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Robust Observer Backstepping
Neural Network Control of Nonlinear Systems
In Strict Feedback Form

Withit Chatlatanagulchai, and Peter H. Meckl

Abstract—An observer for nonlinear systems in strict
feedback form is presented. Together with a backstepping
neural network controller, the resulting control strategy can
be used in systems where only the output is measurable and
unmatched additive disturbances with unknown bounds exist.
Some assumptions about the system are required in order to
apply the separation principle. A stability proof is provided
together with simulation results.

I. INTRODUCTION

OST mathematical functions representing physical

systems are nonlinear. Researchers have come up
with effective ways to design controllers for some nonlinear
systems that can be transformed to specific nonlinear forms.
One of the most popular forms is the strict feedback form,
which represents many physical systems, e.g., flexible-joint
manipulator [1], continuously stirred tank reactor [2], and
two-link planar robot [3]. Recently, researchers have begun
to use intelligent methods, e.g., neural networks or fuzzy
logic, to replace the nonlinear functions representing the
systems. Due to their property as universal approximators,
they can be used to approximate any continuous nonlinear
functions. With these approximators, controller synthesisis
less dependent on system modeling.

Practically, it is amost mandatory to involve
uncertainties in the controller design process and to handle
situations where all required states are not measurable due
to unavailable sensor technology or cost.

In this paper, three-layer neural networks (NN) are used
as function approximators. All NN weights are tuned
online. The separation principle is used to separately design
the observer and controller, with key assumptions making
this possible. A nonlinear observer is designed, using a NN
structure. Additive disturbances with unknown bounds exist
in the system and violate the matching condition. These
disturbances may depend on the states or vary with time.
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The controller is designed based on knowledge of estimated
states. Backstepping and Lyapunov-based design methods
are used in the controller design process.

Section Il presents preliminaries. Section 111 describes
the observer design. Section IV describes the controller
design. Section V presents simulation results. Conclusions
aregiven in Section V1.

Il. PRELIMINARIES

A. System Description
Consider the system in strict feedback form:
% = fi(X) + 9 (%) (%41 +d5(X,1)), 1<ism-l,

X = fin(Xn) + G (X)) (U + iy (X, 1)), (2.1)
Y =%,
where x OR, %X =[x,....%]i=L...m, uyOR ,

f,(+), (), i=1...,m are unknown smooth functions,
d;(%,t),i=1...,m are additive unknown nonlinear
disturbances with unknown bounds. Only output y is
measurable.

B. Neural Network Basics

We use a 3-layer neural network as in Fig. 1. With its
universal approximation property [4], this network can
approximate any smooth function to arbitrary accuracy,
given enough number of hidden-layer neurons. Each
variablein the network can be defined as follows:

Z:[zlizz,-..,zn,]_]T DRF‘H{L,
Vv :[Vl,VZ,...,VI] DR(”*DX"

v :[\/il,\/iz,...,\/i(n+1)]T OR™ = 1,2,...1,
gW.V,2) =W'S(V'Z)OR,
S(VTZ) :[s(vlTZ),s(v;Z),...,s(vlTZ),l]T OR'"™,
W =[w, ..., w,w,, ] OR™,

s(+) can be any appropriate activation function. In this
paper we use a sigmoid function
s(z)=1/(1+e%),0z0 R.
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*Defi nition 1: Throughout this paper, we define
(¢)=()-(G) where (+) is the actua value, (3) is
estimated error and (¢) isthe estimated value.

Assumption 1: Any smooth nonlinear function h*([)]DR
can be represented by a 3-layer neural network with some
constant ideal weights W,V as
NE=WTSM'Z)+g, where |g]<g, is the
approximation error with unknown &, >0.

Assumption 2; On the compact set Q,, the ideal neural
network weights W V are constant and bounded by
Wy, "\/ ” <V,U, i=1...,m, where W, and

V,, arenot known,

Assumption 3: Additive disturbances d,(%,t) are
bounded by ||d; (% .t)| <dy. i =1...,m, where d,, are
unknown.

