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Interconnection and damping assignment passivity—based control
of mechanical systems with underactuation degree one

Jo$ Angel Acosta, Romeo Ortega and Alessandro Astolfi

Abstract—We consider the problem of (asymptotic) stabi- ensure its stability. Similar techniques have been reported
lization of mechanical systems with underactuation degree for general PCH and Lagrangian systems in [2], [3] and

one. A state—feedback design is derived applying the Inter- 141 15 yagpectively. The success of these methods relies
connection and Damping Assignment Passivity-Based Control on the possibility of solving a set of partial differential
methodology. Its application relies on the possibility of solving P y 9 P

a set of partial differential equations that identify the energy ~ €quations (PDEs) that identify the energy functions that can
functions that can be assigned to the closed—loop. The following be assigned to the closed-loop. In spite of many interesting

results are established: 1) identification—in terms of some developments, e.g. [6], [7], [4], [8], the need to solve

algebraic inequalities—of a subclass of these systems for which the PDEs remains the main stumbling block for a wider
the partial differential equations are trivially solved; 2) char- L
applicability of these methods.

acterization of all systems which are feedback—equivalent to . )
this subclass; and 3) introduction of a suitable parametrization In this paper we show that for a class of mechanical
of the assignable energy functions that provides the designer systems withunderactuation degree oni is possible to
with a handle to address transient performance and robustness trivially solve the PDEs of the IDA-PBC design method,
Ic?sgr?fl'oég g‘fs‘igﬁ”géézaﬂgteb‘g féjsfcﬂﬁﬁOb@maegfn'_scfyhn?rcﬂ?f 4 We provide a characterization of those systems which are
Hamiltonian (or Lagrangian) model, a situation that arises feedback equivalent to systgms in the conS|dereq class, and
often in applications due to model reductions or preliminary ~We show that the set of assignable energy functions can be
feedbacks that destroy the structure. The new result is applied simply parameterized.

to obtain an (almost) globally stabilizing controller for the For illustration we present an (almost) globally stabilizing
inertia wheel pendulum, a controller for the chariot with scheme for the inertia wheel pendulum, an (almost) globally

pendulum system that can swing—up the pendulum from any e . .
position in the upper half plane and stop the chariot at any stabilizing scheme for the vertical takeoff and landing

desired location, and an (almost) globally stabilizing scheme aircraft with strong input coupling, and a controller for the
for the vertical takeoff and landing aircraft with strong input chariot with the pendulum that can swing—up the pendulum

coupling. In all cases we obtain very simple and intuitive from any position in the (open) upper half plane and stop
solutions that do not rely on, rather unnatural and technique— the chariot at any desired location

driven, linearization or decoupling procedures but instead L . . L
endows the closed—loop system with a Hamiltonian structure ~ 1hiS is an abridged version of the full paper which is

with desired potential and kinetic energy functions. available, upon request, from the authors.

I. INTRODUCTION Il. THE PDES FOR A CLASS OF MECHANICAL SYSTEMS

In [1] we introduced a controller design technique, WITH UNDERACTUATION DEGREE ONE

called Interconnection and Damping Assignment Passivity— The class of systems that we consider is given by
Based Control (IDA-PBC), that achieves stabilization for _ .

underactuated mechanical systems invoking the physically ¢ = M (g)p

motivated principle ofenergy shapingIDA—PBC endows p = s(g)+ Glgr)u, 1)
the closed-loop system with a Port—Controlled Hamiltonian . . ) )

(PCH) structure where the kinetic and potential energy fundVNere ¢-, with r an integer taking values in the set
tions have some desirable features, a minimal requiremeht: - - -7} is @ distinguished element ofc R”, p € R,

n—1 H H H
being to have a minimum at the desired operating point t§ € &' are the control inputs, the matriX/(q;) is
symmetric positive definite and bounded, ad, ), G(¢)
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and potential energy function, respectively. For, we endowaolved. This result is used to give stabilization conditions in
the system with a PCH structure of the form terms of a set ofilgebraic inequalitiesThus, for the class
(1) considered, the complete solution of the PDE and the

] M~1M, H . ; .
{ f’? ] = { —MdOM* I - GK %T ] [ quZ ] (3) IDA-PBC controller are given in an explicit formula.
v p
where K, = K > 0, Ja(qr,p) = —J5 (qr,p) are free Eropositipn 2: Consider tOhe sysgeg"n (2). Assu[ne there
matrices. exists matricesl(¢,) and My = (My)" > 0 andG-—(g-),

