xp1 is a position variable and
xp2 is a velocity variable. The trajectory of xp(t + k) with
xp(t) = (xp1(t), xp2(t)) = (0, 0), xi(t) = 0, θ(t + k) ≡
θ(t) = −200, k ∈ Z+, r = 3.5 × 10−3, and marked as
(a) in Figure 2, exhibits clearly visible fast and slow parts.
It avoids violation of the two constraints also indicated in
the figure. The first constraint is on the overshoot by xp1:
xp(t+k) ∈ Cp = {(xp1, xp2) : xp1 ≤ 4×10−3}, k ∈ Z+,
see the dashed line (c) in Figure 2. The second constraint
restricts the velocity xp2 when xp1 crosses a pre-defined
position: xp(t + k) ∈ Cp = R2 \ {(xp1, xp2) : xp1 =
3.33 × 10−3, |xp2| > 0.1}, k ∈ Z+, see the dashed lines
(d) and (e) in Figure 2. For comparison, the trajectory (b)
with xi(t + k) ≡ 0 and θ(t + k) ≡ 0 for k ∈ Z+ violates
both constraints. Note that for both trajectories (a) and (b),
xp(t + k) → xpe(r) = (3.5 × 10−3, 0) as k → ∞ and, in
fact, trajectories of the plant states corresponding to any θ(t)
converge to the same equilibrium xpe(r) = (3.5×10−3, 0).

The rigorous theoretical results are based on the follow-
ing assumptions. These assumptions are somewhat stronger
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Fig. 2. Trajectories of plant states with r = 3.5 × 10−3 : (a) With
θ(t + k) ≡ θ(t) = −200 and xi(t + k) evolving according to (3); (b)
With θ(t+k) ≡ θ(t) = 0, xi(t+k) ≡ xi(t) = 0. Also shown constraints:
(c) xp1(t + k) ≤ 4 × 10−3 for k ∈ Z+; (d),(e): |xp2(t + k)| ≤ 0.1 if
xp1(t + k) = 3.33 × 10−3 for k ∈ Z+.

than really needed but they simplify the exposition of the
main ideas.

(A1) The set C ⊂ Rm+p+m in (6) is compact and θ(t) ∈ Θ,
where Θ ⊂ Rm is a compact set.

(A2) There exists δ > 0 such that for all θ ∈ Θ,
(θ, xpe(r), xie(r, θ)) + δ · Bm+p+m ⊂ C, where xpe(r),
xie(r, θ) denote the unique equilibrium values of xp and xi

for given constant r and θ and where Bm+p+m is the unit
ball in Rm+p+m.

(A3) x(k|x̄, r, θ) → (xpe(r), xie(r, θ)) as k → ∞ for all
θ ∈ Θ and (θ, x̄) ∈ C.

(A4) There exist k∗
1 ∈ Z+ and 0 ≤ q < 1 such that for all

(θ, x̄) ∈ C, θ ∈ Θ and k ≥ k∗
1 ,

Q

(
xp(k|x̄, r, θ) − xpe(r), u(k|x̄, r, θ) − ue(r)

)
≤

q · Q
(

x̄p − xpe(r), u(0|x̄, r, θ) − ue(r)
)

.
(9)

(A5) The function Q in (7) is continuous and satisfies
Q(0, 0) = 0, Q(a, b) > 0 if (a, b) �= 0.

The assumption (A1) may require that artificial con-
straints be added in for the state variables that remain
unconstrained by the virtue of the problem formulation. The
assumption (A2) is reasonable and can be interpreted as
a strict steady-state feasibility condition. The assumptions
(A3) and (A4) characterize the needed stability properties
of the system when θ(t) is maintained at a constant value;
they generically hold if the state convergence is exponential.
The assumption (A5) is imposed on the cost function and
not on the original plant itself; it restricts the incremental
cost to be strictly positive-definite, which is essential for
our subsequent convergence results.

The assumptions (A2) and (A3) and the compactness of
C and Θ imply the following

Proposition 1: There exists k∗
2 ∈ Z+ such that for all θ ∈ Θ

and (θ, x̄) ∈ C, if (θ, x(k|x̄, r, θ)) ∈ C for k = 0, · · · , k∗
2 ,

then (θ, x(k|x̄, r, θ)) ∈ C for all k ∈ Z+.

