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Abstract— This paper proposes a new method for systematic linear multivariable controller design technique; namely,
construction of dynamic pre-compensators to achieve better Djagonal Dominance. This is a design technique that con-
diagonal dominance. Curve fitting is used to construct a aris a multivariable design problem into several single-

dynamic pre-compensator element-by-element, meaning unlike | desi bl hich then b ived usi
most minimization algorithms, there is no restriction on the 0op design probléms which can then be solved using any

structure of each element. To demonstrate its effectiveness, the Number of single-loop design techniques available. Given a
method is applied to the Rolls-Royce Spey gas-turbine engine, linear multivariable systenG(s) = [g;;(s)] € C™*™
which is a highly interacting and multivariable system.

|. INTRODUCTION [ g11(s) .. gin(s)
For a matrixA = [a;;] € C"*™, the radius of its column G(s) = : : ; (5)
Gershgorin disksC;(A) also referred to as theeleted 9n1(s) . Gun(s)
absolute column surand row Gershgorin diskB;(A) also )
referred to as thedeleted absolute row surare defined  and a pre-compensatdk(s) = [ki;(s)] € C™*"
respectively as

i /4111(3) e k‘ln(s)
- , K(s) = : : , (6)
Ci(4) = a;j i=1,....,n (1) : :
i Zl 4 | Ena(s) oo an(s)
l? the open loop transfer function is
Ri(A) = > lai| j=1,...,n. (2
12 Q(s) = G(s)K(s) = @)

" km m - " kmn m
Gershgorin’s theorem [1] states that the eigenvalues of 2=t ?(S)gl (s) _ 2m=1 _(S)gl (s)
lie inside the region defined by these disks centered on th . : - . : ’

diagonal entries ofd, as given by 2=t km1(8)gnm(s) .. D201 kmn(8)gnm(s)

where the system would be column diagonal dominant

Go(A) = U {seC:[s—a; | <Ci(A)} Q) as defined by Rosenbrock if
j=1
Gr(4) = (J{seC:|s—au|<Ri(A)}). (@) l@is(s) | = > laj(s)| Vs onDp  (8)
i=1 J=1
J#i

where Gr(A) describes the row Gershgorin region and
Gc(A) is the column Gershgorin region. Notice both
Gr(A) and G¢(A) must include the eigenvalues, hence
their intersectionG,,(4) = Gr(A) N Gc(A) is the subset
that the eigenvalues can truly exist i&,,(A) is referred
to as aminimal Gershgorin sef2] and other minimal sets
may be obtained by considering the intersection of all the

Gershgorin sets corresponding similar operators toA thought of as a weighting factor forcing the system to

(e.9.A = S~ AS). In this work, however, we are concernedyaye higher dominance levels than would otherwise satisfy
with the standard Gershgorin sets. Rosenbrock [3] us‘?ﬁequality (8). If such aK(s) is found, Q(s) may be

Gershgorin’s theorem to propose the first frequency—bas%%proximated by((s) where j;;(s) = qi;(s) for i = j
) - 1 -

*The authors thank EPSRC, UMIST and the IEE for supporting this‘and ‘jij(s) = 0 otherwise. In the final S_tage’ a diagonal
research. controller Ke(s) = [kei(s)] € C™ ™ is found such
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Substitution forg in inequality (8) gives

>«

Y kmi(8)gim(s)

j=1

J#i

where « is a scalar greater than one, which can be



that g;;(s)kcii(s) ~ refi(s)/(1 — refi(s)) whereref;(s)
denotes the reference response function for lbop

Although traditionally static pre-compensators tend to
be u_sed in d(.)mmance.-based controller _de5|gp, the SUbJeCtandA — [d;;] € R™" would be the standard real inverse
of this work is dynamic pre-compensation, since numerz ., . . .

