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Global Output Feedback Stabilization for Uncertain Nonlinear
Systems with Output Dependent Incremental Rate

Zhiyong Chen and Jie Huang

Abstract— The solvability of global robust stabilization The remaining sections are organized as follows. Section
problem of nonlinear systems by output feedback has been || formulates the main problem. In Section lil, we design an
given under various growth conditions on the vector fields of observer and analyze the error system. And in Section IV

the systems. One of the most common cases is that the vector desian th troll d | the stability of overal
field is bounded by a linear growth with constant incremental W€ 0€SIgN he controlier and analyze the stability of overa

rate. Recently, the problem was solved in [10] for some systems System. An example is given in Section V to illustrate the
with output dependent incremental rate, without considering effectiveness of our method. Finally, we close this paper by
the uncertainties. This paper further considers the uncertain  ggme concluding remarks.

systems and gives the robust result.
Il. PROBLEM FORMULATION AND PRELIMINARIES

l. INTRODUCTION Consider the following nonlinear system
Over the years, there have been constant progresses on 5 = folz, @, u(t))
the problem of global stabilization of nonlinear systems )
by output feedback control [3], [5], [8], [9], [10], [12], &1 = 22+ filz 21, 0(t)
[13], etc. In particular, in [10], the problem is solved for :
systems in lower triangular form under the global Lipschitz

like condition on the unmeasurable states with output x”fl = ot foca(z 21, 21 p(t)
dependent incremental rate. The results reply to systems En = u+t folz, 21,0 Tns p(t))

without model uncertainties. In [12], under an alternative y = @z (2.1)
linear growth assumption with constant incremental rat%Vherez € R anda = col(zy,...,xn) € R are the

the global stabilization of a class of uncertain nonlinear . .
. . states,u,y € R the input and output respectively, :
systems is considered by output feedback control. n ) . .
: . . 0,00) — R™ a piecewise continuous vector valued func-
These papers employ high gain observers derived fro |

n representing disturbance and/or unknown parameters,
the standard form (e.g. [7]) to reproduce the unmeasurea(?] the functiong, - - -, f,, are continuously differentiable

states, and then synthesize an observer-controller base .
In their arguments.

control laws. While [12] uses a static sufficiently high gain Roughly, the objective of this paper is to find an output
under the assumption that the incremental rate is constapt, 4o ok ,controller such that, for a(0) € %"= and
[10] uses a dynamically generated high gain in the observe '

r ; .

: ) .£(0) € R, the trajectories of the closed-loop system
to account forth_z miLemelntt)allratet oftt?e \(;T)Ctoli f'fk:)'.ll.m?'composed of (2.1) and this controller are bounded for all
paper, we consider the global output feedback stabliiaali, ., 0, and the states of (2.1) convergasymptotically, i.e.,

e o e e 1 e g o ol ().20) . A more precse descrpton o
P P ’ P our objective will be given in the statement of Theorem 4.1.

the model uncertainty, the method in [10] cannot be directlygAS pointed out in [9], the global stabilization on nonlinear

applied to our case because [10] has used the vector f|Ig stems via output feedback is usually impossible, without

that de_fines the system in the_ construction of the ob_serv%).(tra growth conditions on the unmeasurable states of the
In particular, the error system is not globally asymptdlica system. Here, we impose the following growth conditions
stable, but is driven by some other states. In this paper, VY)% system (2 ’1)

have manageq to overcome the dIffICUl.ty mcgrred by th/e-\Z.l: Fori =1,---,n, there exist non-negative continuous
model uncertainty by devising a novel high gain generatofunctionsd() §=0,---.i, such that, for alls € R
7 ) 9 )y ’ )
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for positive numbers:, and a,, such that, its derivative, DenoteB = diag(0,1,---,n — 1), from [11], it is possible

along the trajectories of to chooseuy, - - -, a,, satisfying (3.2) and

2 = folz, 1, u(t)), (2.3) P(B+1)+ (B+I1)P > 0. (3.3)
satisfies p Hence, there exists > 0 such that