The main result characterizing the response properties of
the feedforward governor is given by the following

Theorem 2: Suppose (A1)-(A5) hold and the initial state
x(0) is feasible in a sense that there exists θ(0) ∈ Θ such
that (θ(0), x(k|x(0), r, θ(0)) ∈ C for all k ≥ 0. Let θ(t) =
θ∗(t), t ≥ 0 be generated by minimizing (7) subject to (8)
with T > max{k∗

1 , k
∗
2} where k∗

1 is defined in (A4) and k∗
2

is defined in Proposition 1. Suppose that x∗(t), u∗(t) are the
resulting state and control trajectories. Then, x∗(t) remains
feasible for all t ≥ 0 (i.e., constraints (θ∗(t), x∗(t)) ∈ C are
satisfied for all t ≥ 0) and x∗

p(t) → xpe(r), u∗(t) → ue(r)
as t → ∞. Furthermore, ||θ∗(t)||2Ψθ

converges to a limit.
Proof: Using (A4), (7) and that θ∗(t) is a feasible choice
(guarantees constraint satisfaction) at time t + 1 but not
necessarily optimal, we obtain

J(x∗(t + 1), θ∗(t + 1), r, T ) ≤ J(x∗(t + 1), θ∗(t), r, T )

≤ J(x∗(t), θ∗(t), r, T ) − (1 − q)Q
(

x∗
p(t) − xpe(r),
u∗(t) − ue(r)

)
.

(10)
Since 0 ≤ q < 1, Q(a, b) ≥ 0 ∀a, b, the sequence
{J(x∗(t), θ∗(t), r, T )} is bounded and non-increasing with
t. Therefore, it has a limit as t → ∞ and

Q

(
x∗

p(t) − xpe(r), u∗(t) − ue(r)
)

→ 0 as t → ∞. (11)

By (A5), x∗
p(t) → xpe(r), u∗(t) → ue(r). Finally, the

convergence of J(x∗(t), θ∗(t), r, T ) to a limit, (11) and (7)
imply that ||θ∗(t)||2Ψθ

converges to a limit. The proof is
complete.

Remark 1: The feasibility of the initial state x(0) =
(xp(0), xi(0)) can be affected by the value of xi(0). Since
xi is typically a part of the nominal control law or of the
feedforward governor, it can often be assigned appropriately
at t = 0 to help ensure that x(0) is feasible.
Remark 2: Suppose the value of xi(t) can be reset during
the on-line operation. Then this reset provides a similar
mechanism for avoiding constraint violation and improving
performance as does the adjustment of θ(t). In particular,
if ufb(xp, xi, r) = ūfb(xp, r) − ε · xi + θ, and if θ(t) = θ̄
has been chosen, then the predicted trajectories of xp and u
with θ(t+k) = θ̄ for k ∈ Z+ are the same as if θ(t+k) ≡ 0
and xi(t) was reset to xi(t) − θ̄/ε.
Remark 3: Theorem 2 applies when Θ consists only of a
finite number of elements. In this case the minimization of
(7) subject to (8) can be accomplished via a finite number
of on-line model simulations for each value of θ(t) ∈ Θ,
where each simulation is run for the finite horizon T or until
the first time instant when constraints become violated.
Remark 4: The result in Proposition 1 enables to relax the
conditions

(
θ, x(k − t|x(t), r, θ)

) ∈ C for all k ∈ Z+ to
(8), provided that the time horizon T in (8) is sufficiently
large. This property is expected from similar developments



in the reference governor case [1]; it is also related to
the finite-determination properties of maximum constraint
admissible sets [8]. Theorem 2 demonstrates that if T
is sufficiently large so that (A4) applies then the explicit
terminal set conditions, usually required with the receding
horizon control approach, are not needed. Note that larger
values of the horizon T do not increase the dimensionality
of the optimization problem that needs to be solved to
determine θ(t) - it remains equal to m. Larger T s do, how-
ever, increase the computational effort required to simulate
the model on-line over longer time horizons. A practical
procedure for selecting T can be based on estimating,
via multiple off-line simulations for different (θ, x̄) ∈ C,
θ ∈ Θ, the guaranteed time, k∗(θ, x̄) ∈ Z+, after which the
constraints are not violated and the expected decay in the
incremental cost is at least a factor of q < 1. More precisely,
(θ, x(k|x̄, r, θ)) ∈ C and (9) applies for k > k∗(θ, x̄).
Then an acceptable horizon can be specified based on the
condition T ≥ max(θ,x̄)∈C,θ∈Θ k∗(θ, x̄).
Remark 5: It is not necessary to update θ(t) every t ∈
Z+. The updates can be less frequent, for example, every
t ∈ Iu = {0, n, 2 · n, 3 · n, · · · ;n ∈ Z+, n > 1}. Whenever
t �∈ Iu, θ(t) can be kept constant, θ(t) = θ(t− 1). As long
as for t ∈ Iu, θ(t) ∈ Θ is selected to minimize the cost (7)
subject to the constraints (8), the properties in Theorem 2
are guaranteed to hold. The time interval, k·n ≤ t < (k+1)·
n, allows for a larger time (n sampling periods) to calculate
the optimal value of θ((k+1)n) in case these computations
cannot be completed within a single sampling period. Note
that the value of x((k + 1)n) can be predicted via on-line
simulations assuming that θ(t) = θ(kn) for kn ≤ t ≤
(k+1)n. Note also that suboptimal values of θ(t) = θ̄(t) �=
θ∗(t) may be acceptable as long as the cost non-increase
is guaranteed, i.e., J(x(t + 1), θ̄(t + 1), r, T ) ≤ J(x(t +
1), θ(t), r, T ).