: ) . 1f it minimized

ous studies [4] have shown that in systems whose eigen-
structure changes rapidly with frequency, constant pre- }
compensation can fail since its effect is only apparent in €s = HAA — IH . (12)
the vicinity of the frequency it was designed for. However, 2
one can expect much better results with a dynamic pre- There are numerous algorithms to generate both the

. X d non-normalized real inverse and the standard real inverse.
compensator since it can accommodate the rapid Ch"’mgeﬁg'eudo-diagonalisation is an example of a non-normalized

the systems eigen-structure. Although there are establishggy| inverse, whilst the ALIGN algorithm is an example
systematic methods for finding a constant pre-compensatof, a standard real inverse algorithm. The reader should
such as the Pseudo-diagonalisation method due to Hawkipgte that whilst there is freedom in the choice of the
[5] and the ALIGN algorithm due to Kouvartakis [6], there @lgorithm one usesthe samealgorithm must be used for

: . . Il w; to avoid scaling problems arising. Upon completion
does not exist any established, or universally accepte this step, one should be in possession of a set of

algorithm for design of dynamic pre-compensators. (non-normalized) real inverses fak(w;) which will be
One possible approach to findidg(s) would be to first  denoted byG/(w;), Yw; € wy.

determine a fixed structure for tlig;(s), say a Pl structure

and then to feed inequality (9) into a minimization algorithmStep 3
that will use k, and k; of each l.cij(s) as minimization . 1ate the two matriced andT as follows
parameters to satisfy the inequality. Examples of such syn-

thesis based techniques for finding the pre-compensator aré = ] i (12)
the algorithms of Ford [7] and Edmunds [8]. This approach y, feondgutedt oy Sean{gia e}

inevitably is not optimal by nature. When the structure of : .

an element is decided upon without prior knowledge of

€n = HAA - diag(AA)‘

(10)

’
2

S Bson(garw)} 3 Asgn{gen(us)

how complex it actually is, one is forced to account for Aw; Aw;

the maximum complexity it is predicted to take. Thereforewhere

thinking in terms of a whole column, this often translates 1. >0

into not enough dynamics for the complex elements, and un- sgn{z} = { _i <0 (13)

necessary extra dynamics in other elements. In addition, as ’

the size and order ok (s) increases, a direct minimization and

of the parameters over some set of frequencies, becomes sgn{gi1(w1)} ... sgn{gin(w;)}

an increasingly impossible problem. In the next section, we  _ . . . . 14)

present a simple design technique which overcomes this e ' L

obstacle to a large extent (needless to say it will inevitably sgn{gmi(wi)} ... sgn{gnn(wi)}

have its own weaknesses as well). If A =0, then proceed to step 5, if not proceed to the next
step.

Il. A SIMPLE DESIGN PROCEDURE

This technique is based on curve fitting for each elemer8tep 4
of the pre-compensator. The main steps involved in the
design process are as follows.
The condition thatA equals zero, is a requirement on

Step 1 the sign behavior of the elements Gfw;). Although each

element of these matrices are real, they are not necessarily
Evaluate G(s) on the frequency vectorw,, which positive. If A =0, it means that a given element does not
denotes the frequency range over which it is desired tthange its sign for the bandwidth of frequencies considered,
have diagonal dominance. A good guide {gris the -3db and remains either positive or negative for this range. If

frequency. the sign condition is violated for a given element difficulty
arises, since a fit cannot be made simultaneously to the
Step 2 two sign value regions. In this case the designer has to

make a decision relating to the size and nature of the
For each G(w;), calculate its (non-normalized) real violation. If the violation is small in magnitude and brief in

inverse Given a matrix A = [a;;] € C"*" then frequency, then one may proceed by reversing the sign for
A = [a;;] € R™*™ is its non-normalized real inverse if it that band. Otherwise, if it is judged to be too large, then
minimizes unsatisfactory results will be obtained. In this case, one
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remedy is to calculate the (non-normalized) real inverses Once the design oif{(S) is complete, the final pre-
using a different algorithm because the tendency for thisompensator i (S) = I'® K (S) where® denotes element
phenomenon to occur differs for different algorithms. Inby element multiplication. We present a brief example next,
particular, standard real inverse algorithms are more promefore further discussing the design technique.