Lemma 1: The NN approximation error can be put in a
linearly parameterized formintermsof W and V as
WTsV'Z)-wTsyTZ)

=W'(S-SV'Z) +W'SV'Z +d,

where
§=sV'2), é':diag{éi,é'z,...,é},
§=s@z) =A@ o,
dZa z2,=%'z

S(z)=1/(l+e%),0z0 R and can be any suitable
activation function. The residual term d,, isbounded by
<] s, o807z o,

Proof: See[5].

Replacing the unknown functions in (2.1) with neural
network estimates, we have

&= &) +6E)E +dy € 1), 1<i<m-1,
én = Foul@) + G @)U+ € i),

Z :E]_!A R R R
where  f; :WfTSfi (Vszﬁ)x g, :WgTiS (\/gl gl) and §,¢
are states and output of the estimated system, respectively.

The partial derivative of f, (or §,) , with respect to one of
its input states, is

;:t' = WT SfI vy

where v; :[vjl,vjz,...,

2.2)

(2.3)
vi [OR', F 12,1 1.

I1l. OBSERVER DESIGN

In this section, we present the design of a nonlinear
observer for actual system in (2.1) using estimated system
in (2.2). From (2.1), we have the sequence of output
derivatives as

Vo2[ Ve Ve V| 2y v o Y™ -
SHE)E[% #(%) .. Foa(X)]
where
$,(%) = f,(x) + g, (x) (%, +d,,),
.= 2 100+ 5,000 )]
+6—X21[ f,(%) +9,(%,)(% +d,,)],
Poa(X,) = mz__ ag)r:__z [ f;(X) +9; (X )(X;., +dy )J- (32)
The mderivative of the output is
yo =59 1)+ 0,000+
+ﬁ[ Fin () + G (%) (U +d,)] 33
=a(x,) +B(X,)u,
=a(y.) +B(y.)u.
From (3.1) and (3.3), we have
Y. = Ay, +B[a(y.) +B(y.)Y] (34)
where
0
A=|: | |, B=[0 .. 0 1.
0O --- 0

Similarly we obtain (3.1) and (3.4) for the estimated system
(2.2) asfollows:

.24y <,
2H(E) =[& (&)

e =fe ¢ e
Y@l

(.= A +B[d€ )+ ).

Replacing & with its estimated state, X , we have

se[¢, ¢, . 4T,
HZ) =[% ¢(R)

IIl>

11>

Yo%)
(=M, +B[aC ) B¢ )

Assumption 4: System (2.1) and estimated system (2.2)
are uniformly completely observable, i.e., the mappings
H(x,) and H(E ) are invertible with respect to X, and
£, and their inverses, X, =H™(y,) and &, =H™({,),
are smooth.

Assumption 5: The differences between functions f,, g;
in (2.1) and their estimates f,, g, in (2.2) are bounded.

Consider an observer for the estimated system (2.2) as
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| | R +6(%

. A A ~ ~ -1

)?2 — fZ(YZ)+Q2(72))A(3 aH(Xn) -1 _z

= N s K e
%] | fa(0) + G ()

(=%,

where  g=diag[n,n°,....n"],0<n <1, and

LOH (Xm)/aim] is jacobian. 77 is a design parameter and
=[l,l,,...,I)]" is such that s"+I,s™ +...+| is a

Hurwitz polynomial.
To show stability properties of the observer estimation

error dynamics, X = X — X, we proceed as follows.
Fori=1,

¢y = LR+ 0% L[ AE) &, | L[ ],
={, +L[oAR) e, eL[¢ (],

For 2<i<m-1,

¢ +Z(a¢i4/af<j )[| RG] ee —Zﬂ.
For i =m, }
(. =) +BE

+Zm‘I Oy | OR, [lj [oH (im)/aim]'l e'L[¢ —Zﬂ,
where JI_j OR™™ is arow vector whose jth element is 1 and
0 otherwise. We then can write the above in matrix form as

=M +B[a() +B(C ]+ L[ ¢ ]

Define the observer error, (¢.=¢.-y,. Let
COR™™= [1,0,...,0], then the observer error dynamics are
given by

{.=(A-€LC), +BIG(.) B¢ )u-a (v.) B (y)ul.

Define another coordinate transformation:
1 1
,7m—1 ’,7m_—2""’1:| .