As shown in [1] the assignable energy functions arith GL(_‘JT)G(QT) = 0, such that
characterized by a set of PDEs. We now show that for th@Ssumption A.1
considered class of systems the PDEs take a special and N 1
simple form, and can be trivially solved. This paves the P = G (qrs) Ma(qrs)M ™" (grs)er # 0,
way for a constructive state feedback stabilization result.\yherec,. is the r—th vector of the Euclidean basis and

Proposition 1: For the system (1) with desired energy qr - o
function (2) the PDE from the IDA-PBC method takes the Ma(gr) = / G(w) ()G (p)dp + My. (8)
form ars

n 1 , T Assumption A.2
G Md(QT)M (QT)eer(QT) =-2JA (QT) 4) ) J
G [sar) + Malar )M @)V, Vala)] =0 (8) (69 ) @ >0

nXxne LA Ny i ; »
Wherej'(qr) e R, n, £ Z(n—1),is afreg Matrix,  ynder these conditions:
e, € R™ is ther—th vector of the standard Euclidian basis,
and e The IDA-PBC takes the form

T T nxn TA T
Alar) 2 W (G @) W (@) ] e P
(6) u = AQ)PS(g—q.)+ : +
where W; € R**" ¢ = 1,...,n,, are some constant, p" An(g)p
skew—symmetric matrices which can be explicitely con- + Apii(g) - KUGT(qr)Md_l(qr)p 9)

structed.

whereP = P > 0 andS € R(»~D*" js obtained re-

moving ther—th row from then—dimensional identity

matrix.

The total energy function (2) is defined with (8) and

Remark 1:An n x n skew—symmetric matrix con-
tains at most n, non—zero different terms. Hence, the
proposed.J:(q,,p) contains all skew—symmetric matrices
which are linear inp, that is, all matrices of the form

o Qlgr)pi, Qulgr) = —Q/ (¢-), and the parametriza- I Y
tiz(:)n is déne) WithOL(Jt I)oss of generality. Vala) = o lo G (u)s(p)dp +

All assignable energy functions of the form (2) are + %[Z(CJ) — 2(g.)]" P [2(q) — 2(g.)[10)
characterized by the solutions of (4) and (5). Typically in
IDA—PBC we start with (4), which is a set afonlinear where z(g), is ann — 1 dimensional vector with
ODEs in the unknown matrix\/,(q,), with 7(q,) a free elements
matrix to be chosen by the designer. Then, plugging in . 1 [ .
Mg(qy) in (5), we solve the PDE foV,(q). It is important z=qi—— [ G(W)Ma(p)M ™ (p)eidp (11)

to recall that, to comply with the stability requirements, we P

also have to satisfy the additional constraints of positivity® (g, 0) is astableequilibrium with Lyapunov function

of My4(g,) and the minimum condition, = arg min V;(q). Ha(q,p).
Even.thpugh we hfave full frgedom in _the selection Ofl'he equilibrium (¢, 0)

J(gr) finding a solution of (4) is nontrivial because the

matrix A(g,-) is not full rank—in particular we have that

is asymptoticallystable if further-
more

Assumption A.3 There exists at least one column of
G (q)Algr) = 0. (7) the matrix G(¢,) = {G,;} such that the following two
conditionscannot happen simultaneously) G.; = 0; and

.M AW RESULT __ (i) there exists constantg such thaty;", ,, Gijc; =0.
There are no systematic methods for the solution of ’

nonlinear ODEs. In spite of this it is possible to show that Remark 2: Assumption A.1 is needed to trivialize the
with a suitable parametrization of the desired inertia matridxsolution of the PDEs. Although this (pointwise) assumption
the PDE (4) is obviated; with the additional advantage thas generically satisfied, the computation of the controller
(5) becomes a trivial linear PDE that we can explicitlyinvolves a division byG=(q,.)My(g-)M~*(g.)e,. From
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(10) we see that Assumption A.2 ensures that the potential V. EXAMPLES
energy attains its minimum at the desired pdint. N
9y P A. The inertia wheel pendulum