S e et @8 ATPB D+ (B+DP > plla]?, Vo e R,

for some non-negative numbey. . ) ) )
Remark 2.1: The global stabilization problem of the _ [N the observer is the dynamically generated high gain.
lower triangular systems of the form (2.1) by state (or parti 10 design the generator, we will introduce a so-caliap
state) feedback control has been extensively studied in [f}!nction ramig:), which is continuous non-negative function
[4], [6], among others. Recently, this problem was solved€fined as follows
by output feedback control in [10] when no uncertainty) 0.7 <0
appears in system (2.1). Also [12] solved this problem under ramp(r) = { S0 (3.4)
assumption A2.1 with being constant. T
Remark 2.2 It should be noted the systems considered Now, it is ready to define the high gain generator as
in [12] are more general that (2.1). Nevertheless, the t®sufollows,
in this paper can also be straightforwardly extended to

the same class of systems in [12]. Specifically, when the ; — framp[w (ﬂ) _ f} L r(0) =19 > 1 (3.5)
functionsf;, i = 1,...,n, in system (2.1) explicitly depend p r 2

on all states and the input, that 'ﬁ’ can be rewritten as wherew (-) is a continuously differentiable positive function
filz,x1,...,xn,u, 1), the results still hold as long as the

to be specified later.
Remark 3.1: When the incremental rate of the system is
I1l. OBSERVER ANDERROR SYSTEM constant, the high gainin (3.1) can be chosen as a suffi-

ciently high constant [12]. However, when the incremental

The output feedback stabilization problem of plant (2.1) ;¢ depends on the output of the system, a dynamically

will be solved by the explicit construction of an observeryenerated high gain has to be considered. The generator
controller type control law. In this section, we will design

(3.5) is motivated from the one in [10] but is defined

a dynamic high gain observer and analyze the error SyStetﬂﬁferentIy so that it has the following two properties,
between the original system and the observer. Then, a

controller will be given in the next section. i F(t) >0, t>0 (3.6)

er; > w (%) . (3.7)

absolute values of;s are still bounded by (2.2).1

r

2

A. Observer ii:

First we design a high gain observer (see [7]) as follows,
These properties are important in stability analysis of the

Ty = &4 arr(zy — 1) closed-loop system. s
.%2 = I3+ GQT‘Q(LUl — i‘l)
B. Error System
3. = u+ anr™(z1 — 21) (3.1) Fori: = 1,...,n, denote_e_q; = x; — I, then the
error system between the original system and the observer
where & = col(#y,---,%,) € R™ is the state, and becomes
ai,---,a, are the coefficients of arbitrary Hurwitz poly-
nomial p(A) = A" + a A" L + -+ + a, 1\ + a,, that is, ér = ez~ fi(z,x1, 1) —arre;
the matrix by = es+ folz, 21,20, 1) — azr’e;
—a1 1 0
A= : o €n = fulz,21, 20, 1) — apr"er. (3.8)
—ap_q1 0 -+ 1
-a, 0 -+ 0 Now, the system composed of plant, observer and high

gain generator, i.e., (2.1)+(3.1)+(3.5), is diffeomoipld
(2.3)+(3.1)+(3.8)+(3.5).
Furthermore, scale the coordinate by definipg= 2

PA+ ATP=—1. (3.2) € =%,i=1,---,n. Thus, system (2.3)+(3.8) is chaﬁged

is Hurwitz. Further, letP be a symmetric positive definite
matrix satisfying the Lyapunov equation
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into the following form IV. CONTROLLERDESIGN

G = fo(z,21,p) fEO The objective of this section is to design an appropriate
r r . in (3.1), dependent on the observer states - -, z,, such
& = fi(z, 31, 1) Torey — _r that there exists a Lyapunov function for the overall system
1 T€2 raj€y €1 . .
T ro (3.9)+(3.1)+(3.5). The construction of the controller &sbd
& = fz(z,a:12, T, 1) b res — rager — 26 on a recursive procedure as follows. -
r r 1) Let &y = &1, T2 = I + K1rZy, for some positive
numberk; satisfying
. fn(zvxla"'7xn7/1/) 7 1 1 1
€n = s — Tan€L = N-€n. (3.9) Ky > ”‘2“ e SR 7 (4.1)
It is seen that system (2.1)+(3.1)+(3.5) is diffeomorplaic t
(3.9)+(3.1)+(3.5). And let
For simplicity of the presentation, define the following B 1,
notations, Vi(eo, 6,7, @1) = Voleo, €,7) + it
e = coller, -, €n) then, under the condition
fl(za'rlmu) fQ(Z,I‘l,.TQ,,U)
F(z,z,mp) = CO|< , ) 2 7T w(s) > 2C(1+2k3)p, (4.2)

its derivative satisfies
dVl (607 €T, jl)

fTL(Zax17"'7xnaM)
rn '

