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Abstract— In this paper the stabilization problem for a
simple (unstable) planar system in the presence of input and
output quantization is addressed. It is shown that global
stability to a terminal set is achieved by means of a hybrid
output feedback control law, which reads out the plant only
three values and yields a control action composed of three
values. Simulations results complete the work.

I. INTRODUCTION AND PROBLEM FORMULATION

The problem of stabilization of linear and nonlinear
systems by means of hybrid control laws, i.e. control laws
which can be described by automata or by a finite set of
rules, has become increasingly popular in the last decade.
This is mainly because such control laws can be easily
coded and implemented using computers. However, while
the implementation issue is fairly simple, the use of hybrid
control laws raises several difficult theoretical issues. This
is due to the fact that hybrid control laws, even in a
linear framework, yields a nonlinear control problem, as for
example inputs and outputs have to be considered quantized
(and bounded) [1], [2], [3]. As a result, even standard
properties, such as controllability and observability may be
lost or difficult to assess.

The aim of this work is to show that, for a planar unstable
linear system with quantized input and output, the global
practical stabilization problem is solvable by means of a
simple hybrid control law. This work is partly motivated
by the results developed in [2], which in turn relies on
the general theory of Wonham and Ramadge [4], and by
the results on stabilization of cascaded nonlinear systems
developed in [5].

In what follows, we consider a system described by
equations of the form

[

ẋ1

ẋ2

]

=

[

0 a
0 0

][

x1

x2

]

+

[

0
b

]

u (1)

y = φy([c1 c2]

[

x1

x2

]

) (2)

where a, b, c1 and c2 are known constants such that

abc1 6= 0, (3)
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and φy(·) is a quantization function defined as

φy(s) =







1, if s > σy

0, if |s| ≤ 1
−1, if s < −σy

.

for some σy > 0.
Note that without loss of generality we can assume

that a > 0, b > 0 and c1 > 0. If this were not the case,
then it is possible to apply a preliminary state and input
transformation yielding a system with this properties.

By condition (3), the underlying linear system is control-
lable and observable. By construction, the output y of the
system takes value in the finite set Y = {1,0,−1}, and it is
assumed that the input u is also constrained to take value
in the finite set U = {−ε,0,ε}1, for some ε > 0.

The input u (the output y) is modified (read) at some
given sampling time2. At each sampling time the controller
computes the value of the control signal on the basis of the
available information and of the actual time3.

The goal of the control law is to make sure that, for any
initial condition (x1(0),x2(0)), the trajectories of the closed
loop system remain bounded and converge toward a residual
set Ω, containing the origin of the state space, and the size
of which is a function of σy, ε and the sampling time Ts.

System (1)-(2) is the simplest system for which the
considered problem makes sense, and yet it is nontrivial. In
fact, if the system were exponentially unstable then global
boundedness cannot be achieved via bounded control. On
the contrary, if the system were stable then global bounded-
ness would be trivial to achieve, and practical stabilization
can be (in principle) achieved using damping injection. Note
moreover that the system is not required to be minimum
phase, hence the semiglobal stabilization tools developed
in [6] are not applicable.

The present paper is organized as follows. In Section II
we describe a state feedback control law achieving global
boundedness and practical stabilization. In Section III we
show how it is possible to asymptotically reconstruct the
state of the system by means of a time-varying observer. The
results above are exploited in Section IV where an output
feedback control law yielding practical asymptotic stability
is designed, and the properties of the resulting closed loop
system are studied in details. Finally, Sections V and VI
contain some illustrative simulations and some concluding
remarks.

1Similar conclusions can be drawn if U = {−ε,ε}.
2For simplicity we assume that sampling times are evenly spaced,

however this is not necessary.
3See later for detail.



II. THE STATE FEEDBACK CONTROLLER

Consider system (1) and assume that the measurable
variable is

ỹ =

[

ỹ1

ỹ2

]

=

[

φx1(x1)
φx2(x2)

]

, (4)

where, for i ∈ {1,2}, φxi is a four-valued function defined
as

φxi(s) =



























1, if s > σxi

1/2, if 0 ≤ s ≤ σxi

−1/2, if −σxi ≤ s < 0

−1, if s < −σxi

, (5)

for some σx1 > 0 and σx2 > 0.