From Theorem 2, ||θ∗(t)||2Ψθ
converges to a limit. Sup-

pose that

lim
t→∞ ||θ∗(t)||Ψθ

= lim
t→∞

√
(θ∗(t))TΨθθ∗(t) = vlim ≥ 0.

(12)
It turns out that under appropriate, additional assumptions,
vlim = 0 and x∗

i (t) → 0 so that asymptotically the
feedforward governor becomes inactive. The additional as-
sumptions are:
(A6) fp, h, ufb in (2), (3), (5) are Lipshitz in all arguments.

(A7) 0 ∈ intΘ, Θ is convex.

(A8) Q is twice continuously differentiable in all arguments.

(A9) The matrix Ψθ in (7) is positive definite, Ψθ > 0.
We also need an additional assumption to ensure the con-
vergence x∗

i (t) → xie(r, θ∗(t)) when x∗
p(t) → xpe(r),

u∗(t) → ue(r) which is slightly stronger than the conver-
gence ufb(x∗

p(t), x∗
i (t), r) → ufb(xpe(r), xie(r, θ∗(t), r)

already guaranteed by Theorem 2:
(A10) For all θ ∈ Θ, if xp is sufficiently close to xpe(r)
and ufb(xp, xi, r) + θ is sufficiently close to 0, then ufb is

invertible with respect to xi and the inverse is a continuous
function.
This assumptions holds, for example, if ufb has the form
ufb(xp, xi, r) = ūfb(xp, r) − ε · xi, ε > 0.

Theorem 3: Suppose (A6)-(A10) hold in addition to the as-
sumptions of Theorem 2. Then, all conclusions of Theorem
2 remain valid, and vlim = limt→∞ ||θ∗(t)||Ψθ

= 0.
Proof: The idea of the proof is to compare the optimal
decision at time t, θ∗(t), with an alternative decision,

θ̂(t) ∆= θ∗(t) · vlim

vlim + ε2
,

where ε2 > 0, and to demonstrate that if vlim > 0,
t is sufficiently large and ε2 is sufficiently small, then
θ̂(t) is a feasible choice at time t and actually results in
a smaller value of the cost (7) than θ∗(t). In particular,
our assumptions can be shown to imply for an appropriate
constant LQ > 0 that

J(x(t), θ̂(t), r, T ) − J(x(t), θ∗(t), r, T )

≤ −ε2
||θ∗(t)||Ψθ

(vlim + ε2)2
(2vlim + ε2)

+
(

T · LQ
ε2||θ∗(t)||Ψθ

vlim + ε2
×

× sup
k=0,···,T

∥∥DQ(x∗
p(t + k) − xpe(r), u∗(t + k) − ue(r))

∥∥ )

+O(ε22).

If vlim > 0, ε2 > 0 is sufficiently small and t ∈ Z+

is sufficiently large, the first term can be made to strictly
dominate in absolute value the third term and, in view of
x∗

p(t + k) → xpe(r), u∗(t + k) → ue(r) (the result of
Theorem 2) and DQ being continuous with DQ(0, 0) = 0
(which follows from (A5), (A8) since (0, 0) is the minimizer
of Q) the first term can also dominate the second term so
that

J(x(t), θ̂(t), r, T ) < J(x(t), θ∗(t), r, T ).

The proof is complete.