Remark 3:The set ofassignable energy functioms the  The dynamic equations can be written in the simplified
form (2) that lead to a stabilizing controller is parameterizedescription

by all triplets {¥, MY, p} that satisfy the conditions of

Proposition 2. Moreover, it can be shown that the second g = p
term in (10) can be any differentiable functién: R»~! — ) mssin(qy) 1
R with z(g.) = argmin ®(z). 0 1
IV. CHARACTERIZATION OF THE CLASS whereg,p € R?, v € R, and I, I, are the respective

angles and moments of inertia of the pendulum disk, where

IA na]tcura:jquestmn_ thadt arises at this phomF |s|what isthe “a mgl with m the pendulum mass,its length, g the
class of underactuation degree one mechanical systems t vity constant, and for simplicity, we have takén —

can b? trzgsfokrmed,\ﬂa (f:anonacal changﬁ of crc:ord;]natesa = 1. The equilibrium to be stabilized is the upward
state_ eedback, ”?tOt e form ( )N_e say then that the me- tposition with the inertia disk aligned, which corresponds to
chanical system is feedback—equivalent to (1). A complete _ _

. N ) . " {1+ = g2+ = 0.
answer to this question is provided in the proposition below.
For brevity we present only the case whéig,.) = I, the
general case is discussed in Remark 4.

Assumption A.3 is obviously verified. We will select now
the terms of the triplef ¥, M9, p} that satisfy Assumptions
A.1-A.2. In this simple case we can take the desired inertia

Proposition 3: Consider the classical underactuation dematrix to be constant, henceforth we set the first parameter
gree one (simple) mechanical system ¥ =0 to yield

0 0

o1 T I, _ _ a0 — | M1 Mg
Dij+ Dy — 59, (57 Dj) + V,V(y) = [ 00 } i Ma = Ma [ mly mly } '

The (non-trivial) left annihilators ofG are given by
G+ = n[1, 1], with  # 0. To satisfy Assumption A.1
we impose

wherey € R" are the generalized coordinates,c R"~!
the controls,D(y) = D'(y) > 0 the inertia matrix
(the argument is omitted) antl(y) the potential energy
function. The system iglobally feedback equivaleto (1) m}y +mly # 0. (14)
with M(g,) = I if and only if there exists a function
1 : R™ — R™, which is a global diffeomorphism, solution
of the set of second order homogeneous POE’s

The positivity condition for the inertia matrix is clearly
2
m{; >0, m{;mg, > (m(l)Q) . (15)

n—1
D di( ) Ve + Vi + Vi YF () Ve =0 (12) We have that
i=1

p
. . = miy +mf,’
such that the algebraic equations
for some numbep. Now, asGts(q;) = o sin(qr),
[di(¥) -+ da() 1]V0G(g) = 0 we need to verify the inequality e
d s dy 1\ V¥s(qr) = —F 13
[d1(¥) (¥) 1] Vas(ar) o(v) (13) 0 &m0, < 0, (16)
are satisfied for some integer € {1,---,n}, and

some functionss(q, ), G(q.), where the scalar functions t0 assign the minimqu ;Vd(Q), becausg cancels. Finally,
d:(1(q)), Fo(1(¢)) and the matrix, (1(q)) are determined We select®(z(q)) = 5 2°(q), where

by D(y), V(). "
2q) =qo—p

Remark 4:For the more general case whev&(q,) # I, m{; +mf,

the algebraic constraints remain unaltered. However, the . .
. . ' IS directl m from (11 in from (1
matrix M (g,) provides a new degree of freedom thatgd ectly computed from (11), to obtain from (10)

0 0
Mig + Myy ”

_aplr_)ears _invthe PDE (12) in the form offi@e termwhich Vala) ms . P ( m0y +md, >2
is linear in . dq)=—Gg T o oSt S\ 2P o @
¥ m{; +mf, 2 mf; +mf,
f 1Assumfti0,n A.2 is sufficient for iﬂiectivityl_ otz (¢r)s(gr) which, The conditions on then?; coefficients (14)—(16) exactly
rom Brocketts condition, imecessarylor stabilization. <l i GOINCide, forp = 1, with those of [9] where the almost
A change of coordinates for a mechanical systems is canonical if | . . .
maps positions into positions. glqbally stabilizing contrpller derived fo_r this example re-
3The argument of)(q) is omitted for compactness. quires four pages of (painful) computations.
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B. Pendulum on a cart N 0
: . . . Baol s T 10()
The dynamic equations can be put in the desired form g |/ .. g .
2207, T e 8
C] = p g b % > :\rf\\ﬂv—i
. . —bcos 0 20 40 60 80 o 20 40 60 80
p = asinge + |: C](-)S q1 :| U (17) 2 Time (sec) 5000 Time (sec)
10 :
whereq,p € R%2, u € R,a= ¢, b= 1 withithelength ¢ ,\ | &
of the pendulum. Notice tha&(q;) = n(q1)[1, bcosq1], ° ¥ 2000
wheren(q1) is a function to be defined. The equilibriumto _, 0
. . . . 0 20 40 60 80 0 20 40 60 80
be stabilized is the upward position of the pendulum witt Time (sec) o Time (sec)
the cart placed irany desired locationcorresponding to A '0
¢« = 0 and arbitraryg... g g .
It is possible to show that, to satisfy the conditions = 2 T
of Proposition 2,n(¢;) cannot be a constanHence, we . : s
computeM,(q;) from (8) to get T T S