Lemma 1: Consider system (1) with output (4) and the
control law

u =







−ε sign(ỹ2), if |ỹ2| = 1

−ε sign(ỹ1), otherwise,
(6)

for some ε > 0.
Let σx1

4, σx2 , ε and the sampling time Ts be such that

σx2 > εTsb (7)

σx1 > a(Tsσx2 +
T 2

s bε
2

+
(σx2 +Tsbε)2

2bε
). (8)

Then the closed loop system is globally practically asymp-
totically stable, i.e. the closed loop system is globally stable
and for any initial condition the trajectories of the closed
loop system are such that

limsup
t→∞

|x1| < σx1 (9)

limsup
t→∞

|x2| < 2σx2 . (10)

Remark 1: The output (4) is a four valued function,
whereas the control law (6) is a two valued function. Hence,
Lemma 1 shows that system (1) with a 1-bit decoder at
the input and two 2-bits decoders at the output5 can be
globally practically stabilized. Note that, similar results
can be proved in the presence of decoders with higher
resolution. However, it would be interesting to show if the
information pattern considered is the minimal one. This
issue is under investigation.

Instead of providing a formal proof of the above Lemma
we briefly illustrate its stabilization mechanism. Figure 1
shows the behaviour of the system (1)-(4) with the control
law 6. For t = 0, x2 > σx2 (hence ỹ2 = 1) and the controller

4By equation (7) a(Tsσx2 + T 2
s bε
2 +

(σx2 +Tsbε)2

2bε ) <
7aσ2

x2
2εb , therefore σx1

can be simply selected such that σx1 >
7aσ2

x2
2εb .

5Note however that, as the control law is simply using the signum of
the output variable ỹ1, it would be possible to use one 1-bit and one 2-bits
decoder for the output channel.

responds with u = −ε, and this reduces |x2|. The control
signal remains constant till t = (k̄ + 1)Ts. In that moment,
the second rule of the controller becomes active, because
|x2| < σx2 , and the controller output depends on the value
of x1.

In this example x1 > 0, and this implies that the output
remains u = −ε. The state x1 is increasing because x2 > 0
and it reachs its maximum value at t = ¯̄t, when x2 = 0. In this
period, the control input is u = −ε, therefore x2 decreases
until x2 <−σx2 . At this time, the first rule of the controller
becomes active and the control signal is u = ε. This value
of u is applied for only a sampling period, because x2 is
increasing and it reachs the boundary −σx2 . Therefore the
controller applies the first rule, yielding u = −ε, provided
x1 remains positive.

We have therefore a period of time in which x2 is around
−σx2 , and this makes x1 decrease. At t = (k + 1)Ts the
controller notices that x1 < 0, so the output of the second
rule is u = ε. That finishes the curl of x2, and x2 begins to
increase. The state x1 is decreasing till t = t̂ due to the sign
of x2. Then, x2 reachs σx2 and the above series of switches
is repeated.

Note that for t > (k̄ +1)Ts the state x2 remains between
[−2σx2 ,2σx2 ] and for t > (k + 1)Ts the state x1 remains
between [−σx1 ,σx1 ].

0

St
at

es

Time

PSfrag replacements

x1

x2σx1σx2

−σx1−σx2

k̄Ts

(k̄ +1)Ts

kTs (k +1)Tst̄

¯̄t

t̂

Fig. 1. Definitions.

Remark 2: The control law (6) is such that all trajectories
of the closed loop system converge to a residual set Ω which
is defined by the values of σx1 and σx2 . These values should
be such that conditions (7) and (8) hold. Note however that,
for any positive σx1 and σx2 it is always possible to select
ε > 0 and Ts > 0 such that conditions (7) and (8) hold.

III. THE OBSERVABILITY ISSUE

In this section we show that it is possible to approxi-
mately asymptotically reconstruct the state of the system (1)



from the output (2). Note that this is a nontrivial problem,
as system (1) with output (2) is not uniformly observable
nor there exists a universal input.

Remark 3: One further difficulty arises because of the
sampled nature of the output. In fact, if the output were
measured for all t then it would be possible to reconstruct
exactly the state. This reconstruction can be achieved as
follows.

Consider system (1) with output (2) and assume that y(t)
is known for all t. Suppose also that y(0) = 1. Then, setting
u = −ε yields an output trajectory y(t) which is such that

c1x1(t1)+ c2x2(t1) = σy, (11)

for some t1 > 0, and

c1x1(t2)+ c2x2(t2) = −σy, (12)

for some t2 > t1. Moreover, by the dynamics of the system,

x2(t2) = x2(t1)−bε(t2− t1)

x1(t2) = x1(t1)+a(x2(t1)(t2 − t1)−bε (t2−t1)2

2 ).
(13)

Hence, replacing equation (13) into equation (12), one may
solve for x1(t1) and x2(t1) from such equation and equation
(11). Note that this procedure is feasible by observability
of the underlying linear system. (If y(0) = −1 or y(0) = 0
a similar argument may be used.)