Remark 6: Assumption (A7) is essential for the result in
Theorem 3. For example, appropriate counter-examples can
be constructed if the set Θ is discrete-valued.
Remark 7: Assumption (A6) can be relaxed to any con-
dition guaranteeing locally Lipshitz continuity of the state
and control trajectories with respect to θ.

III. GAIN GOVERNOR

For the gain governor case, x = xp in (1), r(t) ≡ r for
all t ∈ Z+ and

xp(t + 1) = fp(xp(t), u(t)), (13)

where xp(t) ∈ Rp is referred to as the state of the plant
(although in reality xp may also include controller states)
and u(t) ∈ Rm is the control input. The function fp is
assumed to be continuous in its arguments. We assume that
corresponding to the reference command signal r(t) ≡ r
there is a unique steady-state equilibrium for the plant state,



denoted by xpe(r), and for the control input, denoted by
ue(r), such that

fp(xpe(r), ue(r)) = xpe(r).

The control signal u(t) is generated as a sum of the nom-
inal feedforward, ue(r), a feedback function ufb, dependent
continuously on xp(t) and the parameters in the control law
θ(t) ∈ Rs:

u(t) = ue(r) + ufb(xp(t), r, θ(t)), (14)

where ufb(xpe(r), r, θ) = 0 for all θ ∈ Θ. For example,
θ(t) may represent some or all of the gains in the feedback
law.

The rationale for the gain governor is easy to understand
in the case of systems with control constraints. Specifically,
the gain governor can lower the gains when it becomes
necessary to avoid violating the control constraints; the gain
governor can increase the gains when there is no danger of
constraint violation and doing so improves the performance.
The gain governor generalizes the approach of multi-mode
control for systems with state and control constraints [7].

The pointwise-in-time constraints are imposed on xp(t)
and on θ(t):

(θ(t), xp(t)) ∈ C, ∀t ∈ Z+, (15)

where C ⊂ Rs+p. Because of (14), the control constraints
can always be recast as equivalent constraints on x(t) and
θ(t).

The on-line selection of θ(t) for each t ∈ Z+ is based
on the minimization of a cost function

J(x(t), θ(t), r, T ) = ||θ(t)||2Ψθ
+

k=t+T∑
k=t

Q

(
xp(k − t|x(t), r, θ(t)) − xpe(r)

)
(16)

which is similar to (7) subject to the same constraints (8)
as in the feedforward governor case:(

θ(t), xp(k−t|x(t), r, θ(t))
)

∈ C, k = t, t+1, · · · , t+T.

(17)
Slight modifications to our basic assumptions (A1)-(A9)

need to be made for our results in Theorems 2 and 3 to
hold. We list the modified assumptions here.

These assumptions are somewhat stronger than really
needed but they simplify the exposition of the main ideas.

(A1’) The set C ⊂ Rs+p in (15) is compact and θ(t) ∈ Θ,
where Θ ⊂ Rs is a compact set.

(A2’) There exists δ > 0 such that for all θ ∈ Θ,
(θ, xpe(r)) + δBs+p ⊂ C, where xpe(r) denotes the equi-
librium value of xp for a given constant r and θ and Bs+p

is the unit ball in Rs+p.

(A3’): x(k|x̄, r, θ) → xpe(r) as k → ∞ for all θ ∈ Θ and
(θ, x̄) ∈ C.

(A4’) There exists k∗
1 ∈ Z+ and 0 ≤ q < 1 such that for

all (θ, x̄) ∈ C, θ ∈ Θ and k ≥ k∗
1 ,

Q

(
xp(k|x̄, r, θ) − xpe(r)

)
≤ q · Q

(
x̄ − xpe(r)

)
.

(A5’) The function Q in (16) is continuous and satisfies
Q(0) = 0, Q(a) > 0 if a �= 0.

(A6’) The functions

Φk,x̄,r(θ) =
[

xp(k|x̄, r, θ)
u(k|x̄, r, θ)

]
,

are locally Lipshitz as functions of θ for all (θ, x̄) ∈ C,
θ ∈ Θ and k = 0, · · · , T .

(A7’) 0 ∈ intΘ, Θ is convex.

(A8’) Q is twice continuously differentiable.

(A9’) The matrix Ψθ in (7) is positive definite, Ψθ > 0.

The assumption (A6’) can be replaced by one of the usual
conditions on smooth dependence of the solution of a
difference equation on parameters; it can be satisfied with
relative ease. The assumption similar to (A10), that concerns
the convergence behavior of xi, is not needed.

