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H ., Output Feedback Control for a Class of Nonlinear Systems

D. F. Coutinho and A. Trofino

Abstract— This paper proposes a convex approach to the the nonlinearities are concentrated in an auxiliary vector

H-infinity output feedback problem for a class of uncertain  |eading to the following differential-algebraic representation
nonlinear systems in which the system matrices are allowed to

be rational functions of the state and uncertain parameters. T = Aix+ A+ Byu,
We derive sufficient linear matrix inequality (LMI) conditions y = Cia+Cs¢
for designing full-order output feedback controllers that assure 0 = Q(z,8) + Qalx,8)E,

the regional stability of the nonlinear system for a given energy

bound on the disturbance input in the sense that the state stays . - .
inside a given region, and also minimize an upper-bound on the which is linear with respect to the state(t) and the

L>-gain of the input-output operator for the class of admissible ~ algebraic vectorg(x(t), 4(t)). It turns out that the above
disturbance signals. Numerical examples are used to illustrate class of system requires only thatt) and 6(¢) belong
the proposed methodology. to bounded sets differing from the quasi-LPV approach
that assumes that all nonlinearities are bounded which
can be conservative and very demanding on numerical

In the last ten years, the nonlinedt., control has computations. Then, we propose sufficient conditions to
received great attention from the control community inhe ., output feedback problem in terms of linear matrix
a wide diversity of approaches, see for instance [1], [2jnequalities (LMIs) [11] that guarantee the regional closed-
[3]. In particular, the nonlineat., control via measure- |oop stability and minimize an upper-bound a-gain
ment feedback can be solved by means of two (coupledf the input-to-output operator. Numerical examples are
Hamilton-Jacobi equalities, HIEs, (or inequalities, HJIs) [4Jpresented to illustrate the above class of systems and also
[5]. However, HJEs are hard to solve and usually obtaineg demonstrate the approach.
by Taylor series approximations which can be impracticabighe rest of the paper is organized as follows. Section I
for systems with more than few states [6]. states the problem of interest, and Section Il introduces
On the other hand, taking into account the theory of gainsome basic results. The main results are presented in Sec-
scheduledH ., control of linear parameter varying (LPV) tions IV (closed-loop analysis) and V (control synthesis),
systems [7], i.e., systems described by and Section VI ends the paper.
SN . The notation used in this paper is standd@d.denotes the
&(t) = AL@O)e(t) + Bu(0(0)ult), y(t) = CO1)2(?), set ofn-dimensional real vector®™*"™ is the set ofn x m
where the control computation incorporates the vector akal matrices/,, is then x n identity matrix,0,,«., is the
time-varying parameter&(t), several authors have general-n x m matrix of zeros and),, is then x n matrix of zeros.
ized the above class of systems to deal with nonlinear on€sr a real matrixS, S’ denotes its transpose arfl > 0
leading to the quasi-LPV approach [8], [9]. In other wordsmeans thatS is symmetric and positive-definite. The time
the parameted(t) is allowed to be state dependent resultinglerivative of a function-(¢) will be denoted by-(¢) and the
in the following class of nonlinear systems argument(t) is often omitted. For two setd, ¢ R™ and

II, ¢ R™, the notatiorI, x I, represents thdfll, xII;) C

&(t) = A(8(2))z(t) + Bu(8(2))ult), y(t) = C(6(x))x(?), R?”J””) is a meta-set obtaingd bF;/ the cartegian prolzd)uct, and
whered(z) belongs to a know polyhedral set. However, the’/(Ila X 1I;) is the set of all vertices ofl, x IT,. Matrix
quasi-LPV approach may lead to serious conservativeneg$!d vector dimensions are omitted whenever they can be
since the nonlinearities of the system are considered #¥erred from the context.
free time-varying parameters which are actually determined
by the system trajectories [10]. In addition, the quasi-LPV
approach via measurement feedback can be applied only forconsider the following nonlinear system:
systems in which the nonlinearities are available on-line to
the controller. { & = f(z,0,w,u), y=g(z,6,w), 1)
Alternatively to the quasi-LPV approach, we consider in this z=h(z,6,w,u), z(0)=0
paper a more complex class of nonlinear systems in Whi(fnhere z € X C R denotes the state] € R"™
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88040900, Brazilt r of i no@las. uf sc. br (x = 0) with known vertices. To guarantee the existence and
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uniqueness of solution and assure that the control problewhere the augmented vectors are given by
is well-posed, we as_sume for system (1) that: _ - F(@, 6w, Coz)
Al 'I_'he uncgrta_ln pa_ran_weters_ represented Iamd its La = [ Te ] fal) = [ Acxe + Beg(z,0,w) |’
time-derivatived lie in a given polytopeA, i.e.,
(8,0) € A. The notationy € A means(5,0) € A.  andhq () = h(z, 6, w, Cexe).
A2  The right-hand side of the differential equation isWWe end this section introducing the following lemma based
continuous and bounded for ail, §,w and« of on the Lyapunov theory [12] that will provide the founda-

