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Abstract— The solvability of global robust stabilization
problem of nonlinear systems by output feedback has been
given under various growth conditions on the vector fields of
the systems. One of the most common cases is that the vector
field is bounded by a linear growth with constant incremental
rate. Recently, the problem was solved in [10] for some systems
with output dependent incremental rate, without considering
the uncertainties. This paper further considers the uncertain
systems and gives the robust result.

I. I NTRODUCTION

Over the years, there have been constant progresses on
the problem of global stabilization of nonlinear systems
by output feedback control [3], [5], [8], [9], [10], [12],
[13], etc. In particular, in [10], the problem is solved for
systems in lower triangular form under the global Lipschitz-
like condition on the unmeasurable states with output
dependent incremental rate. The results reply to systems
without model uncertainties. In [12], under an alternative
linear growth assumption with constant incremental rate,
the global stabilization of a class of uncertain nonlinear
systems is considered by output feedback control.

These papers employ high gain observers derived from
the standard form (e.g. [7]) to reproduce the unmeasured
states, and then synthesize an observer-controller based
control laws. While [12] uses a static sufficiently high gain
under the assumption that the incremental rate is constant,
[10] uses a dynamically generated high gain in the observer
to account for the incremental rate of the vector field. In this
paper, we consider the global output feedback stabilization
problem for uncertain systems in lower triangular form with
output dependent incremental rate. Due to the presence of
the model uncertainty, the method in [10] cannot be directly
applied to our case because [10] has used the vector filed
that defines the system in the construction of the observer.
In particular, the error system is not globally asymptotically
stable, but is driven by some other states. In this paper, we
have managed to overcome the difficulty incurred by the
model uncertainty by devising a novel high gain generator.
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The remaining sections are organized as follows. Section
II formulates the main problem. In Section III, we design an
observer and analyze the error system. And in Section IV
we design the controller and analyze the stability of overall
system. An example is given in Section V to illustrate the
effectiveness of our method. Finally, we close this paper by
some concluding remarks.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the following nonlinear system

ż = f0(z, x1, µ(t))

ẋ1 = x2 + f1(z, x1, µ(t))

...

ẋn−1 = xn + fn−1(z, x1, · · · , xn−1, µ(t))

ẋn = u + fn(z, x1, · · · , xn, µ(t))

y = x1 (2.1)

where z ∈ <nz and x = col(x1, . . . , xn) ∈ <n are the
states,u, y ∈ < the input and output respectively,µ :
[0,∞) 7→ <nµ a piecewise continuous vector valued func-
tion representing disturbance and/or unknown parameters,
and the functionsf0, · · · , fn are continuously differentiable
in their arguments.

Roughly, the objective of this paper is to find an output
feedback controller such that, for allz(0) ∈ <nz and
x(0) ∈ <n, the trajectories of the closed-loop system
composed of (2.1) and this controller are bounded for all
t ≥ 0, and the states of (2.1) converge0 asymptotically, i.e.,
limt→∞ col(z(t), x(t)) = 0. A more precise description of
our objective will be given in the statement of Theorem 4.1.

As pointed out in [9], the global stabilization on nonlinear
systems via output feedback is usually impossible, without
extra growth conditions on the unmeasurable states of the
system. Here, we impose the following growth conditions
on system (2.1).
A2.1: For i = 1, · · · , n, there exist non-negative continuous
functionscj

i (·), j = 0, · · · , i, such that, for allµ ∈ <nµ ,

|fi(z, x1, · · · , xi, µ(t))| ≤ c0
i (x1)‖z‖ +

i
∑

j=1

cj
i (x1)|xj |.(2.2)

And a minimum phase assumption is imposed on the
inverse dynamics of (2.1) as follows.
A2.2: There exists aC1 positive definite proper function
Vz (z) satisfying

az‖z‖2 ≤ Vz (z) ≤ āz‖z‖2



for positive numbersaz and āz, such that, its derivative,
along the trajectories of