We now show that, by choosing some appropriate function

w(-) to generate a sufficiently large gaif) there exists a dt n
Lyapunov-like function for the error system (3.9). < —leo)® = —H 12 + CZ hatl + C Jr QC_
Lemma 3.1: Suppose system (2.1) satisfies assumptions
A2.1 and A2.2, and foi = 1,---,n, 252 1 P
' 20 K1Z7 s (a ~ 2 -2
o) < alle| T4, (3.10) L= 7«2““’1 R
Cg(%l) < ag|:c1| j+bgv ] :1,...,2 (311) < _HEOHQ ( || ||2+Cz J +2C

for some nonnegative numbet$, b/, j = 0,...,i. Then,

under some appropriate choice of the functie(1) in (3.5), 41 1 724 {C(l +2k2) + r " n+ 1a2r
2 1 e 1
4 2

there exists a continuously differentiable positive semi- r3
definite functionV;(eg, €, 7), such that, its derivative along w(xy/r)] 22
(3.9) and (3.5) satisfies +% R ]T_z
dVo(€o, €,7) S " 23 9 nr | [ <x1)} 72
20N T _ v < - - et N ed's
o < —lleoll® = 3 lel +021 w7 < el - gl -5 7+ = (5)] =
iz
: 20 17 N
for some non-negative real numbet t S+ 5| B+CY TE (4.3)
Moreover, ifr is bounded, i.elim; ... r(t) = 7o < 00, o —3
then
2) Let
ag([[col(eo, €)]|) < Voleo, €,7) < ao(]|col(eo, €)]])
for some clasgt,, functionsay(-), ao(-), which depend on = m o
oo Tip1 = T+ RirZ, i=1,---,n—1
Proof: It can verified that Tpp1 = UF KTy, (4.4)
Vo(eo, €,7) = QM + el Pe whereky, - -, k, are some positive constants to be deter-
T’

mined by the subsequent recursive procedure. This coordi-

is the derived LyapunOV fUnCtion, and the details are Omittenate transformation puts the system (31) into the fo”@/\"n
due to the space limita

Remark 3.2 It is obvious that ifcj(xl) is constant for 1 = G(&1,%2,€1,7)
j=0,---,4,7=1,...,n, then the conditions (3.10) and
(3. 11) are automatlcally satisfied wit = 0 andb! = ¢/. .
1 SEn = Cn(iil,-~-,in+1,el,r) (45)
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where

~ ~ ~ 2
Ci(Z1,T2,€1,7) To — K1TT1 +ar1re

. . _ = . i1

Ci(fﬂl,"',l'iJrl,EhT) = xiﬂ—mrxi—kair €1
+ric1rGio1 (T, Ty €1,7)
+Ki—1TTi—1, T =2,---,n.

After each inductive step, we will make the system satisfy

two properties as illustrated by the following lemma.

the closed-loop system are bounded for @ll> 0, and
lim; o cOl(z(t), z(t),z(t)) = 0.

Proof: Consider the controller (4.6) wherg, - - -, k,
are designed in Lemma 4.1, amdis generated by (3.5).
Let

n
. ~ p
Vn(G()7€, Ty, 7wﬂ) = VE)(E()?E?T) + Z wz
=1

Li’l“% X

then the property P2 in Lemma 4.1 with= n becomes

Lemma 4.1: Under assumptions A2.1 and A2.2, and con-

ditions (3.10) and (3.11), by appropriate choice of the func

tion w(-) in (3.5), there exist positive numbexs, - - -, k.,

such that, fori = 1,---,n, the following two properties

hold.
P1:There exist non-negative constaibg; j), j = 0,---,1,
such that,

Gi(T1, -, Tig1, €1,7) + KT T4
i—1
7 i—j+1 i—j T ~
< |Zia +ZID(1-,]-) [T It (7)} |71
=
+D(i0yr|Ti] + D(i,O)Ti+1|€1|,

where D; jy, j = 1,---,i, depend only on<y, - -+, k;_1,

andD; gy only onky, -+, Ki—1,a1,- -, a;.
P2: The derivative of the function

%
g - P .9
%(607@7"'1:17 o 71"7;) = ‘/0(6076,7") + z : LjTijj?
=1

for some positive number;, ;j = 1,---,i, along the
trajectories of (3.9) and (4.5), satisfies

d‘/i(e()aearaila"’v:%i)
dt
+1—1i)r “n—(i—j) 1
< - 2 (p+l-9r o .
< —lleoll 3+ 1) €]l ; n L%
I -2 20 1 ~9
e ()] | | B
" 02
J
>
j=i+2

Proof: The proof is omitted due to the space limi.