interest. tion of our control design.
A3 The system origin: = 0 is an equilibrium point ~ Lemma 1: Consider system (5). Suppose there exists a
for all admissible uncertainty, i.ef(0,4,0,0) = functionV : X x R"» x A — R satisfying the following
0, VéeA. conditions for three positive scalats, e; and~:
For nonlinear systems which are not globally asymptotically 120 < V (@, z0,8) < €202 (6)

stable (GAS), the disturbance signal can lead the system to

’ 1,/ /
instability even for vanishing perturbations. To characterize Vi@, 2¢,0) + 52/ (t)2(t) — yw'()w(t) <0, V't > 0(7)

the system stability over disturbance signals with zero R = {(2,0): V(z,2.,0) <1} C X (8)
initial conditions, we define the system regional stability . " )
as follows for all z € X, (0,9) € A, andz. € R". Then, R given

above is an invariant set and the trajectarfy) driven by
w(t) € W, wherey > 1/, belongs toX'. Moreover, the
Lo-gain of system (5) satisfies

Definition 1: Consider the nonlinear system in (1), satis
fying A1-A3, and a given set of disturbance sign&l The
system is called regionally stable (with respecr¥oand.X)

if z(t) € X forallt > 0 and allw € W. The corresponding 1Guwslloo <7, ¥ (8,8) € A, we W. 9)
setW is called aset of admissible disturbance inputs. O

Hereafter, we describe the class of admissible disturbance [1l. BASIC RESULTS

inputs as follows: The idea considered in this paper for solving the nonlin-

oo ear H,, output feedback control problem is to rewrite the
w = {w(t) : / w' (Hw(t)dt < p? } (2)  stability conditions of Lemma 1 in terms of LMIs. To this
0 end, we will represent system (1) by means of differential-
wherep > 0 represents the level of admissible disturbancalgebraic equations. In order to decrease the well-known
signat. conservativeness of quadratic functions for nonlinear system
This paper is concerned in regionally stabilizing systeranalysis [10], we will employ the class of polynomial
(1) via (full-order) measurement feedback with guaranteeidyapunov function originally presented in [13] in the sta-
input-to-output properties. To this end, consider the followbilization conditions. We end this section discussing the
ing definition of £5-gain. problem of estimating the Domain of Attraction (DOA) for
Definition 2: Consider system (1) wittA1-A3, and a the class of admissible disturbance signals.
given set of admissible disturbance signal. The £,-gain
of the input-to-output operator, denoted &Y, ., of system A. System Model
(1) is given by Certainly, the key idea in our approach is the modelling
technique used to represent the nonlinear system. Roughly,
1Guwzlloo = sup (3) we assume that system (1) can be described by a set of
0FweWw lwll2 differential-algebraic equations that are linear with respect
vis0ea to z and also to auxiliary nonlinear vectors denotedsby
O &(x,0) and¢ = ¢(x, 6, w), i.e.
The stability of system (1) will be achieved by designing b= F() = Ayw + Aok + Brw + Baé + Buu,

the following linear map
y=g(-) = Crx + Cof + D1w + D2,
u = Cote, ite = Actic + Boy, (0) = 0, (4) z=h(-) = Bz + Exf + Fiw + Fa¢ + Fyu,  (10)
0= Q1($,5)$ + QQ(*T7 5)57
where z. € R"= is the (fu!l-order_) control s_tate, _and 0= ®(z,6)w+ ®y(x, )0,
A, B.,C. are constant matrices with appropriate dimen- ) )
sions to be determined. where¢ € R™s, ¢ € R™¢ are nonlinear vector functions;
Using the above controller, we can describe the closed-lodpi (%:9) € R, Qa(z,0) € R™Xe, @4(z,9) € R

y ) : ;
system by means of the following augmented nonlinear mef'd ®2(z,9) € R?*"* are affine matrix functions of:
ndé; and Ay, Ao, ..., Fy, F,, are constant matrices with

2 = ho(Ta, 6, W), Tq = fo(za,6,w), £,(0)=0 (5) appropriate dimensions. To simplify the notation, we may
use the auxiliary matrices and vectors without explicitly
Ll.e., u controls the "size” ofy. mentioning their respective dependencezon andw.