The response properties of the gain governor are derived
analogously to the feedforward governor. They are summa-
rized in the following two theorems:

Theorem 4: Suppose assumptions (A1’)-(A5’) hold and
the initial state x(0) is feasible in a sense that there exists
θ(0) ∈ Θ such that (θ(0), xp(k|x(0), r, θ(0)) ∈ C for all
k ≥ 0. Let θ(t) = θ∗(t), t ≥ 0 be generated according
to minimizing (16) subject to (17) with T > max{k ∗

1 , k
∗
2}

where k∗
1 is defined in (A4’) and k∗

2 is defined in Propo-
sition 1. Suppose that x∗(t), u∗(t) are the resulting state
and control trajectories. Then, x∗(t) remains feasible for
all t ≥ 0 (in particular, constraints (θ∗(t), x∗(t)) ∈ C are
satisfied for all t ≥ 0) and x∗

p(t) → xpe(r), u∗(t) → ue(r)
as t → ∞. Furthermore, ||θ∗(t)||2Ψθ

converges to a limit.

Theorem 5: Suppose assumptions (A6’)-(A9’) hold in addi-
tion to the assumptions of Theorem 4. Then, all conclusions
of Theorem 4 remain valid, and ||θ∗(t)||Ψθ

→ 0.

Remark 8: The same off-line numerical procedure can be
used for specifying an acceptable horizon T in the gain
governor case as was used in the feedforward governor case
(see Remark 4).

IV. EXAMPLE

Our first example is an application of a feedforward
governor to a system consisting of a mass, m, attached to
a spring with the spring constant ks and a damper with a
damping constant, cd, acted on by an electromagnetic force
from a coil. The equations describing the motion of the
mass in continuous-time are of the form [5]

ẋp1 = xp2,

ẋp2 =
1
m

(
kav

(kb + L − xp1)2
− ksxp1 − cdxp2

)
,

(18)



where xp1 is the position of the mass (m), xp2 is the velocity
of the mass (m/s), and v = i2, where i is the current through
the coil.

A feedback transformation, u = (kav)/(kb + L− xp1)2,
converts (18) to a linear system,

ẋp1 = xp2,

ẋp2 =
1
m

(
u − ksxp1 − cdxp2

)
.

(19)

Then (19) is converted to discrete-time form (2) using the
fourth order Runge-Kutta approximation.

To assure that v ≥ 0 (so that it is realizable with a
physical current), the following pointwise-in-time constraint
needs to be satisfied:

v(t) =
u(t)(kb + L − xp1(t))2

ka
≥ 0. (20)

The nominal system (18) does not contain an integral
action. Thus to enable the application of the feedforward
governor, first the integral action is added-in as in (3),

xi(t + 1) = xi(t) + Ts · (xp1(t) − xpe1(r)), xpe1(r) = r.
(21)

We now introduce the feedback law modified by the
feedforward governor as

u(t) = ksr − caxp2(t) + θ(t) + kixi(t), (22)

where ca = 100, ki = −100. The feed-forward offset θ
is selected by the feedforward governor from the set Θ =
{−200,−175,−150,−100,−50,−25,−10, 0, 10, 25, 50, 100}.

Consider first the situation when such a system is in-
tended for positioning the mass to a desired position, r =
0.875 · L, xpe(r) = (r, 0). To avoid collision of the mass
with the coil, the following constraint is imposed,

xp1(t) ≤ L. (23)

The set C in (6) reflects the constraints (20), (23) and
additional, artificial constraints imposed to make it compact,
namely, −xp1 ≤ 5

4L, |xp2| ≤ 3, |xi| ≤ 1. The cost function
has the form (7) with

Q = q1(xp1 − r)2 + q2(xp2)2 + r1(u − ue(r))2,

where q1 = 104, q2 = 1, r1 = 10−5, and with Ψθ =
5 × 10−4.

The off-line numerical procedure described in Remark 4
was used to select T . It yielded T = 111.

The simulated responses to the initial condition xp(0) =
(0, 0), xi(0) = 0 are plotted in Figure 3. Figure 3 shows
that without the feedforward governor (k i = 0, θ(t) ≡ 0)
the trajectory violates the overshoot constraint, xp1(t) ≤ L,
but it satisfies this constraint with the feedforward governor.
While the overshoot constraint can also be met by main-
taining θ(t) at a constant value (equal to 150 which is the
value that the feedforward governor selects at t = 0), the
on-line, dynamic adjustment of θ(t) (see Figure 4) provides
a faster convergence to the set-point. The control constraint,
v = i2 ≥ 0, is also satisfied.