In the new coordinates, the error dynamics become

(3.6)

V=6, €2 diag[

@:%(A_Lcms[a(z;) +BECJu-a(y,) Byl

By proper choice of L, A—LC is Hurwitz. Let P be the
solution to the Lyapunov equation
P(A-LC)+(A-LC)'P =

and consider the Lyapunov candidate V =V'PV>0. Its

time derivative along the vV tragjectoriesis
V=-0"0/n+20"PBAE,) +B (U -a (¥.) B (Ye)ul-
Assumption 6: a, 8 are globally Lipschitz functions and

input u is bounded.
With the above assumption, we have

6@ +BCIu-a(y) By k[, k>0. @37
Thus, we have
Vs -@ + 2P 38)

Therefore, if we choose 77 <77, 7 =min{1/2k|P|.1}
from the Lyapunov theorem, we can conclude that v and
hence Ze will converge to zero asymptotically. Therefore,
from Assumption 4, X will converge to zero
asymptotically.

To prove that Ze is bounded at al time, we proceed as
follows.

From A, (P|Z.] <v®) <uG™ ™ N, PK.[ . we
have
V() < =(1/n=2K|P|)V () / Ay (P),

VO SUE W, (PO
exp{ (177 = 2k |P|)t/ A, (P} |
12, <10 ™) A (PY A P O)].

exp{ - (1/n - 2k|P|)t/ (2}, (P)} .

IV. CONTROLLER DESIGN

Assumption 7: g, has known signs. There exist known
constants g,, >0 suchthat ||g,()j|< g, OF L....m 1.

The control objective is to make the output y follow the
desired trajectory y, as closely as possible, while all the
signals in the closed-loop system are bounded. We proceed
using the following steps.

Sep 1.

Let z =% —Xq =X +% —Xq4 be the error between the
estimate of x, and the desired output in the first subsystem
in the backstepping design. Let x,, be a virtua control
input and introduce the error variable z, =X, =X -
Choose the virtual control as

% ==0, [0z +1; +).~(1 Xy “Upgec ],
_ AT TS 1 AT TS
- _[\Nglsgl(vglzgl)J [az, +W;,S;, (Vi Z,)
Xy _uzdvsc]-
From Assumptions 1, 3 and Lemma 1, we have

T
+|5f1| + duglx2d| +|‘5'91X2d| Hoyda| <K'y

(4.1)

duf 1
where
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K3 =il Wl W, e + ot Vel
WG] ], + T
¢ :[Hzflwalé'leF , “é‘flVA;rlZfl“' 1 “Zglnglé;ﬂXZd “F ;
”é‘c_;lvglzgl)%d “ ) "de "]T .
We let the variable structure control term be in the form
Uiiyavse = _KiTﬁ’

275, Zarctan |z
[872, | arctan A 8972
7% arctan (%)

2 Z |5 . ~ra
F I_Tarctan (Z“Zglngl Sgi X(i+l)d

2 Z|lavTs
- arctan (;i“SgngTi Z  Xis1a

12078 )|

“égung- Zgi Xii+1)d )

el v e

where £ isasmall positive number. Ki approximates(éli?).
The 2, eguation becomes
2= % %y,
=X X TR
=[ &0 W(S ~SVLZ0) WISVIZ,, 0y |
—az, —K, +9,d, +le, “Wi(S,, S ViZ,,)

917 g1

_WgT].SIglnglzgl - dugl]XZd +0,(% =%q).
Choose the Lyapunov function as
V=22 DT+t VT )

22 2 (4.3)

[ 1 FTr-1\7 1o o

WG, + St {(Varav, + SKITEK,
where T ys1, 1 1.l wgrl vgil k1> 0. We use the following
o -modification weight updating laws:

Wi =Wy = Ng[(Sp = SiVi Z4)z —0qWy ], (4.4)
V;\fi :\7fi =Ml ZoW," S5z — Vi), (4.5)
ng :ng = rwgi[(égi ‘ééi\igTiZgi)X(iﬂ)dzi _Uwgiwgi]! (4.6)
Agi :Vgi = rvgi[zgiwgi-ré‘gi Xi+pd% ‘Uvgivgi]a (4.7)
Ri :K;i =M@z _UkiKi]- (4.8)

