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Abstract— This paper proposes a new method for systematic
construction of dynamic pre-compensators to achieve better
diagonal dominance. Curve fitting is used to construct a
dynamic pre-compensator element-by-element, meaning unlike
most minimization algorithms, there is no restriction on the
structure of each element. To demonstrate its effectiveness, the
method is applied to the Rolls-Royce Spey gas-turbine engine,
which is a highly interacting and multivariable system.

I. I NTRODUCTION

For a matrixA = [aij ] ∈ Cn×n, the radius of its column
Gershgorin disksCj(A) also referred to as thedeleted
absolute column sumand row Gershgorin disksRi(A) also
referred to as thedeleted absolute row sumare defined
respectively as

Cj(A) =
n∑

i=1
i 6=j

| aij | i = 1, . . . , n (1)

Ri(A) =
n∑

j=1
i 6=j

| aij | j = 1, . . . , n. (2)

Gershgorin’s theorem [1] states that the eigenvalues ofA
lie inside the region defined by these disks centered on the
diagonal entries ofA, as given by

GC(A) ≡
n⋃

j=1

{s ∈ C : | s− ajj | ≤ Cj(A)}, (3)

GR(A) ≡
n⋃

i=1

{s ∈ C : | s− aii | ≤ Ri(A)}. (4)

whereGR(A) describes the row Gershgorin region and
GC(A) is the column Gershgorin region. Notice both
GR(A) and GC(A) must include the eigenvalues, hence
their intersectionGµ(A) = GR(A) ∩ GC(A) is the subset
that the eigenvalues can truly exist in.Gµ(A) is referred
to as aminimal Gershgorin set[2] and other minimal sets
may be obtained by considering the intersection of all the
Gershgorin sets corresponding tosimilar operators toA
(e.g.Ǎ = S−1AS). In this work, however, we are concerned
with the standard Gershgorin sets. Rosenbrock [3] used
Gershgorin’s theorem to propose the first frequency-based
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linear multivariable controller design technique; namely,
Diagonal Dominance. This is a design technique that con-
verts a multivariable design problem into several single-
loop design problems which can then be solved using any
number of single-loop design techniques available. Given a
linear multivariable system,G(s) = [gij(s)] ∈ Cn×n

G(s) =




g11(s) . . . g1n(s)
...

. . .
...

gn1(s) . . . gnn(s)


 , (5)

and a pre-compensator,K(s) = [kij(s)] ∈ Cn×n

K(s) =




k11(s) . . . k1n(s)
...

. . .
...

kn1(s) . . . knn(s)


 , (6)

the open loop transfer function is

Q(s) = G(s)K(s) = (7)


∑n
m=1 km1(s)g1m(s) . . .

∑n
m=1 kmn(s)g1m(s)

...
. . .

...∑n
m=1 km1(s)gnm(s) . . .

∑n
m=1 kmn(s)gnm(s)


 ,

where the system would be column diagonal dominant
as defined by Rosenbrock if

| qii(s) | ≥
n∑

j=1
j 6=i

| qji(s) | ∀s on DR (8)

Substitution forq in inequality (8) gives

∣∣∣∣∣
n∑

m=1

kmi(s)gim(s)

∣∣∣∣∣ ≥ α

n∑

j=1
j 6=i

∣∣∣∣∣
n∑

m=1

kmi(s)gjm(s)

∣∣∣∣∣ . (9)

where α is a scalar greater than one, which can be
thought of as a weighting factor forcing the system to
have higher dominance levels than would otherwise satisfy
inequality (8). If such aK(s) is found, Q(s) may be
approximated byQ̃(s) where q̃ij(s) = qij(s) for i = j
and q̃ij(s) = 0 otherwise. In the final stage, a diagonal
controller Kc(s) = [kcii(s)] ∈ Cn×n is found such



that q̃ii(s)kcii(s) ' refi(s)/(1 − refi(s)) where refi(s)
denotes the reference response function for loopi.