to this than non-normalized real inverse algorithms. Indeed,

this is why for this work they are favored to standard real 1. AN EXAMPLE

inverse algorithms. Another difference is that standard real

inverse algorithms tend to produce improper responses, asl'he Rolls-Royce spey gas-turbine engine is used here as
opposed to non-normalized real inverse algorithm whicBn €xample of a highly interacting and non-linear system.
tend to produce proper or even Stricﬂy proper response-ghe model has been linearized at several Operating points:
The reason for this immediately follows from their basicthe model linearized at 74% sea-level thrust is the subject
definition. Standard real inverse algorithms try to minimizef this example. The state space composite model (engine

Hé(wi)G(wi) _ IH . For proper or strictly proper systems, actuators) contains 21 states. It has three inputs; Fuel
Flow (FF), Inlet Guide Vanes (IGVs) and Nozzle Area

as wi increases (G (w;) apprpac.hes a singular matri>§ gn_d NA); and three outputs; Low pressure spool speed (%NL)
this forces the element of its inverse to approach infinity,. h' | ' d (9 d ; '
thus imoroper behavior) and thi the real inver igh pressure spool speed (%NH) and Surge margin (SM).
éxrlljiiit irFr: orp:)e er?aeerlla\c/)igua; S causes the real inve Se']’?]e control exercise is to control the three outputs with

prop : the three inputs in the order given as this is the optimal

Suppose now for a given system, elemgp{w;) is vio- o - .
lating the sign condition, but it is judged that the violation isI/O pairing found through dynamic-RGA analysis. There

. are also reference performance functions available for each
acceptable. In order to proceed, the corresponding elem%lo These are
in the matrixI" should be modified to P-

1 0 0
1 & 0.355+1
Yoo = sgnq — > Grlwi) p - (15) Syse(s) = 0 =5 0 |, e
me 0 0 gy

The direct Nyquist array plot of the composite system
is shown in Figure 1. The interactions are clearly visible
and can be confirmed in the open loop step response of the

Finally, construct a matrixk (s) = [k;:(s)] € Cnxn C . ’ .
Wherg each elemerit;; (s) is de(si)gned [bngnz)a]gnitude curve system, shown in Figure 5.a. Surge margin (SM) is heavily

fitting to | g(ws); |. In the curve fitting stage, the following ma@‘;tm’%ﬁ:ﬁifrrllrl]irl)sltés ;hgu?lligz dprersei?(;ﬁ;p%?:esieaid
issues need to be kept in mind o) g the P P y .
| S | ts of th li now design a dynamic pre-compensator to achieve a high
* !MProper Tesponses some elements ot e real - 555t of diagonal dominance.
verses might exhibit improper behavior with respectto _. .
i . Figure 2 shows the magnitude bode plots of the elements
frequency. In these cases, once a good fit is obtalne(Ti = "
of |G(w;)| for w < wp. Initially, all three columns

in the chosen bandywdth, a pole af, may be added were calculated using the ALIGN algorithm. However, the
to the transfer function of those elements to roll off the . . - .
. _Second column was violating the sign condition and it was
responses and make them proper. The same objectiye . : ; o .
: LT : . €cided to switch to the Pseudo-diagonalization algorithm
may be met by incorporating integral action directly, )
. . to generate the second column. The dashed lines show the
in the pre-compensator. This has the added advantage : . .
. sponse of the function fitted to the data. The matrices
of allowing the controller to take non-PI(D) structures, ~ L
: ¢ K (s) andT" where in this case found to be
such as pure leads or lags, without having to worry