W,V;,K; values around their initial values. Also, we use
the fact that

200 =W w2
2y} =, V[ AV = AV

We can find V; asfollows:

Vi =26, -~ 20 —0Z K $1z +20,0y *+ZE 31 %o
= 20y Xoq + 2012 +K{ 12 “WiiG e Wy ~tr {\7fT 10+t 1\7”}
~W, 0, Wy —tr {\7ngUvg1\7g1} -K{ 04Ky,
<z +K;' A Ki $1z +2G,2, +K{$1z W0 Wy,
-tr {Vleav, Vi 1} ~W, O Wy —tr{ \79Tlavgl\79} -K{ 6i.K,.
From [6], we have the property

Os|a|—a]—27arctan(%]s0.27857, ol R.

Therefore, we have
R T A e YA s A

-2, [ TR e
where

&= 027850V, +[Wi +M, e, 40,0
il Ml M, o)+

Tiilh o 12 2 Pwgihar 12 2 Dvor |y #1124 O [l |2
+7||Vf1||p e Wi T Vail +7||K1|| :
Theterm zg,,z, will be cancelled in the next step.
Sepi: (2<i<m-1)
Let z =X —x4 be the error of this subsystem. Let
Xi+1g b€ a virtua control input. We introduce the error

variable Z.; =%, ~Xj.1)q and choose the virtual control
as

Xiya = _gi_l[g(i—l)u Z_, *tGZ +fAi +);§ _).ﬁd _u(i+1)dvsc]1
N e a1
= _|:WgTi Sy (VgTiZgi )] [g(i—l)U Z,*GZ

+Wf|T Sy (VAfTZﬂ) ~Xg _u(i+1)dvsc]’
where Ug,pyavs 1SS (4.2). Theextraterm g, z_, isused
to cancel the effect of the term z_;g,_,z from the previous
step.
Similar to the derivation of step 1, the z equation
becomes

z = |:£fi _WfT (éﬁ _élfivﬁTZﬁ) _Wf.T éﬂ\iﬂTzﬂ _dufi]

(4.9)

~Oiauda—GZ _KiTﬁ +gidaj
+[5gi W5 (S ~§V5Zy) WS,V Z; —d,, ] Xi+na
+0, (X _X(i+1)d)'

3038



Choose the Lyapunov function

1
2

e 1 FTr-1\7 1o

+ WGV, +Etr{Vgi A +2KITIK,

wgi = gl

1 e A VRN R VM.
Vi =V, +§ Z + W MW +§tr{VﬁTr ]i.Vfi}

where Ty, F il wgi ol vl > 0 and use the weight
update laws (4.4) to (4.8). The derivative V, can be found
asin the previous step to be

A

a1 S (RATEIE

Sepm:
This is the last step. Let z, =X, —X,q be the error of
the last subsystem. We select the control input as

u= _gr;il[g(m—l)u Zm—l +szm + fm +);<m _de _uvsc]'
~ AL — -1
= _[Wngng (Vngng):| [g(m—l)U Zm—l +szm

+WmeSfm(\7meme) X _u(m+1)dvsc]’
Where Umqyavse 1S Similar to (4.2) but replacing X,y with
u.
The z,, equation becomes

2m = |:£fm _Wf-[n(éfm _élmeAf-lr—nzfm) _wf-lr—nélfmvf-lr—nzfm _dufmj|

(4.10)

_g(m—l)U Zm—l _szm - R:ﬁﬁm +gmdam

+|:£gm _Wng(égm _évgmv,\g-rngm) _Wg-rmélgmvg-rngm _dugm:|u'
Choose the Lyapunov function
&1 P N I AEVMS
Vm = Z{E ztf +EWfT< rv;kak +Etr {Vf-:; rvftvfk}
k=t (4.11)
U A RE TS TS
where T ym, [ vimi [ wgml vgm ! km> 0 and use the weight

update laws (4.4) to (4.8). By following the derivation asin
the previous step, the derivative of the Lyapunov function
of the whole system is given by

m
Vo= 3|k -2 -

k=1

i TN f % 44
Let c:glisrn\]{ch} >0, J:g{k >0 and choose
Oy 2 c/lmax{l';;k}, O 2 cAmax{F;flk},
Oy 2 c/lmax{rgvlgk} s O 2 c/lmax{ I';;} ,
O 2 c/lmax{r;k]} ., k=1....m,
using the Rayleigh-Ritz inequality, we have

e e
e R AR ]
< Zm‘,{-co-525 - COBW T AW, — 05t {V, TV, }
k=1

~ COBW I e W, - c05tr{V; 3V, }

wgl
~CO5K[T K, + &},

< —¢V, +0.