To solve the considered state estimation problem, con-
sider a discrete time realization of the system given by

xk+1 =

[

xk+1
1

xk+1
2

]

= Adxk +Bduk =

=

[

1 aTs

0 1

][

xk
1

xk
2

]

+

[

ab T2
s
2

bTs

]

uk

yk = φy(cxk) = φy([c1 c2]

[

xk
1

xk
2

]

).

(14)
Note that the underlying linear system is controllable and
observable as abc1 6= 0.

As already remarked, observability of system (14) de-
pends upon the selection of the input signal. To illustrate
this property, assume, for example, c1 = 1, c2 = 0, uk = ε
for all k, x0

1 > σy and x0
2 > 0. Then a simple computation

shows that yk = 1 for all k, which implies that xk
1 > σy for

all k, but does not yield any information on the size of xk
1

or on xk
2.

To provide an intuitive explanation of the observer design
proposed in Lemma 2 below, note that by its quantized
nature, at each sampling time it is only possible to decide
if the state of the system is in one of the three regions
defined by

cxk > σy

cxk < −σy

or
−σy ≤ cxk ≤ σy.

However, it is possible to obtain further information on the
state xk considering how the states in the above regions
move with k, provided the output switches. Hence, the ob-
server has to remember not only the output at the sampling
time, but also its previous values. In this way, it is possible
to construct a sequence of regions Rk, of decreasing area,
in the state space, with the property that xk ∈ Rk, for all k.

Lemma 2: Consider the system (14).
Define

c(k) =























[−c], if yk = 1
[

c
−c

]

, if yk = 0

[c], if yk = −1

d(k) =























[−σy], if yk = 1
[

σy

σy

]

, if yk = 0

[−σy], if yk = −1

(15)

and consider also the sequences of matrices

C(k) =











c(0), if k = 0
[

C(k−1)A−1
d

c(k)

]

, if k > 0

D(k) =











d(0), if k = 0
[

D(k−1)+C(k−1)A−1
d Bduk−1

d(k)

]

, if k > 0

(16)
Then the state xk is such that6

xk ∈ Rk = {(x1,x2) ∈ IR2 | C(k)x � D(k)}. (17)

Lemma 2 cannot be used directly to construct an (ap-
proximate) estimate for the state xk of system (14), as the
regions Rk may be unbounded. However, it may be proved
that if Rk̄ is bounded for some k̄ then Rk is bounded and
it is not larger than Rk̄, for all k > k̄. We do not provide
details of these facts, as in the next section we will show
that using a proper selection of the control sequence uk it
is possible to prove a convergence result for the sequence
{Rk}.

IV. OUTPUT FEEDBACK CONTROLLER

In this section it is shown how the results in Sections
II and III can be combined to design an output feedback
control law globally, practically, stabilizing system (1) with
output (2). To this end, we first prove a few preliminary
lemmas.

6The notation a � b, with a and b vectors has to be understood
componentwise.



A. Preliminary lemmas

Lemma 3: Consider system (1) with output (2). Let
ψ(xk

1,x
k
2) be defined as

ψ(xk
1,x

k
2) =







−ε sign(φx2(x
k
2)), if |φx2(x

k
2)| = 1

−ε sign(φx1(x
k
1)), otherwise,

where φx1(·) and φx2(·) are as in equation (5), and assume
that σx1 , σx2 , ε and the sampling time Ts are such that
conditions (8) and (7) hold.

Consider the regions Rk defined in Lemma 2. Define, for
i = {1,2},

xk
i,min = minx∈Rk xi

xk
i,max = maxx∈Rk xi

(18)

and

x̄k1 =







xk
1,min, if −yk > 0

xk
1,max, if −yk < 0

x̄k2 =







xk
2,min, if −yk > 0

xk
2,max, if −yk < 0

(19)

Let

u =







−εyk, if Rk is not compact

ψ( x̄k1, x̄k2), if Rk is compact.
(20)

Then there exists k̄ > 0 such that for all k ≥ k̄, Rk is compact.