Although traditionally static pre-compensators tend to
be used in dominance-based controller design, the subject
of this work is dynamic pre-compensation, since numer-
ous studies [4] have shown that in systems whose eigen-
structure changes rapidly with frequency, constant pre-
compensation can fail since its effect is only apparent in
the vicinity of the frequency it was designed for. However,
one can expect much better results with a dynamic pre-
compensator since it can accommodate the rapid changes in
the systems eigen-structure. Although there are established
systematic methods for finding a constant pre-compensator,
such as the Pseudo-diagonalisation method due to Hawkins
[5] and the ALIGN algorithm due to Kouvartakis [6], there
does not exist any established, or universally accepted,
algorithm for design of dynamic pre-compensators.

One possible approach to findingK(s) would be to first
determine a fixed structure for thekij(s), say a PI structure
and then to feed inequality (9) into a minimization algorithm
that will use kp and ki of each kij(s) as minimization
parameters to satisfy the inequality. Examples of such syn-
thesis based techniques for finding the pre-compensator are
the algorithms of Ford [7] and Edmunds [8]. This approach
inevitably is not optimal by nature. When the structure of
an element is decided upon without prior knowledge of
how complex it actually is, one is forced to account for
the maximum complexity it is predicted to take. Therefore
thinking in terms of a whole column, this often translates
into not enough dynamics for the complex elements, and un-
necessary extra dynamics in other elements. In addition, as
the size and order ofK(s) increases, a direct minimization
of the parameters over some set of frequencies, becomes
an increasingly impossible problem. In the next section, we
present a simple design technique which overcomes this
obstacle to a large extent (needless to say it will inevitably
have its own weaknesses as well).

II. A SIMPLE DESIGN PROCEDURE

This technique is based on curve fitting for each element
of the pre-compensator. The main steps involved in the
design process are as follows.

Step 1

Evaluate G(s) on the frequency vectorωb, which
denotes the frequency range over which it is desired to
have diagonal dominance. A good guide forωb is the -3db
frequency.

Step 2

For each G(wi), calculate its (non-normalized) real
inverse. Given a matrix A = [aij ] ∈ Cn×n then
Ã = [ãij ] ∈ Rn×n is its non-normalized real inverse if it
minimizes

εn =
∣∣∣
∣∣∣ÃA− diag(ÃA)

∣∣∣
∣∣∣
2
, (10)

andÃ = [ãij ] ∈ Rn×n would be the standard real inverse
if it minimized

εs =
∣∣∣
∣∣∣ÃA− I

∣∣∣
∣∣∣
2
. (11)

There are numerous algorithms to generate both the
non-normalized real inverse and the standard real inverse.
Pseudo-diagonalisation is an example of a non-normalized
real inverse, whilst the ALIGN algorithm is an example
of a standard real inverse algorithm. The reader should
note that whilst there is freedom in the choice of the
algorithm one uses,the samealgorithm must be used for
all wi to avoid scaling problems arising. Upon completion
of this step, one should be in possession of a set of
(non-normalized) real inverses forG(wi) which will be
denoted byG̃(wi), ∀wi ∈ ωb.

Step 3

Calculate the two matrices∆ andΓ as follows

∆ = (12)


∑ ∆sgn{g̃11(wi)}
∆wi

. . .
∑ ∆sgn{g̃1n(wi)}

∆wi

...
. . .

...∑ ∆sgn{g̃n1(wi)}
∆wi

. . .
∑ ∆sgn{g̃nn(wi)}

∆wi


 ,

where

sgn{x} =
{

1, x ≥ 0
−1, x < 0 (13)

and

Γ =




sgn{g̃11(w1)} . . . sgn{g̃1n(wi)}
...

. ..
...

sgn{g̃n1(wi)} . . . sgn{g̃nn(wi)}


 . (14)

If ∆ = 0, then proceed to step 5, if not proceed to the next
step.

Step 4

The condition that∆ equals zero, is a requirement on
the sign behavior of the elements ofG̃(wi). Although each
element of these matrices are real, they are not necessarily
positive. If ∆ = 0, it means that a given element does not
change its sign for the bandwidth of frequencies considered,
and remains either positive or negative for this range. If
the sign condition is violated for a given element difficulty
arises, since a fit cannot be made simultaneously to the
two sign value regions. In this case the designer has to
make a decision relating to the size and nature of the
violation. If the violation is small in magnitude and brief in
frequency, then one may proceed by reversing the sign for
that band. Otherwise, if it is judged to be too large, then
unsatisfactory results will be obtained. In this case, one