0 20 40 60 80 100 120 140 160
0

1

2

3

4

5

6
x 10

−3

t

x p1
 [m

]

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 3. Time response of xp1 without feedforward governor (a) and
with feedforward governor (b). The position overshoot constraint is (d)
and the set-point r is indicated by line (c). The response (e) corresponds
to θ(t) ≡ −150.
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Fig. 4. Time history of θ(t) adjusted by the feedforward governor.

Consider next a different control objective which is to
bring the mass to a desired position, xd = 0.8325 · L, in
finite-time where a locking mechanism locks and holds the
mass in place. To avoid the locking mechanism damage
and provide sufficient time for it to catch the mass, the
velocity of the mass, once it reaches the locking position,
must be less than 0.1. This results in pointwise-in-time
constraints of the form |xp2(t)| ≤ 0.1 if xp1(t) = xd =
0.8325 · L. In this situation we can apply the control (22)
configured to drive the system to a set-point past the locking
position, but recognizing that the actual motion will cease
once the locking position is crossed. Specifically, we select
r = 0.8327 · L, xpe(r) = (r, 0). Figure 5 shows that
without the feedforward governor (k i = 0, θ(t) ≡ 0) the
system exceeds the velocity specification at the locking
time instant 15 times. The feedforward governor with the
dynamic adjustment of θ(t) results in the mass reaching the
locking mechanism at t = 23 with the acceptable velocity.
As this figure also shows the mass can be made to reach the
locking mechanism with acceptable velocity by maintaining
θ(t) ≡ −175 (which is the value that the feedforward
governor selects at t = 0) but the locking position is reached
much slower, only at t = 400.

Our second example is an application of a gain governor



0 0.5 1 1.5 2 2.5 3

x 10
−3

−0.5

0

0.5

1

1.5

2

x
p1

x p2

t=23 

t=400 

(a) 

(b) 

(e) 

(e) 

(d) 

(c) 

Fig. 5. Phase plane trajectories of xp1 and xp2 without feedforward
governor (a), with θ(t) ≡ −175 (b), and with the feedforward governor
(c). The position xd is indicated by (d) and the velocity constraints are
indicated by (e).

to the double integrator,

ẋp1 = xp2, ẋp2 = u,

under an input saturation constraint, |u| ≤ 1. The nominal
control law has the form, u = −ω2

n(xp1 − r) − 2ζωnxp2,
where ζ = 0.5, r = 0 so that xpe(r) = xpe(0) = (0, 0),
ue(r) = ue(0) = 0, and ωn = ωn,0 + θ, ωn,0 = 10.
The continuous-time system is discretized assuming that
the sampling period is Ts = 0.01. The parameter θ(t) is
selected by the gain governor from the set θ(t) ∈ Θ =
{−9.9,−9.8, · · · ,−0.1, 0, 0.01, 0.05, 0.1, 0.2, · · · , 0.9, 1},
to minimize a cost of the form (16) with Ψθ = 10−4,
Q = 10 · (xp1 − r)2 + 0.1 · x2

p2. The negative values in
Θ provide a mechanism to slow down the system while
the positive values speed up the response. The horizon
was selected according to Remark 8 as T = 3.5

Ts
. The set

C in (15) reflects the control constraint, and additional
constraints, − 1 ≤ xp1 ≤ 1, − 2 ≤ xp2 ≤ 2, were added
to make it compact.

Figure 6 shows the time response of xp1 with and
without the gain governor. The response (a) of the nominal
controller with ωn(t) ≡ ωn,0 = 10 is very fast if there
is no saturation, but it behaves poorly with the saturation,
see the response (b). The use of a controller with a fixed
lower gain ωn(t) ≡ 0.1 avoids control input saturation (see
the response (c)) but it significantly slows down the system
thereby sacrificing the performance. Finally, with the gain
governor the system avoids control constraint violation, and
the speed of response is much better than (c), see response
(d) in Figure 6. Figure 7 shows the behavior of θ ∗(t) for
the response (d). The response of θ∗(t) is non-monotonic
so that the system is first slowed down to prevent violation
of the control constraint, and then made faster once close
to the desired equilibrium; ultimately, θ∗(t) settles to zero
in finite time.
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Fig. 6. Time response of x1 = xp1 without the gain governor and with
the gain governor: (a) With high gain controller and no input saturation; (b)
With high gain controller and input saturation; (c) With low gain controller
and input saturation; (d) With the gain governor.
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