A. Sability Analysis

an(€07€7T7i‘17'”7i’n>
dt
rlle] ~Jj 1 211 -
b g S ()]
=~ ||60|| 2(n+ 1) ; TLLJTQJ T +w r ‘Tj

4.7)

Next we will prove thatr(¢) is bounded, that is,
lim;_, o 7(t) = 7o < 00. To this end, define

Vi (€0,6,7,81,+,&n)
Vn(6076,7‘,i'1,'-~,3~7n):K1/ Sl(KQT)dT
0
whereS; (+) is a nondecreasing function satisfyisg(r) >
0, V7 > 0, and K1, K, are positive numbers satisfying
e, & it
2(n+1) nLir2] — r2

~2 2

pxy L1

K )\max P 2 > R
2 [pres(Plell? + 2] 2 8

with A, (P) being the maximal eigenvalue @f. Then

an(€0a6,r7j15"'7jn)
dt
,

< K1S1(KyV){ — R ]
< KV - el - 5"l

"1 1\ -0

S [rew ()5

J=1
<

-5 <K2 |:/\m(n(P)||€1||2 +

lex]f? &
K
i [2(n+ 1) i nLir?

2 2
X X
< —Sl =1 —1.
— <T2 T2

pas
L17’2

Theorem 4.1: Under assumptions A2.1 and A2.2 and (o the other hand. let* = 2w(0), and

conditions (3.10) and (3.11), there exists an output feeklba

controller composed of (3.1), (3.5), and

Vi(r) =p [r =" =" log(5)]

U = —RpTln which is continuously differentiable, proper, and non-
Tit1 FTiv1 + KrZg, 1=1,--- n—1, negative in(0, +o00) [10]. We will prove that
T = I, (4.6) 2
, o W) < [= (2 - =) (4.8)
which solves the global stabilization problem of system dt r

(2.1) in the sense that, for all initial state$0) € "=,
z(0) € ®*, #(0) € R*, andr(0) > 1, the states of

It suffices to consider the following two cases:
(i) r > 2w (21): Clearly, (4.8) holds sincé%") = .
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(i) r < 2w (&): The inequality (4.8) holds from the and for/ =1,---,n—1,
following calculation,

Diy10) = ar41+ k1D
avi(r)  _ T {w (E) - C} -t {w (ﬂ) B q Dy = kiDayy, j=1,---,1-1
dt r 2 r 2 K ) Ky
¥ D = maxq — Din,—
—— w(%)_ (0)_7“ 27“ } (I+1,1) {2p+f€1+f€1 @0 }
( 2 D114y = K,
< - -m) |[= () - 20)
2 r np2D? 4
(r—r*)? 1 Liyi > max{2p P P+1,4) (I“’J)L-]‘:l...]
< S e (2) w0 e
T 2 n+1
< [ (71) _ (0)} (4.9) ki+1 2 Dyiren + 5 D(21+1,o)
3[+2+L 1
From above, we obtain that +$ + 1
d{Vo(eo, - en, 7 @1, 8n) + Vo(r) } And the functionw(-) satisfies
dt 9
Y 2y ol <o w(s) > 2Pvnc(s) + (/6 + D|[P|2 [e(s)] + de
= T2 r_2+{w(7)_w( )} = w(s) > 20(1+2x3)p
. . . > 2 — 1 —
by appropriate choice of;(-). As a resulty(¢) is bounded, w(s) 2 20(1+hgp) Ligy, I =100 n =1
hence, all states of the closed-loop system are bounded.where
Now, let us return to (4.7). From the fact thiak r(t) <
oo, We have ¢ > d+ic .
. c(s) > max_,c (s),
ag([[col(eg, €)[]) + Z LQJ?? for any § > 0 (4 is introduced to optimize the controller,
- Lir ke . . .
i=1 for convenience, let = 1), and the functions?(-)'s are
< Valeo, €731, Tn) continuous non-negative satisfying
_ P n_ o n_ g
< ao([[col(eo, )lI) + Y+, (1) (@) (%) ¢ (@)
;Liz “\7 Z; pi=17’ ¢ r Zg ri=d
and j=1,---,n.
dVi (€0, €,7, 21, Tn) It can be proved that all the above inequalities are not
dt conflicted and are explicitly solvable.
1 n j 1 )
< _ R P P L 72 V. AN EXAMPLE
< —lleoll 2(n+1)H€|| _ nL'T(Q}ng _
g=1 "7 Example 5.1: Consider the system
As a result, the closed-loop system (3.9)+(4.5), hence, 3 = —z40.1x

