
 
CONTROL OF MULTIVARIABLE SYSTEMS WITH INTERVAL PARAMETERS 

 
Yan Shao 

Department of Electrical Engineering, School of Engineering, Design and Technology, Bradford University,  
Bradford, West Yorkshire, BD7 1DP, United Kingdom 

 
YuMing Zhang 

University of Kentucky Center for Manufacturing and Department of Electrical and Computer Engineering, 
Lexington, KY 40506, USA 

 
 
ABSTRACT.  This paper considers a class of m-input 
m-output interval systems.  The systems are described 
by impulse response functions.  The parameters in the 
system model are unknown, but bounded by given 
intervals.  An algorithm that determines the control 
actions based on the intervals of the model parameters 
is proposed.  It is proved that the robust steady-state 
performance in tracking a given set-point is guaranteed 
despite possible open-loop overshooting, delay, and 
nonminimum phase of the interval plants.  A simulation 
example is given.    
 
Key words: robust control, MIMO system, 
uncertainty.  
 
1.  INTRODUCTION 

 
Interval models are useful descriptions for many 

uncertain dynamic processes.  Much of the present 
success in interval plant control is related to system 
analyses.  Effective design methods [1] for the interval 
plant control are desired.  Recently, Abdallah et al. [2], 
and Olbrot & Nikodem [3] addressed a class of interval 
plants with one interval parameter.  Datta and Patel 
synthesized a robust control for a single-input single-
output (SISO) interval plant by converting the 
parametric uncertainty to an uncertainty band and then 
applying the standard H∞  method [4].  Datta and 
Bhattacharyya used an interval approach for adaptive 
control [5].  In [6], Baras and Patel established methods 
that yield a conceptual approach for constructing 
controlled-invariant sets and stabilizing controllers for 
set-valued discrete-time dynamic uncertain nonlinear 
systems.            

This paper uses a predictive algorithm to control 
multivariable interval plants.  The author observed that 
predictive controllers were traditionally designed 
primarily based on the nominal model without 
explicitly using the uncertainty of the controlled 
process [7, 8].  Campo and Morari [9] and Allwright 
and Papavashiliou [10] have developed predictive 
control algorithms for models with interval parameters.  
However, their efforts were towards the computational 
aspects and no performance results have been either 
given or proven.  Recently, Nicolao et al. developed a 

robust predictive control for uncertain impulse response 
functions with one uncertain parameter [11].  In [12], a 
predictive control algorithm was proposed for SISO 
interval plants.  The steady-state stability of the 
resultant closed-loop system was proved under 
uncertain conditions.  This algorithm has been applied 
to control a gas metal arc welding process where the 
process uncertainty is mandatory [13].  In this paper, 
multivariable systems will be addressed.  
 
2. SYSTEM 
 
2.1 Problem description: 

Consider the following m-input m-output discrete 
system: 
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while n  and 
h j s i m i m j ni i1 2 1 21 2 1 2 1 2( )' ( , ,..., ; , , ..., ; , ,... )      = = =  are the 
order and the real number parameters, respectively. 

Assume 
h j s i m i m j ni i1 2 1 21 2 1 2 1 2( )' ( , ,..., ; , , ..., ; , ,... )      = = =  are time-
invariant. They are unknown but bounded by the 
following intervals: 
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where h j h j i m i m j nii i i12 12 1 21 2 1 2 1 2min max( ) ( ) ( , ,..., ; , , ..., ; , ,... )≤ = = =       
are known.  Denote the set-point as 
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The objective is to design a controller for determining 
the feedback control actions { }'U sk  so that the closed-



 

loop system achieves the following robust steady-state 
performance: 

lim
k kY Y
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where Yk  is the output of the closed-loop system.  
The unit step response function 
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where s ii i1 2
( )  and their upper and lower limits s ii i1 2 max ( )  

and s ii i1 2 min ( )  are: 
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It is apparent that 
S i S n i n( ) ( ) ( )= >                        (10) 

2.2 System assumption: 
In order to ensure S n( ) ≠ 0 , 

max( ( ) )min( ( ) )S n U S n U Uk k k∆ ∆ > ∀∆ ≠0   ( 0)  is required.  
Thus, the following conditions are assumed 
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In the previous paper for SISO system [12], it was 
assumed that the following can be guaranteed through 
proper mathematical transformations: 
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where s n s nmax min( ) ( )≥   are the upper limit and lower 
limit of the static gain of the SISO system and y0  is the 
set-point for the single output y .  In this paper, such 
unnecessary condition is not assumed.   
 