remedy is to calculate the (non-normalized) real inverses
using a different algorithm because the tendency for this
phenomenon to occur differs for different algorithms. In
particular, standard real inverse algorithms are more prone
to this than non-normalized real inverse algorithms. Indeed,
this is why for this work they are favored to standard real
inverse algorithms. Another difference is that standard real
inverse algorithms tend to produce improper responses, as
opposed to non-normalized real inverse algorithm which
tend to produce proper or even strictly proper responses.
The reason for this immediately follows from their basic
definition. Standard real inverse algorithms try to minimize∣∣∣
∣∣∣G̃(wi)G(wi)− I

∣∣∣
∣∣∣
2
. For proper or strictly proper systems,

as wi increases,G(wi) approaches a singular matrix and
this forces the element of its inverse to approach infinity
(thus improper behavior) and this causes the real inverse to
exhibit improper behaviour.

Suppose now for a given system, elementg̃kl(wi) is vio-
lating the sign condition, but it is judged that the violation is
acceptable. In order to proceed, the corresponding element
in the matrixΓ should be modified to

γkl = sgn

{
1
m

m∑

i

g̃kl(wi)

}
. (15)

Step 5

Finally, construct a matrixK̃(s) = [kij(s)] ∈ Cn×n

where each elementkij(s) is designed by magnitude curve
fitting to | g̃(ωb)ij |. In the curve fitting stage, the following
issues need to be kept in mind
• Improper responses. Some elements of the real in-

verses might exhibit improper behavior with respect to
frequency. In these cases, once a good fit is obtained
in the chosen bandwidth, a pole atwm may be added
to the transfer function of those elements to roll off the
responses and make them proper. The same objective
may be met by incorporating integral action directly
in the pre-compensator. This has the added advantage
of allowing the controller to take non-PI(D) structures,
such as pure leads or lags, without having to worry
about steady state errors. This does not effect the
dominance levels of the lower frequencies.

• Fitting accuracy. Judgement needs to be exercised
on the merits of obtaining the closet fit possible,
irrespective of the order of the fitted polynomials. In
otherwords, since this is a design technique as opposed
to a synthesis technique, the trade-off compromise
between the complexity of each element versus the
improvements obtained is a matter for the designer to
decide. Design studies of applying this technique show
that in most cases second or even first order transfer
functions are sufficient for a very good response and
one rarely needs to consider more complex dynamics.

Once the design ofK̃(S) is complete, the final pre-
compensator isK(S) = Γ⊗K̃(S) where⊗ denotes element
by element multiplication. We present a brief example next,
before further discussing the design technique.

III. A N EXAMPLE

The Rolls-Royce spey gas-turbine engine is used here as
an example of a highly interacting and non-linear system.
The model has been linearized at several operating points:
the model linearized at 74% sea-level thrust is the subject
of this example. The state space composite model (engine
+ actuators) contains 21 states. It has three inputs; Fuel
Flow (FF), Inlet Guide Vanes (IGVs) and Nozzle Area
(NA); and three outputs; Low pressure spool speed (%NL),
High pressure spool speed (%NH) and Surge margin (SM).
The control exercise is to control the three outputs with
the three inputs in the order given as this is the optimal
I/O pairing found through dynamic-RGA analysis. There
are also reference performance functions available for each
loop. These are

Sysr(s) =




1
0.35s+1

0 0

0 1
1.2s+1

0

0 0 1
0.18s+1


 . (16)

The direct Nyquist array plot of the composite system
is shown in Figure 1. The interactions are clearly visible
and can be confirmed in the open loop step response of the
system, shown in Figure 5.a. Surge margin (SM) is heavily
interacting and similarly is the high pressure spool speed
(NH%). Following the steps outlined previously one can
now design a dynamic pre-compensator to achieve a high
amount of diagonal dominance.