ż = f0(z, x1, µ(t)), (2.3)

satisfies

dVz(z)

dt
≤ −‖z‖2 + czx

2
1 (2.4)

for some non-negative numbercz.
Remark 2.1: The global stabilization problem of the

lower triangular systems of the form (2.1) by state (or partial
state) feedback control has been extensively studied in [1],
[4], [6], among others. Recently, this problem was solved
by output feedback control in [10] when no uncertaintyµ(t)
appears in system (2.1). Also [12] solved this problem under
assumption A2.1 withcj

i being constant.
Remark 2.2: It should be noted the systems considered

in [12] are more general that (2.1). Nevertheless, the results
in this paper can also be straightforwardly extended to
the same class of systems in [12]. Specifically, when the
functionsfi, i = 1, . . . , n, in system (2.1) explicitly depend
on all states and the input, that is,fi can be rewritten as
fi(z, x1, . . . , xn, u, µ), the results still hold as long as the
absolute values off ,

is are still bounded by (2.2).

III. O BSERVER ANDERRORSYSTEM

The output feedback stabilization problem of plant (2.1)
will be solved by the explicit construction of an observer-
controller type control law. In this section, we will design
a dynamic high gain observer and analyze the error system
between the original system and the observer. Then, a
controller will be given in the next section.

A. Observer

First we design a high gain observer (see [7]) as follows,

˙̂x1 = x̂2 + a1r(x1 − x̂1)
˙̂x2 = x̂3 + a2r

2(x1 − x̂1)

...
˙̂xn = u + anrn(x1 − x̂1) (3.1)

where x̂ = col(x̂1, · · · , x̂n) ∈ <n is the state, and
a1, · · · , an are the coefficients of arbitrary Hurwitz poly-
nomial p(λ) = λn + a1λ

n−1 + · · · + an−1λ + an, that is,
the matrix

A =











−a1 1 · · · 0
...

...
. . .

...
−an−1 0 · · · 1
−an 0 · · · 0











is Hurwitz. Further, letP be a symmetric positive definite
matrix satisfying the Lyapunov equation

PA + AT P = −I. (3.2)

DenoteB = diag(0, 1, · · · , n− 1), from [11], it is possible
to choosea1, · · · , an satisfying (3.2) and

P (B + I) + (B + I)P > 0. (3.3)

Hence, there existsp > 0 such that

xT [P (B + I) + (B + I)P ]x ≥ p‖x‖2, ∀x ∈ <n.

In the observer,r is the dynamically generated high gain.
To design the generator, we will introduce a so-calledramp
function ramp(·), which is continuous non-negative function
defined as follows

ramp(r) =

{

0, r < 0
r, r ≥ 0

. (3.4)

Now, it is ready to define the high gain generator as
follows,

ṙ =
r

p
ramp

[

$
(x1

r

)

− r

2

]

, r(0) = r0 ≥ 1 (3.5)

where$(·) is a continuously differentiable positive function
to be specified later.

Remark 3.1: When the incremental rate of the system is
constant, the high gainr in (3.1) can be chosen as a suffi-
ciently high constant [12]. However, when the incremental
rate depends on the output of the system, a dynamically
generated high gain has to be considered. The generator
(3.5) is motivated from the one in [10] but is defined
differently so that it has the following two properties,

i: ṙ(t) ≥ 0, t ≥ 0 (3.6)

ii:
r

2
+ p

ṙ

r
≥ $

(x1

r

)

. (3.7)

These properties are important in stability analysis of the
closed-loop system.

B. Error System

For i = 1, . . . , n, denote ei = xi − x̂i, then the
error system between the original system and the observer
becomes

ė1 = e2 + f1(z, x1, µ) − a1re1

ė2 = e3 + f2(z, x1, x2, µ) − a2r
2e1

...

ėn = fn(z, x1, · · · , xn, µ) − anrne1. (3.8)

Now, the system composed of plant, observer and high
gain generator, i.e., (2.1)+(3.1)+(3.5), is diffeomorphic to
(2.3)+(3.1)+(3.8)+(3.5).

Furthermore, scale the coordinate by definingε0 = z
r
,

εi = ei

ri , i = 1, · · · , n. Thus, system (2.3)+(3.8) is changed



into the following form

ε̇0 =
f0(z, x1, µ)

r
− ṙ

r
ε0

ε̇1 =
f1(z, x1, µ)

r
+ rε2 − ra1ε1 −

ṙ

r
ε1

ε̇2 =
f2(z, x1, x2, µ)

r2
+ rε3 − ra2ε1 − 2

ṙ

r
ε2

...