GH(q1) Ma(q)er = 77(611)[1)2(/(11 (1) cos? pdpu

. Fig. 1.  Trajectories with the pendulum starting near the horizontal

a1 [¢(0),p(0)] = [7/2 — 0.2,—0.1,0.1, 0], full state feedback.
—cosqp / W () cos pdp) +mSy +miybeosqy].
0

We have to select a functioh(q; ) so that the term in brack- a domain of attraction of the former containing the set
ets (evaluated at zero) is bounded away from zero (Assump-7, 5) X R3.

tion A.1) and can be explicitly integrated. The first condition Simulations were made with = b = 1, K, = 0.01,
allows to definen(q;) such thatG*(q;)My(q1)e; = p, m9, = k = 0.0l and P = 1. We tested a set of
while the second one is needed to compute the contrtimiting” initial conditions with the pendulum starting near
law. It is easy to see thak(q;) = const is, unfortunately, the horizontalg(0), p(0)] = [x/2—0.2,—0.1,0.1,0] and the
not adequate We propose then(¢;) = —ksing;, with  desired position for the carf. = 20. The result forfull

k > 0 a parameter to be determined, and sete¢t = %b? state—feedbaclFig. 1) shows an excellent performance.
mY, = —£b. This leads to

C. Vertical takeoff and landing aircraft

2 kb

kb 3 2
Mg=| 3,°®n T2 08 d 18 The dynamics m written
d “boosqy (cosqr — 1) +md, (18) e dynamics may be written as

This matrix is positive definite and bounded for all € ¢ = p
(5 5)s providedm, > k. Also, we can take p = 9 sin gses + G(q3)u (19)
€
_ 6p 5 ) : .
n(q1) = MZcosS g whereg,p € R3, v € R2, and we defined the matrix

Assumption A.2 is verified noting that 1 0

1 6a sing Glgs) = 0 L

gt Sk Lcos Lsin

P (q1)s(q1) kb cos? g, 5 q3 ¢ sIngs

Finally, Assumption A.3 is obviously satisfied. The cqqtrql requirement is the asymptotic stabilization of
all equilibria of the form(q;, g2«,0,0,0,0).
Proposition 4: A set of energy functions of the form (2) . _ i
assignable via IDA-PBC to system (17) is characterized by ProPOsition 5: A set of energy functions of the form (2)

thelocally positive definite and bounded inertia matrix (18) 2SSignable via IDA-PBC to system (19) is characterized by
with m9, > k, and the potential energy function the globally positive definite and bounded inertia matrix

3a 9 kiecos’qs + k3  kiecosgzsings ki cosgs
Va(q) = kb2 cos? q, + EZ (9) My = | kiecosgssings —kiecos?qs+ ks kisings
where k1 cosqs3 k1 sin g3 ko
3 6m9, with k1 > 0, k3 > 5k1e, k1 > koe > % and the potential
Z(q) = (g2 — Q2« + 5 ln(sec Q1+ tan CIl) + kb tan qi1- energy function
The IDA—PBC'’s with full state—feedback (9) ensagymp- g 1+
totic stability of the desired equilibriung0, ¢s., 0, 0), with Valg) = Ty — hge (PO 57 (@)Pz(q)
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3—notice the different scales in the graphs. The posture
of the VTOL aircraft along the trajectory for both cases is
shown (at the same scale) in Fig. 4. It can be seen that,
V) for the first case, the altitudey{ = y) makes very large

° s Lk ® ®  excursions to drive the VTOL to rest, while in the second
60 one a simple slow amplitude rocking motion achieves the
40 objective.