From the uniform ultimate boundedness theorem [7], we
conclude that al errors z,W,V,K, i=1...m are
uniformly ultimately bounded and therefore all closed loop
signals are uniformly ultimately bounded. Since V. (t,») is
positive definite and V_ <-¢V,_ +J, where ¢>0 and
020 are bounded constants, then from Lemma 2.1 in [§],
we have

V. (te) sg+[vm(to,.) —g]e'“, Oe t,.

Therefore, we havethatast — o, V,_ (t,) <J/¢ and since
we have

Vm(t,-) Sg"'(vm(toa') _?] e—a, [e to,

N

Zri]‘, Zlf _g"'(Vm(tO,-))e_a,
al= o 2+9)e)

thenwhen t — o, |z| =]y —y,| <\/20/¢ .

Remark 1: The X termsin (4.1), (4.9), and (4.10) are
bounded and converge to zero asymptotically based on the
proof in Section I11. Their transient values are treated as NN
estimation errors and are handled by variable structure
control terms.

V. SIMULATION RESULTS

The proposed observer-controller is applied to the
system:
% =0.5% +(1+0.1¢)(x, —(2 +sinx)),
o = XX +(2+00s¥)(u —0.3(€* +e7)),
y=X.
The system has —(2+sinx) and -0.3(e® +€™) as
additive disturbances and is similar to an example used in
[5].1t can be verified that this system satisfies all required
assumptions of the proposed control scheme. Only output y

is measurable and all nonlinear functions are unknown. The
control objective is to guarantee that (i) al closed-loop

(5.1)
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signals remain bounded, (ii) the output y follows the desired
trgjectory generated by passing a square wave of amplitude
10, zero mean, and 20-s period into the filter 1/(s+2)°.
The observer (3.5), the controller (4.10) with variable
structure terms (4.2), and weight update laws (4.4)-(4.8) are
used. Number of hidden-layer nodes is 10. The design
parameters are given by

T =T =Twgi =My =10, My =1 g =15 0OF 12,
Owii = Oyii = Owg =0y =0 =01, [0=12,

n=01, L=[10 20]", x& =0.1.

Sampling period is 1 ms. All initial values are set to 0.1.
Simulation results are shown in Figures 2-3. Overall
tracking performance is good, as shown in Fig. 1(a) and (b).
This is the result of good observer performance, as shown
in Fig. 1(c) and (d), and controller performance, as shown
in Fig. 1(e) and (f). In Fig. 2, the estimated functions fl, g,
are different from the actual functions f, g, but the
differences are bounded. The control input does not chatter
since a smooth version of the variable structure control is
used.

V1. CONCLUSION

We have presented a model-free output feedback control
system design for a nonlinear system in strict feedback
form. Three-layer neural networks are used as identifiers of
the unknown plant functions. The observer objective is to
estimate the actual states using actual plant output, plant
input, and estimated plant functions from the identifier. The
controller is used to reduce error between estimated states
and their desired values. Simulation results show good
overall tracking performance for an example system.
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Fig. 1. A 3-layer neural network.
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Fig. 2. Control system performance during 60 s: (a) actual output y
versus desired output vy, , (b) overal tracking error y, -y, (c) actua
output y versus estimated output ¥, (d) observer error, (€) desired
output y, versus estimated output ¥ , (f) controller error.
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Fig. 3. Closed-loop signals during 60 s: () actual f, versus estimated
f,, (b) actual g, versusestimated §, , (c) controller performance, desired
state x,, versus estimated state X,, (d) error x,, — X, , (€) actual control
input u, (f) variable structure control input U, -
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