Remark 4: Note that (19) can be computed online. The
complexity of that operations is just an LP. In order to
decrease the complexity of the computation, redundant
inequalities can be removed.

Lemma 4: Let the assumptions and definitions of Lem-
mas 2 and 3 hold. Consider the system (1) with the output
(2), the controller (20) and the sequence {Rk}.

Assume that, for some k̄, Rk̄ is compact. Then for all
k̃ ≥ k̄ there exists k̂ ≥ k̃ such that, for all k > k̂

xk
2,max ≤ 2σx2 + xk̃

2,max − xk̃
2,min

xk
2,min ≥−2σx2 − xk̃

2,max + xk̃
2,min.

(21)

Lemma 5: Consider the system (1) with the output (2),
the controller (20) and the sequence {Rk} defined on
Lemma 2.

Then for all k̃ such that yk̃ 6= 0 there exists a k > k̃ such
that yk = {−yk̃,0}.

Lemma 6: Let the assumptions and definitions of Lem-
mas 2 and 3 hold. Consider the system (1) with the output
(2), the controller (20) and the sequence {Rk}.

Then for all k̃ such that Rk̃ is compact there exists k̂ ≥ k̃
such that, for all k > k̂

xk
1,max ≤

|c2|
c1

(2σx2 + xk̃
2,max − xk̃

2,min)+
σy
c1

+

a(2σx2+xk̃
2,max−xk̃

2,min)
2

2bε +aTs(2σx2 + xk̃
2,max − xk̃

2,min)
(22)

xk
1,min ≥ −

|c2|
c1

(2σx2 + xk̃
2,max − xk̃

2,min)−
σy
c1
−

a(2σx2+xk̃
2,max−xk̃

2,min)2

2bε −aTs(2σx2 + xk̃
2,max − xk̃

2,min).
(23)

Lemma 7: If Lemmas 3 and 6 hold then for all γ > 0
there exists a k̄ such that for all k > k̄, xk

2,max − xk
2,min < γ.

B. Output feedback control

The preliminary results proved so far allow to state the
following fact, the proof of which is a trivial consequence
of the facts established so far.

Proposition 1: Consider system (1) with output (2). Con-
sider the output feedback control law defined in Lemma 3.

Then, for any initial condition x(0) the trajectories of the
closed loop system are bounded and converge to a residual
set Ω, the size of which can be arbitrarily reduced with a
proper selection of the design parameters σx2 , σy, ε and Ts.

V. SIMULATIONS

In this section we provide some simulations to illustrate
the theoretical results. We consider two systems of the form
(1) with output y = φy(c1x1 +c2x2) with a, b, c1 and c2 such
that the underlying linear systems have transfer functions

S1: G1(s) =
2(s−1)

s2

S2: G2(s) =
2(s+1)

s2 .

In all cases the sampling time is Ts = 0.1, the initial
conditions are x1(0) = 3 and x2(0) = −2, ε = 2, σx1 = 1
and σx2 = 1.

Figures 2, 3 and 4 display the phase portrait, the history
of the state variables and of the control signal, respectively,
for the case S1. On Figure 2 we have also plotted the
boundary of the region Rk for some values of k. Note that
the region is shrinking and, as proven, x2,max − x2,min is
decreasing.

Figures 5, 6 and 7 display the phase portrait, the history
of the state variables and of the control signal, respectively,
for the case S2. On Figure 5 we have also plotted the
boundary of the region Rk for some values of k.

In both simulations, and as predicted by the theory, the
state approaches a residual set and remains therein. It is
interesting to observe that the phase portraits are completely
different, and this is mainly due to the fact that one of the
underlying linear system is minimum phase, whereas the
other is not.
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Fig. 2. Phase portrait for case S1.
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Fig. 4. Control signal for case S1.

VI. CONCLUSIONS

In this paper the stabilization problem for a simple planar
system in the presence of input and output quantization has
been considered. A globally practically stabilizing output
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Fig. 5. Phase portrait for case S2.
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Fig. 6. State histories for case S2.
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Fig. 7. Control signal for case S2.

feedback control law has been designed. This relies on
the construction of a practically stabilizing state feedback
control law and of a practical observer. The theoretical
findings have been illustrated via some simple simulations.



The results presented in this paper can be extended to n
dimensional systems described by equations of the form

ẋ = Ax+Bu

y = φy(Cx)

with A with all zero eigenvalues, (A,B) controllable, and
(C,A) observable.
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