The simulations, depicted in Fig. 5 and Fig. 6, show the

time behavior an posture for the VTOL respectively, in an

Positions (q)
Momenta (p)

Control
Energy

% 5ol w @ % S, B aggressive maneuver, from a limit upside down position for
5 2 the roll angle ¢3), and a great step on the lateral motion
o g ! ' (¢1) and altitude ¢).
s . w i 0 Remark 5:[Robustness] Recent results [11] show that
e the full-state feedback IDA—PBC controller ensuaémost
e R 0 5 10 2 s o os 1 global asymptotic stabiliteven with dynamics friction in
x(m) 0 (rad) the model (19). With a suitable selection of the controller
i . . gainsk;, i = 1,2,3, the controller is able to dominate the
Fig. 2. Badly tuned controller for VTOL. Initials conditions . P
[4(0), p(0)] = [=5,0,0.1,—0.1,~0.1,0.1]. Referencesy, — 5 and Undesirable friction effects.
420 = ds- =0 VI. CONCLUSIONS
In this paper we have identified a class of underactu-
where ated mechanical systems for which the IDA-PBC design
_ ks o methodology gives a complete solution to the full-state
2(q) = I R ke SR , feedback stabilization problem—uwithout the need to solve
G2 = G2« + i =pc (cos gz — 1) any PDE. The main assumptions made on the system are

that it has underactuation degree one and that, roughly
global asymptotic stabilityof the desired equilibrium SP€aking, the dynamics are determined by only one gen-
(q1%,G2+,0,0,0,0). erallzed. coordinate. A .complete charactenz_atmn of al!

mechanical systems which are feedback equivalent to this

Simulations were carried out with a twofold objective,class is also given. This class contains several practically
first to show how the energy shaping controller proposeititeresting benchmark examples some of which are studied
in this paper ensures a satisfactory response for strofiy the paper. Besides ensuring asymptotic stability the
coupling coefficientse > 0, and second to illustrate the IDA-PBC methodology provides the designer with some
tuning flexibility provided by the design parameters. Alldegrees of freedom to improve the transient performance
simulations are made with a strong value of coupking 1.  and the robustness. These degrees of freedom are given in
The damping injection matrix was fixed to

10 5
Ky = [ 5 10 } :

The normal conditions of maneuvering for the VTOL
aircraft is to keep an accurate lateral motion near th
ground. This problem has been normally solved in twc
steps (see for instance [10]): decoupling the altitude outpi N
from the lateral motion and rolling moment by means o'z °f |/
a pre-feedback control law and then, designing a contr(§ _| -
law for the new decoupled system; this procedure rende - .
satisfactory results for small enough Now, with the 0 s o2 0 s o152
energy shaping controller independently of the value of 2 e e 2 e s
it is possible to “virtually decouple” the outputs using the _ :
weighting matrixP in the potential energy (10). To illustrate
this point two simulations were made, first with a “bad”
potential energy taking® diagonal and the weights equalto % =+ 2 o 2 4 Y 0 05
1 and1/10. This simulation for a lateral motion is shown X 82
In Flg.' 2. The Sam_e SImUIatlor? Wa_‘s made for a “goocjyl,:ig. 3. Well tuned controller for VTOLg = (z, y, #). Initials conditions
potential energy taking thé’ again diagonal but with the [4(0),p(0)] = [-5,0,0.1, 0.1, —0.1,0.1]. References;;, = 5 and
weights now1/2 and 1, with the response shown in Fig. ¢2« = g3« = 0.

The full-state feedback IDA-PBC’'s ensur@almost

10

Positions (q)
Momenta (p)

-5

30 Time (sec)

20

Energy

10

y (m)
5 (rad/sec)
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y(m)

Fig.

-7 L L L L L I I

x(m)

4. Posture of the VTOL along the trajectory= (z,y, ). Badly

tuned controller (top) and well tuned controller (bottom).

&

=)

Positions (q)

5 10

Time (sec)

15

10
Time (sec)

15 10

Time (sec)

15

Eo ¢
> 2—2
s oo
-10 -4
-10 -5 0 5 10 -1 0 1 2 3 4
X (m) 6 (rad)
Fig. 5. Upside down simulationy = (z,y,0). Initials conditions
[¢(0),p(0)] = [5,—5,m,0.1,—0.1,0.1]. Referencesgi» = —5 and

q2x = 5 i':ll'l(2|q3,.< =0.
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