ε̇n =
fn(z, x1, · · · , xn, µ)

rn
− ranε1 − n

ṙ

r
εn. (3.9)

It is seen that system (2.1)+(3.1)+(3.5) is diffeomorphic to
(3.9)+(3.1)+(3.5).

For simplicity of the presentation, define the following
notations,

ε = col(ε1, · · · , εn)

F (z, x, r, µ) = col

(

f1(z, x1, µ)

r
,
f2(z, x1, x2, µ)

r2
, · · · ,

fn(z, x1, · · · , xn, µ)

rn

)

.

We now show that, by choosing some appropriate function
$(·) to generate a sufficiently large gainr, there exists a
Lyapunov-like function for the error system (3.9).

Lemma 3.1: Suppose system (2.1) satisfies assumptions
A2.1 and A2.2, and fori = 1, · · · , n,

c0
i (x1) ≤ a0

i |x1|i−1 + b0
i , (3.10)

cj
i (x1) ≤ aj

i |x1|i−j + bj
i , j = 1, . . . , i (3.11)

for some nonnegative numbersaj
i , bj

i , j = 0, . . . , i. Then,
under some appropriate choice of the function$(·) in (3.5),
there exists a continuously differentiable positive semi-
definite functionV0(ε0, ε, r), such that, its derivative along
(3.9) and (3.5) satisfies

dV0(ε0, ε, r)

dt
≤ −‖ε0‖2 − r

2
‖ε‖2 + C

n
∑

j=1

x̂2
j

r2j

for some non-negative real numberC.
Moreover, ifr is bounded, i.e.,limt→∞ r(t) = r∞ < ∞,

then

α0(‖col(ε0, ε)‖) ≤ V0(ε0, ε, r) ≤ ᾱ0(‖col(ε0, ε)‖)
for some classK∞ functionsα0(·), ᾱ0(·), which depend on
r∞.

Proof: It can verified that

V0(ε0, ε, r) = 2
Vz(rε0)

r2
+ εT Pε

is the derived Lyapunov function, and the details are omitted
due to the space limit.

Remark 3.2: It is obvious that ifcj
i (x1) is constant for

j = 0, · · · , i, i = 1, . . . , n, then the conditions (3.10) and
(3.11) are automatically satisfied withaj

i = 0 and bj
i = cj

i .

IV. CONTROLLER DESIGN

The objective of this section is to design an appropriateu
in (3.1), dependent on the observer statesx̂1, · · · , x̂n, such
that there exists a Lyapunov function for the overall system
(3.9)+(3.1)+(3.5). The construction of the controller is based
on a recursive procedure as follows.

1) Let x̃1 = x̂1, x̃2 = x̂2 + κ1rx̃1, for some positive
numberκ1 satisfying

κ1 ≥ n + 1

2
a2
1 +

1

p
+

1

4
. (4.1)

And let

V1(ε0, ε, r, x̃1) = V0(ε0, ε, r) +
1

2r2
x̃2

1,

then, under the condition

$(s) ≥ 2C(1 + 2κ2
1)p, (4.2)

its derivative satisfies

dV1(ε0, ε, r, x̃1)

dt

≤ −‖ε0‖2 − r

2
‖ε‖2 + C

n
∑

j=3

x̂2
j

r2j
+ C

x̃2
1

r2
+ 2C

x̃2
2

r4

+2C
κ2

1x̃
2
1

r2
+

1

r2
x̃1

(

x̃2 − κ1rx̃1 + a1r
2ε1

)

− ṙ

r3
x̃2

1

≤ −‖ε0‖2 − nr

2(n + 1)
‖ε‖2 + C

n
∑

j=3

x̂2
j

r2j
+ 2C

x̃2
2

r4

+
1

r3
x̃2

2 +

[

C(1 + 2κ2
1) +

r

4
− κ1r +

n + 1

2
a2
1r

+
r

2p
− $(x1/r)

p

]

x̃2
1

r2

≤ −‖ε0‖2 − nr

2(n + 1)
‖ε‖2 − 1

2p

[

r + $
(x1

r

)] x̃2
1

r2

+

[

2C

r4
+

1

r3

]

x̃2
2 + C

n
∑

j=3

x̂2
j

r2j
. (4.3)