about steady state errors. This does not effect the

Step 5

dominance levels of the lower frequencies. K(s) = (17)
« Fitting accuracy. Judgement needs to be exercised 0.00072(s+9)  0.88(s+0.35)  0.0046(s+70)
on the merits of obtaining the closet fit possible, 0.25(s5+5) eaviiley  LosCizs)
irrespective of the order of the fitted polynomials. In 0.00053(s+40) o.5e((§+o).5> 0.02(5+36)
s s(s+8 s

otherwords, since this is a design technique as opposed
to a synthesis technique, the trade-off compromise

between the complexity of each element versus the +1 41 +1
improvements obtained is a matter for the designer to = -1 +1 -1 |. (18)
decide. Design studies of applying this technique show -1 -1 +1

that in most cases second or even first order transfer
functions are sufficient for a very good response and Resulting in the following pre-compensator, which also
one rarely needs to consider more complex dynamicsontains integral action
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K(s) = (19)
0.00072(s+9) 0.88(s+0.35)  0.0046(s+70)
s s(s+3) s
_0.25(s+5) 6.37(s+19)  _ 1.05(s+28)
 0.00053(s+40) _ 0.56(s+0.5)  0.02(s%}36)
s s(s+8) s

Figure 3 shows the open loop direct Nyquist array plot 0 -
the compensated engine with the dynamic pre-compensar -z
of Equation 17. Note that the integrators are omitted fo
the open loop tests. Figure (5.b) shows the closed loc
step response of the plant with this pre-compensator. Tt
dashed lines show the reference outputs. As indicated fro
the direct Nyquist array, interactions are heavily suppresse -os
and the system is highly diagonal dominant. However, & _
this stage, the responses are not necessarily the same
the required responses. Finally, to match the loop responses
with those of the reference functions, three single-loop
lead controllers were designed. This diagonal controller was
found to be

0

-0.3

0 0.5

Fig. 1. Open loop DNA of Spey engine

that the fits are ‘crude’ by any standards. However, the gain

s+5
275—0-1—45 0 0
C(s) = 0 1924 0 . (20)
00 102

in performance did not justify higher order fits. Indeed, even
with the basic fits, the results are satisfactory.
This design technique has been applied very successfully

to several other real-life examples including a two-input

where the final multivariable controller & (s)C(s).

two-output automotive gas-turbine and a four-input four-

F!gure 4 shows the DNA of the closed loop system, angutput re-heat furnace, and also to some fictitious systems.
Figure 5.c shows the step responses together with the o the cases, first or second order pre-compensators
reference responses. Note that, using only second order pigs e gptained which were able to achieve considerably high

compensation and first order controllers, the interactions /els of diagonal-dominance. Further work on this topic

reduced to less than 3% and all of the system outputs matghy 1 pe to try to derive a formal proof for the technique,
the reference outputs extremely closely. These results Shg_\‘/\’]ich the authors do acknowledge at this point as being

enormous improvements over dominance-based multiva
able controllers designed for the Spey engine using the tra-
ditional constant pre-compensators [9]. This technique has
been applied to other benchmark dominance multivariabley;
problems including a 4 by 4 reheat furnace [3] and a 2 by

2 automotive gas-turbine [10], with extremely good results.[?!

V. CONCLUDING REMARKS &
In this paper, a technique has been proposed for th&!
design of dynamic pre-compensators which had two majors)
advantages when compared to previous proposals. First
the pre-compensator does not ‘self-impose’ any structura[lé]
constraints as it does in other proposed techniques. By this
we mean, if for example element (1,1) needs a third ordet!]
fit, it does not imply that the remaining elements of the first g
column of the compensator would have a minimum degree
of third order. In other words, the order of the elements
of the pre-compensator are not interlinked (this, as menrg
tioned previously is a common problem with minimization
techniques). Secondly, since this is a design technique as
opposed to a synthesis technique, the designer makes i
choice on the point of compromise between complexity
and performance. As an example, consider Figure 2 which
shows the magnitude fit for the Spey example. It is obvious

Bnly an ‘experimental’ technique.
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