(3.9)+(3.1), and hence, (2.1)+(3.1), with= —x,,rZ,,, for

any observer gain function(t) generated by (3.5), is glob- o= _ ,
ally asymptotically stable (In fact, globally exponenijal Ty = u+pi(t)sin(@r)z + paxy
stable). That islim;_, . col(z(¢), z(t), Z(t)) = 0. The proof y = 2 (5.1)

's completed. where i, () : [0, 00) + [0.1,0.1] and s € [—0.1,0.1].

Since the system contains uncertaintiest) and po,
and nonlinear growing term?, the global output feedback
From the above procedure of the observer-controllejtabilization problem cannot be solved by the existing

design, the overall controller consists of (3.1), (3.5)d anresults, e.g., [10] and [12]. But, it is verified the assumpti
(4.6). We now determine the parametess. . ., k,, which  A2.1 holds for

can be shown to satisfy the following inequalities,

B. Controller Design Algorithm

(1) = ci(z1) =0

D0y =a1, D1y =0, Ly =2p AS(x1) =0.1,c3(x1) = 0.1]x1 ], c3(z1) = 0.
Jntl, 11 Assumption A2.2 holds foV,(z) = 2z? andc, = 0.01. And
12 —5ar P T it is easy to verify that the conditions (3.10) and (3.11) are
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satisfied. Then by Theorem 4.1, the global output feedbacks] H. Khalil and A. Saberi, “Adaptive stabilization of a &s of

stabilization problem can be solved by the method given in  nonlinear systems using high-gain feedba¢EEE Transactions on
Automatic Control, vol. 32, pp. 1031-1035, 1987.

this papgr. L [8] R. Marino, and P. Tomei, “Dynamic output feedback lineafi@n
Specifically, the controller can be explicitly constructed  and global stabilization,Systems and Control Letters, vol. 17, pp.
by 115-121, 1991.

[9] F. Mazenc, L. Praly, W. P. Dayawansa, “Global stabiii@at by

_ A 5, output feedback: examplds counterexamples 3ystems and Control
u = —far(@2 + ki) Letters, vol. 23, pp. 119-125, 1994

T, = o+ alr(y — ;il) [10] L. Praly, “Asymptotic stabilization via output feedbdador lower

. 2 . triangular systems with output dependent incremental rafeEE
T2 = u+ar(y— 1) Transactions on Automatic Control, vol. 48, pp. 1103-1108, 2003.
. r T T [11] L. Praly, “Generalized weighted homogeneity and stapethdent

ro= —ramp[w (7 - 5} ) T(O) =1 (5.2 time scale for linear controllable systemBfoceedings of 36th IEEE
p Conference on Decision and Control, San Diego, pp. 4342-4347,

Pick a; = 0.1, a; = 0.3 then 1997.

[12] C. Qian and W. Lin, “Output feedback control of a classoflinear

—-0.1 1 systems: a nonseparation principle paradigBZE Transactions on

A= —03 0 Automatic Control, vol. 47, pp. 1710-1715, 2002.

[13] X. H. Xia and W. B. Gao, “Nonlinear observer design by eder
is Hurwitz and the solution of the Lyapunov equation (3_2) error linearization,”"SIAM J. Contr. Optimiz, vol. 27, pp. 199-216,

is .- . 1989.
P= { —0.5 21.8333 } ’

with || P|| = 21.9496. Since

P(B+I)+(B+I)P:{ B3 -15 }

—-1.5 87.3333

it is sufficient to pickp = 2. And then other parameters are
designed following the control design algorithm &s =
0.765, ko = 7, w(s) = 110s% + 300. The computer simu-
lation results, e.gx1, 21, 2, T2, are depicted in Figures 1-2
when p;(t) = 0.1sint, po = 0.08, (2(0),x1(0),z2(0)) =
(3,2,3), and(£1(0), #2(0)) = (0,0). 1

VI. CONCLUSION

In this paper, we have solved the global stabilization
problem by output feedback for a class of uncertain systems Fig. 1. Profile of states:; and 1
with output dependent incremental rate. The method can
be extended to solve the global robust servomechanism
problem by output feedback control for the same class of
uncertain nonlinear systems, and a preliminary investgat
of this problem has been given in an accompanying paper

[2].
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