2) Let

x̃1 = x̂1

x̃i+1 = x̂i+1 + κirx̃i, i = 1, · · · , n − 1

x̃n+1 = u + κnrx̃n, (4.4)

whereκ1, · · · , κn are some positive constants to be deter-
mined by the subsequent recursive procedure. This coordi-
nate transformation puts the system (3.1) into the following

˙̃x1 = ζ1(x̃1, x̃2, ε1, r)

...
˙̃xn = ζn(x̃1, · · · , x̃n+1, ε1, r) (4.5)



where

ζ1(x̃1, x̃2, ε1, r) = x̃2 − κ1rx̃1 + a1r
2ε1

ζi(x̃1, · · · , x̃i+1, ε1, r) = x̃i+1 − κirx̃i + air
i+1ε1

+κi−1rζi−1(x̃1, · · · , x̃i, ε1, r)

+κi−1ṙx̃i−1, i = 2, · · · , n.

After each inductive step, we will make the system satisfy
two properties as illustrated by the following lemma.

Lemma 4.1: Under assumptions A2.1 and A2.2, and con-
ditions (3.10) and (3.11), by appropriate choice of the func-
tion $(·) in (3.5), there exist positive numbersκ1, · · · , κn,
such that, fori = 1, · · · , n, the following two properties
hold.
P1:There exist non-negative constantsD(i,j), j = 0, · · · , i,
such that,

|ζi(x̃1, · · · , x̃i+1, ε1, r) + κirx̃i|

≤ |x̃i+1| +
i−1
∑

j=1

D(i,j)

[

ri−j+1 + ri−j$
(x1

r

)]

|x̃j |

+D(i,i)r|x̃i| + D(i,0)r
i+1|ε1|,

whereD(i,j), j = 1, · · · , i, depend only onκ1, · · · , κi−1,
andD(i,0) only on κ1, · · · , κi−1, a1, · · · , ai.
P2: The derivative of the function

Vi(ε0, ε, r, x̃1, · · · , x̃i) = V0(ε0, ε, r) +
i

∑

j=1

p

Ljr2j
x̃2

j ,

for some positive numberLj , j = 1, · · · , i, along the
trajectories of (3.9) and (4.5), satisfies

dVi(ε0, ε, r, x̃1, · · · , x̃i)

dt

≤ −‖ε0‖2 − (n + 1 − i)r

2(n + 1)
‖ε‖2 −

i
∑

j=1

n − (i − j)

n

1

Ljr2j

[

r + $
(x1

r

)]

x̃2
j +

[

2C

r2(i+1)
+

1

r2i+1

]

x̃2
i+1

+
n

∑

j=i+2

Cx̂2
j

r2j
.

Proof: The proof is omitted due to the space limit.

A. Stability Analysis

Theorem 4.1: Under assumptions A2.1 and A2.2 and
conditions (3.10) and (3.11), there exists an output feedback
controller composed of (3.1), (3.5), and

u = −κnrx̃n

x̃i+1 = x̂i+1 + κirx̃i, i = 1, · · · , n − 1,

x̃1 = x̂1, (4.6)

which solves the global stabilization problem of system
(2.1) in the sense that, for all initial statesz(0) ∈ <nz ,
x(0) ∈ <n, x̂(0) ∈ <n, and r(0) ≥ 1, the states of

the closed-loop system are bounded for allt ≥ 0, and
limt→∞ col(z(t), x(t), x̂(t)) = 0.

Proof: Consider the controller (4.6) whereκ1, · · · , κn

are designed in Lemma 4.1, andr is generated by (3.5).
Let

Vn(ε0, ε, r, x̃1, · · · , x̃n) = V0(ε0, ε, r) +

n
∑

i=1

p

Lir2i
x̃2

i ,

then the property P2 in Lemma 4.1 withi = n becomes

dVn(ε0, ε, r, x̃1, · · · , x̃n)

dt

≤ −‖ε0‖2 − r‖ε‖2

2(n + 1)
−

n
∑

j=1

j

n

1

Ljr2j

[

r + $
(x1

r

)]

x̃2
j .