3. Derivation 

 
Consider instant k  ( , , , ... )k = 1 2 3   .  Assume the 

feedback Yk  is available and Uk  needs to be 
determined.  Model (1) yields 
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Denote  
Y U Yk i k k i U jk j+ + = ∀ >=

+
( ) ( )∆ ∆ 0 0 
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where Yk i U jk j+ = ∀ >+∆ 0 0 ( )
 is the output vector at instant 

k i i+ > ( )0  when the control actions are kept 
unchanged after instant k , i.e., U U jk j k+ = ∀ > ( )0 .  
Based on (12), the following equations can be obtained: 
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When i n= , Eq. (17) results in   
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Thus, 
Y U Y U S n Uk n k k n k k+ + −= +( ) ( ) ( )∆ ∆ ∆1             (21) 

 
4. CONTROL 
 
4.1 Control Criterion: 

In the proposed control algorithm, ∆Uk  is so 
determined that: 
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4.2 Properties: 
Theorem 1:  For the given interval plant control 

problem (1), (5), and (11),   
lim

k kY Y
→+∞

= 0
                            (23) 

when algorithm (22) is used. 
Proof:   For the given nth order model (1), 
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Hence, 
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The control criterion (22) states that  
max ( )Y U Yk n k+ =∆ 0                      (28) 

Thus,  
Y U Yk n k+ ≤( )∆ 0                         (29) 

Here vector inequality (29) implies that any element in 
Y0  is larger than or equal to the corresponding element 
in Y Uk n k+ ( )∆ .  Eqs. (29) and (25) generate 
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Therefore, (29) and (22) produce 

max( ( ) ) max( ( )S n U Y Y Uk k n k∆ ∆+ + += − ≥1 0 1 0         (31) 
Since  

max( ( ) )min( ( ) )S n U S n U Uk k k∆ ∆ > ∀∆ ≠0   ( 0)         (32) 
then 

�
�

�
�

�

=∆⇔=∆⇔
=∆

>∆⇔>∆

++

+

++

00)(          
0))(max(

0)(0))(max(

11

1

11

kk

k

kk

UUnS
UnS

UnSUnS
       (33) 

Thus,  

...) ,3 ,2 ,1(    )(               
)()(

1

110

=∆+
∆=∆≥

+

++++

kUnS
UYUYY

k

knkknk          (34)    

Denote  

T
k

m
kk

kk

UeUeUe
UnSUE

))( ..., ),( ),((

)()(

1
)(

1
)2(

1
)1(

11

+++

++

∆∆∆=

∆=∆        (35) 

Assume lim
k kU
→∞ + ≠∆ 1 0 .  Because 

S n U Uk k( )∆ + +> ∀∆ ≠1 10   ( 0) , lim ( )
k kE U
→∞ + ≠∆ 1 0 .  Thus, for 

any given positive integer M , a δ > 0  and  j  
( )1 ≤ ≤j m  exist so that the number of ∆Uk+1�s that 
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contradicts inequality (30) or control criterion (22).  
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Hence, 
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That is,  
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Remark 1:  If the control criterion were 

max ( )Y U Yk k+ =1 0∆                      (40) 
the resultant control would be similar to a one-step-
ahead prediction based control.  In this case, the 
robustness of the resultant closed-loop performance is 
not guaranteed.  In fact, the poor robustness of one-
step-ahead prediction based controls is the major 
reason for developing the more robust long-range 
predictive controls.   
 
Remark 2: In general, for many interval plants, criterion 

 max ( )Y U Yk p k+ =∆ 0                     (41) 
may obtain the performance (39) with 1 ≤ <p n .  
However, theoretical work which can be used to judge 
whether a p  (1 ≤ <p n ) exists for guaranteeing the 
performance (39) for a given interval plant has not been 
established.  When a p  (1 ≤ <p n ) is used, the 
regulation speed would improve when p  decreases, 
whereas the robustness of the performance would tend 
to be poorer.  
 
Remark 3:  It can be shown that if a constant 
disturbance vector is applied, lim

k kY Y
→+∞

= 0
 is not 

affected.  Also, lim
k kY Y
→+∞

= 0
 is proved without assuming 

conditions on the system other than (11).  Non-
minimum phase, overshooting, delay, and large 
parameter intervals thus do not influence the steady-
state performance lim

k kY Y
→+∞

= 0
.  