[12]]2
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Basically, the above class of systems is essentially the safBe Lyapunov Function Candidate

one proposed by El Ghaoui and co-authors in [14], [15] consider the following class of Lyapunov functions:

namely the linear fractional representation (LFR). The main ,

difference between our technique and the LFR one is that y(, 5 ;. ) — [ T ] [ P(z,8) Ps } { T } (13)

we consider a differential-algebraic model and Ghaoui et Y Te Py Py Te |’

al interpret the system as an interconnected system (i.e.\\fere

linear system with a feedback state-dependent connection , / , N

between fictitious inputs and outputs). Similarly to the LFR P(z, §) = [ 6(;’5) } { % gl } { 6(;’5) } . (14)

technique, we can recover the original system by taking into " Lso "

account the following equalities Py = P} € Rm=x"= P; € Rt=*"0 P, = Pj € Rroxne,
Py € R=X"= Py = P; € R"»*"= gre constant matrices

£=—() B, ¢ = —(2391) ' P,01w. (11) 1o be determined; an@(x,§) € R *"= is a given affine

matrix function of (x, 9).

In order to guarantee that representation (10) is well-posegly, simpiicity, define the following auxiliary notation:
we further assume
Cl P2 Pll

A4 The matrices?; and ®, are full column rank for (= , (1 =0(x,0)x, P= . (15)
z P P
all z € X andé € A.
I ith above notation and taking into account the represen-
L 2.1 f 14 11 . ; o
Considering Lemma fom [14] and (11), we can Stat{\%/tlon (10), the Lyapunov functiol (z, z., §) and its time-

the following proposition. I . i
Proposition 1: For any rational matrix functionM : derivativeV'(z, z., 9) can be written as follows:

- 97

R™ — R™"™ with no singularities at origin there ex- (1 P, Pl 0 ] G
ist constant matricesM;, M,, and affine matrix func- Viy=1| =z P P P x (16)
tions 'y (¢), 2 (o) with appropriate dimensions such that T 0 P, P Te
M(o) = My — My (Ty(0)T1(0)) ' Th(o)T1 (o). = e T T2
In summary, from Proposition 1 we can infer that ¢ ¢
differential-algebraic representation (10) models the whole V()= | [ Wi ] ‘ o 17)
class of rational systems with no singularities at origin. To w 7 Jig=1,5 w
illustrate the proposed modelling technique, we give the ) &
following example. - - -

Example 1. Consider the following scalar system where wi; = wj;, wn = AjP(x,6) + P(x,0)Ar +

P(z,0)+CiB.P,+ PsB.C1, wa = AyP(z,9)+CLB.LP;,

T = % +(A+zHwtu, y=2+01w, 2=z (12) W1 = CiB,P(x,6) + A.P5 + PsAy + PyB:Cy, wsy =
1+ PjAs+PyB.Co, wss = AL Py+PyA.+C.B, P;+P;B,C.,,
The above system can be rewritten as in (10) b§par = BiP(z,0) + D1B.P3, wag = BiPs + D1B.Fy,
0, = [ 1 0 0 0 ]’ and W51 = Bé’P(l‘,(S) + D/QBéPé, Ws3 = Bépg —|—DéBéP4 and
the remaining ones are matrices of zeros with appropriate
s dimensions.
— 74
xl _01 8 8 et Note from above that we have to compute the term
Qs = 0 =z -1 0 €= 1}?4 , 2'P(x,0)x. To this end, consider the following structure
0 0 x -1 1?4 for ©(z,0):
Thaz? ne ns
Tew 0 z -1 ] ]
A =0,4=[1 00 0],Bi=1,B,=[0 1], whereR; (for i = L...,r}m), S; (fOI’iZIL...,.ng) andT
— — — _ _ _ _ are constant matrices with the same dimension®(f, ¢),
B,=1,C,=1,D, =01, E, =1,Cy = Dy = FEy = > :
— — — L, 04
F,=F,=F,=0. andz;, d; are respectively the entries of the vectarsind

Remark 1. The choice of matricedl,, As, ..., Fy, Fy in 0. Considering (18), we get:

(10) is not unique, as a result the stability (and stabilization)
results can be conservative. This problem is fully addressed
in next section in which free multipliers are added to the
problem decreasing the conservativeness. This problem"}’é1

&P, 8)x = 2'P [ O(x)i t O } )

ere the matrice®(z) and ©(4) are given by

first discussed in [16], [9] for state-dependent algebraic - N . ns o

Riccati equations and for the quasi-LPV approach. Trofino O(z) =Y Riar; and ©(5) =) Sio  (20)
in [13] proposed a similar solution but from a different i=1 i=1
perspective leading to less conservative results. O with r; denoting thei-th row of the identity matrixZ,,.
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Considering the above notation, we get 16z, ., §) the IV. OUTPUT FEEDBACK ANALYSIS

following: This section presents an LMI technique for analyzing the
¢ ! ¢ stability of closed-loop system (5) providing the foundation
¢ ¢ for the output feedback control design which is given in
V()= | z. [ vy ]ijzl | e (21) hext section. _ _ _
" RO w From the expressions oV (:), V() in (16) and (21),
é é respectively, and also (24), we have associated with them