(4.7)

Next we will prove that r(t) is bounded, that is,
limt→∞ r(t) = r∞ < ∞. To this end, define

V̄n(ε0, ε, r, x̃1, · · · , x̃n) = K1

∫ Vn(ε0,ε,r,x̃1,···,x̃n)

0

S1(K2τ)dτ

whereS1(·) is a nondecreasing function satisfyingS1(τ) >
0, ∀τ ≥ 0, andK1, K2 are positive numbers satisfying

K1

[ ‖ε1‖2

2(n + 1)
+

x̃2
1

nL1r2

]

≥ x2
1

r2

K2

[

λmax(P )‖ε1‖2 +
px̃2

1

L1r2

]

≥ x2
1

r2
,

with λmax(P ) being the maximal eigenvalue ofP . Then

dV̄n(ε0, ε, r, x̃1, · · · , x̃n)

dt

≤ K1S1(K2Vn)

{

− ‖ε0‖2 − r

2(n + 1)
‖ε‖2

−
n

∑

j=1

j

n

1

Ljr2j

[

r + $
(x1

r

)]

x̃2
j

}

≤ −S1

(

K2

[

λmax(P )‖ε1‖2 +
px̃2

1

L1r2

])

×K1

[ ‖ε1‖2

2(n + 1)
+

x̃2
1

nL1r2

]

≤ −S1

(

x2
1

r2

)

x2
1

r2
.

On the other hand, letr∗ = 2$(0), and

Vr(r) = p
[

r − r∗ − r∗ log(
r

r∗
)
]

,

which is continuously differentiable, proper, and non-
negative in(0,+∞) [10]. We will prove that

dVr(r)

dt
≤

[

$
(x1

r

)

− $(0)
]2

. (4.8)

It suffices to consider the following two cases:
(i) r > 2$

(

x1

r

)

: Clearly, (4.8) holds sincedVr(r)
dt

= 0.



(ii) r ≤ 2$
(

x1

r

)

: The inequality (4.8) holds from the
following calculation,

dVr(r)

dt
= r

[

$
(x1

r

)

− r

2

]

− r∗
[

$
(x1

r

)

− r

2

]

= (r − r∗)

[

$
(x1

r

)

− $(0) − r − r∗

2

]

≤ − (r − r∗)2

2
+ (r − r∗)

[

$
(x1

r

)

− $(0)
]

≤ − (r − r∗)2

4
+

[

$
(x1

r

)

− $(0)
]2

≤
[

$
(x1

r

)

− $(0)
]2

. (4.9)

From above, we obtain that

d
{

V̄n(ε0, · · · , εn, r, x̃1, · · · , x̃n) + Vr(r)
}

dt

≤ −S1

(

x2
1

r2

)

x2
1

r2
+

[

$
(x1

r

)

− $(0)
]2

≤ 0

by appropriate choice ofS1(·). As a result,r(t) is bounded,
hence, all states of the closed-loop system are bounded.

Now, let us return to (4.7). From the fact that1 ≤ r(t) ≤
r∞, we have

α0(‖col(ε0, ε)‖) +

n
∑

i=1

p

Lir2i
∞

x̃2
i

≤ Vn(ε0, ε, r, x̃1, · · · , x̃n)

≤ ᾱ0(‖col(ε0, ε)‖) +

n
∑

i=1

p

Li

x̃2
i ,

and

dVn(ε0, ε, r, x̃1, · · · , x̃n)

dt

≤ −‖ε0‖2 − 1

2(n + 1)
‖ε‖2 −

n
∑

j=1

j

n

1

Ljr
2j
∞

x̃2
j .

As a result, the closed-loop system (3.9)+(4.5), hence,
(3.9)+(3.1), and hence, (2.1)+(3.1), withu = −κnrx̃n, for
any observer gain functionr(t) generated by (3.5), is glob-
ally asymptotically stable (In fact, globally exponentially
stable). That is,limt→∞ col(z(t), x(t), x̂(t)) = 0. The proof
is completed.