 
5.  IMPLEMENTATION 

 
 
The control algorithm can be implemented based on 

the following equation: 
 

max( ( ) ) max ( )S n U Y Y Uk k n k∆ ∆= − + −0 1       (42) 
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It can be shown that  
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Thus,  

max( ( ) ) ~( )S n U S n Uk k∆ ∆=                 (47) 
where the i1th row, i2 th column element of ~( )S n  is 
~ ( )s ni i1 2

 as defined in (46).  Condition (11) ensures 

that ~( )S n ≠ 0 .  Hence, the control law is 

∆ ∆U S n Y Y Uk k n k= −−
+ −(~( )) ( max ( ))1

0 1       (48) 
However, matrix ~( )S n  is unknown.  It is known that 
each element in ~( )S n  has only two possible values 
given in (46).  If the signs of ∆ ∆u uk k

( ( ), , ...,1) 2  and ∆uk
m( )  

are given, ~( )S n  will be certain so that ∆Uk  can be 
calculated using (48).  However, ∆ ∆u uk k

( ( ), , ...,1) 2  and 

∆uk
m( )   are the elements of  ∆Uk  being determined, and 

their signs are unknown. 
One method to implement (48) is to assume the 

signs for the elements in ∆Uk  so that a corresponding 
~( )S n  can be determined to perform (48).  There are 2m  

possible combinations of the signs for the elements in 
∆Uk .  Hence, 2m  possible matrices that include the 
actual ~( )S n  can be used to obtain 2m  possible solutions 
for ∆Uk .  If the signs of the elements in a resultant ∆Uk  
are the same as the assumed, (42) will be satisfied.  
This ∆Uk  can therefore be applied to the control 
system.  Because the actual ~( )S n  is included in the 2m  
possible matrices, its corresponding ∆Uk  which 
satisfies (42) must be included in the 2m  possible 
solutions.  That is, the solution of control law (42) is 
guaranteed. 

The implementation procedure for the control 
algorithm can summarized as following: 

1. Calculate Y Y Uk n k0 1− + −max ( )∆  based on (43). 
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based on (48) and (46). 
If the signs of the elements in a calculated ∆Uk  
are the same as the assumed, go to Step 3.     

3. Calculate U U Uk k k= +−1 ∆ . 
 

6. SIMULATION 
 
Consider the following second order 2-input 2-

output interval plant: 
h j s11 min ( )' :  0.5, -0.4, 0.3, 0.2, 0.1;  
h j s11max ( )' :0.7, 0, 0.5, 0.3, 0.2. 

h j s12 min ( )' : 0.1667, -0.1333, 0.1, 0.0667, 0.0333; 
h j s12 max ( )' : 0.2333, 0, 0.1667, 0.1, 0.0667. 

h j s21 min ( )' :   0.125, 0, 0.075, 0.05, 0.025;  
h j s21max ( )' :  0.1625, 0, 0.0975, 0.065, 0.0325. 

h j s22 min ( )' :  0.5, 0, 0.3, 0.2, 0.1;  
h j s22 max ( )' :  0.65, 0, 0.39, 0.26, 0.13.  
 
Here each type of h j( )  is given in order of 
j = 1 2 3 4 5, , , , .      The actual model parameters are:  
h j s11 ( )' :  0.58, -0.24, 0.38, 0.24, 0.14; h j s12 ( )' : 0.2333, 
0, 0.1667, 0.1, 0.0667; 
h j s21 ( )' : 0.125, 0, 0.075, 0.05, 0.025;  h j s22 ( )' :0.605, 
0, 0.363, 0.242, 0.121.  
The set-point is [ , ]1 2 T .  A constant disturbance vector 
[ , ]1  1 T  is applied at k = 50  so that the actual system 
becomes:  
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The response of the closed-loop system is illustrated in 
Fig. 1.  It can be seen that despite the applied 
disturbance and the uncertainty, the desired outputs are 
maintained.   
 

 
 
7.  CONCLUSIONS 

 
An algorithm is proposed for the control of 

multivariable interval plants.  The steady-state stability 
is guaranteed under assumed conditions (11).  The 
implementation procedure is outlined.  A simulation 
example is given to illustrate the effectiveness of the 
proposed algorithm. 
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Fig. 1  Closed-loop response under disturbance. 
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