Figure 2 shows the magnitude bode plots of the elements
of | G̃(wi) | for w ≤ ωb. Initially, all three columns
were calculated using the ALIGN algorithm. However, the
second column was violating the sign condition and it was
decided to switch to the Pseudo-diagonalization algorithm
to generate the second column. The dashed lines show the
response of the function fitted to the data. The matrices
K̃(s) andΓ where in this case found to be

K̃(s) = (17)


0.00072(s+9)
s

0.88(s+0.35)
s(s+3)

0.0046(s+70)
s

0.25(s+5)
s

6.37(s+19)
s

1.05(s+28)
s

0.00052(s+40)
s

0.56(s+0.5)
s(s+8)

0.02(s+36)
s


 ,

Γ =




+1 +1 +1
−1 +1 −1
−1 −1 +1


 . (18)

Resulting in the following pre-compensator, which also
contains integral action



K(s) = (19)


0.00072(s+9)
s

0.88(s+0.35)
s(s+3)

0.0046(s+70)
s

− 0.25(s+5)
s

6.37(s+19)
s

− 1.05(s+28)
s

− 0.00052(s+40)
s

− 0.56(s+0.5)
s(s+8)

0.02(s+36)
s


 .

Figure 3 shows the open loop direct Nyquist array plot of
the compensated engine with the dynamic pre-compensator
of Equation 17. Note that the integrators are omitted for
the open loop tests. Figure (5.b) shows the closed loop
step response of the plant with this pre-compensator. The
dashed lines show the reference outputs. As indicated from
the direct Nyquist array, interactions are heavily suppressed
and the system is highly diagonal dominant. However, at
this stage, the responses are not necessarily the same as
the required responses. Finally, to match the loop responses
with those of the reference functions, three single-loop
lead controllers were designed. This diagonal controller was
found to be

C(s) =




27 s+5
s+45 0 0
0 19 s+1

s+23 0
0 0 10 s+20

s+40


 , (20)

where the final multivariable controller isK(s)C(s).
Figure 4 shows the DNA of the closed loop system, and
Figure 5.c shows the step responses together with the
reference responses. Note that, using only second order pre-
compensation and first order controllers, the interactions are
reduced to less than 3% and all of the system outputs match
the reference outputs extremely closely. These results show
enormous improvements over dominance-based multivari-
able controllers designed for the Spey engine using the tra-
ditional constant pre-compensators [9]. This technique has
been applied to other benchmark dominance multivariable
problems including a 4 by 4 reheat furnace [3] and a 2 by
2 automotive gas-turbine [10], with extremely good results.

IV. CONCLUDING REMARKS

In this paper, a technique has been proposed for the
design of dynamic pre-compensators which had two major
advantages when compared to previous proposals. First,
the pre-compensator does not ‘self-impose’ any structural
constraints as it does in other proposed techniques. By this
we mean, if for example element (1,1) needs a third order
fit, it does not imply that the remaining elements of the first
column of the compensator would have a minimum degree
of third order. In other words, the order of the elements
of the pre-compensator are not interlinked (this, as men-
tioned previously is a common problem with minimization
techniques). Secondly, since this is a design technique as
opposed to a synthesis technique, the designer makes the
choice on the point of compromise between complexity
and performance. As an example, consider Figure 2 which
shows the magnitude fit for the Spey example. It is obvious
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Fig. 1. Open loop DNA of Spey engine

that the fits are ‘crude’ by any standards. However, the gain
in performance did not justify higher order fits. Indeed, even
with the basic fits, the results are satisfactory.

This design technique has been applied very successfully
to several other real-life examples including a two-input
two-output automotive gas-turbine and a four-input four-
output re-heat furnace, and also to some fictitious systems.
In all the cases, first or second order pre-compensators
were obtained which were able to achieve considerably high
levels of diagonal-dominance. Further work on this topic
would be to try to derive a formal proof for the technique,
which the authors do acknowledge at this point as being
only an ‘experimental’ technique.
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Fig. 2. Curve fitting to findK(s) - log-log scale
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a)  Step response of the open loop plant

0 1 2 3 4 5
−50

0

50

100

0 1 2 3 4 5 0 1 2 3 4 5

b)  Closed loop step response of the plant + pre−compensator

0 2 4 6

0

0.5

1

0 2 4 6 0 2 4 6

c) Closed loop step response of the plant + pre−compensator + controller

0 2 4 6 8

0

0.5

1

0 2 4 6 8 0 2 4 6 8

Fig. 5. Responses of the Spey


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM14.3
	Page0: 3065
	Page1: 3066
	Page2: 3067
	Page3: 3068
	Page4: 3069