B. Controller Design Algorithm

From the above procedure of the observer-controller
design, the overall controller consists of (3.1), (3.5), and
(4.6). We now determine the parametersκ1, . . . , κn, which
can be shown to satisfy the following inequalities,

D(1,0) = a1, D(1,1) = 0, L1 = 2p

κ1 ≥ n + 1

2
a2
1 +

1

p
+

1

4
,

and forI = 1, · · · , n − 1,

D(I+1,0) = aI+1 + κID(I,0)

D(I+1,j) = κID(I,j), j = 1, · · · , I − 1

D(I+1,I) = max

{

κI

2p
+ κ2

I + κID(I,I),
κI

p

}

D(I+1,I+1) = κI ,

LI+1 ≥ max

{

2p,
np2D2

(I+1,j)

2
Lj , j = 1, · · · , I

}

κI+1 ≥ D(I+1,I+1) +
n + 1

2
D2

(I+1,0)

+
3I + 2 + LI+1

2p
+

1

4
.

And the function$(·) satisfies

$(s) ≥ 2‖P‖
√

nc(s) + (n/δ + 1)‖P‖2 [c(s)]
2

+ 4cz

$(s) ≥ 2C(1 + 2κ2
1)p

$(s) ≥ 2C
(

1 + κ2
I+1

)

LI+1, I = 1, · · · , n − 1

where

C ≥ δ + 4cz

c (s) ≥ maxnj=0 cj (s) ,

for any δ > 0 (δ is introduced to optimize the controller,
for convenience, letδ = 1), and the functionscj(·),s are
continuous non-negative satisfying

c0
(x1

r

)

≥
n

∑

i=1

c0
i (x1)

ri−1
, cj

(x1

r

)

≥
n

∑

i=j

cj
i (x1)

ri−j

j = 1, · · · , n.

It can be proved that all the above inequalities are not
conflicted and are explicitly solvable.

V. A N EXAMPLE

Example 5.1: Consider the system

ż = −z + 0.1x1

ẋ1 = x2

ẋ2 = u + µ1(t) sin(x1)z + µ2x
2
1

y = x1 (5.1)

whereµ1(t) : [0,∞) 7→ [−0.1, 0.1] andµ2 ∈ [−0.1, 0.1].
Since the system contains uncertaintiesµ1(t) and µ2,

and nonlinear growing termx2
1, the global output feedback

stabilization problem cannot be solved by the existing
results, e.g., [10] and [12]. But, it is verified the assumption
A2.1 holds for

c0
1(x1) = c1

1(x1) = 0

c0
2(x1) = 0.1, c1

2(x1) = 0.1|x1|, c2
2(x1) = 0.

Assumption A2.2 holds forVz(z) = z2 andcz = 0.01. And
it is easy to verify that the conditions (3.10) and (3.11) are



satisfied. Then by Theorem 4.1, the global output feedback
stabilization problem can be solved by the method given in
this paper.

Specifically, the controller can be explicitly constructed
by

u = −κ2r(x̂2 + κ1rx̂1)
˙̂x1 = x̂2 + a1r(y − x̂1)
˙̂x2 = u + a2r

2(y − x̂1)

ṙ =
r

p
ramp

[

$
(x1

r

)

− r

2

]

, r(0) = 1. (5.2)

Pick a1 = 0.1, a2 = 0.3 then

A =

[

−0.1 1
−0.3 0

]

is Hurwitz and the solution of the Lyapunov equation (3.2)
is

P =

[

6.5 −0.5
−0.5 21.8333

]

,

with ‖P‖ = 21.9496. Since

P (B + I) + (B + I)P =

[

13 −1.5
−1.5 87.3333

]

,

it is sufficient to pickp = 2. And then other parameters are
designed following the control design algorithm asκ1 =
0.765, κ2 = 7, $(s) = 110s2 + 300. The computer simu-
lation results, e.g.,x1, x̂1, x2, x̂2, are depicted in Figures 1-2
when µ1(t) = 0.1 sin t, µ2 = 0.08, (z(0), x1(0), x2(0)) =
(3, 2, 3), and(x̂1(0), x̂2(0)) = (0, 0).

VI. CONCLUSION

In this paper, we have solved the global stabilization
problem by output feedback for a class of uncertain systems
with output dependent incremental rate. The method can
be extended to solve the global robust servomechanism
problem by output feedback control for the same class of
uncertain nonlinear systems, and a preliminary investigation
of this problem has been given in an accompanying paper
[2].
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