, o ot T the equality constraints (25) and the following
Wher81)7;j = Vj;, V11 = Aalp + PAal + U (Cchpg +

PyB.CU, vay = AL,P + CLBLPU, vs1 = C'.B.P + (o 0] [ @ } —0.[ @ @ ] [ w } _o.
(ALP; + P3Ay + P,B.C1)U, vss = w3z, V33 = wss, § ¢
var = By P+ (D1 B.P3)U, vaz = was, vs1 = ByeP +  The basic idea for incorporating the above constraints in
(D3BLP3)U, vs3 = ws3, U =[ Onxng I |, the conditions of Lemma 1 is to consider the Finslers
0 0.4 0.4 lemma [11] and thus free multipliers are added to the state-
ng x411 r412 . . .
Aa1 = [ 0 A, } y A2 = [ A, } ) dependent LMIs. For instance, consider condition (24) and
its constraint in (25). Applying the Finsler's lemma, we get
0.8, 0.8 0,B A
B, = { B, } ,Ba1 = { B ! } , By = { 322 } , the following:
1 [0 a O]

0, = O(z,8)+O(x), and the remaining ones are matrices 0
of zeros. ar (1, ] >0, VEk (26)
Remark 2: Matrix ©(z,d) plays an important rule on 0 “

the conservativeness of our approach, since it defines the
complexity of the Lyapunov function. Generally, as large igvhere I1;; = II;;, Tlin = Py + Nig + Nyp, 1oy =
its dimension as accurate will be the method at the cost éft — ©'Ny;, + Nay, Ilog = Py — Noy© — ©'Nyy, 51 =
extra computations. O Na, 32 = P3 — N30, [I33 = P4, © = O(x,6) and
. ) . Nig, Nop, N3, (K = 1,...,n.) are free multipliers to be

C. Estimating the Domain of Sability determined.

From the theory of nonlinear systems a level set of thalso, the test of parameterized inequalities of the form
Lyapunov function is normally used as an estimate of DOA, ,
see e.g. [14]. The idea is as follows. ol(0)o >0, Voek, (@7)
W|th0ut |OSS Of generality, we assume tb?él]s represented Whereo— c R"e iS a genera' parameter be'onging to a

in terms of the following constraints: polytope & with known vertices and’(-) = I'(-)’ is an
X={z:ax<1 i=1,...,n} (22) affine matrix function ofs, can be very conservative if we

. only consider an LMI version of (27) as follows
wherea;, € R (for ¢ = 1,...,n.) are given constant

vectors associated with the edges ofY. It turns out that [(o) >0, VoeV(Z). (28)

X can be equivalently representgd by its vertices. Notice that the above impliesT(c)p > 0 for all o € &
Using theS-procedure (see Sections 2.6 and 5.2 of [11])3nq, & R~ . Trofino in [13] introduced the following linear
the conditionR C X' is satisfied if the following inequality 5nninilato?

is satisfied for allk:

02 —O01 0 tee 0
2 —2apr+ (V(z,2:6) —1) >0, k=1,...,n. (23) 0 o3 —09 - 0
= 29
Taking into account (13) and (15), the above is equivalent o) : : : : : (29)
to the following: o - 0 on, —O@m,-1)
/
1 1 [0 a% 0] 1 whereo; arei-th elements ot and V(o) € R(?e—1)x70
G 0 PP 0 Gt | = Applying the Finsler's lemma to (28) with the constraint
x ag Py P9 Py z |~ N(o)o = 0, leads to the following LMI condition
Te 0 0 P P Te
° (24) T'(0) + LN(0) + N(o)'L' >0, ¥V 0 € V(S),
fork=1,...,n., where[ ¢{ «' |’ satisfies where L is a free multiplier.
I O(z.5 G 0 25 For state-dependent LMls, the idea is to incorporate the
[ I, —©(z,9) ] x | (25) constraint\/(z)z = 0 into the stability conditions involving

If the Lyapunov function candidate satisfies the conditiont'® Matricesdy, Az, ... 1, F>. As a consequence, we are

.(6) anq @) (?f Lemma 1 jointly with (24) theR as defined 25 yaix N (z) is a linear annihilator of: if is a linear function ofx
in (8) is an invariant set for ab € A andw € W. and N (z)z = 0.
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in part reducing the problem of choosing these matrices solution to the following optimization problem where the
since more degrees of freedom are added to the probleni.MIs are constructed a@(X’ x A).
Now, we are ready to state sufficient LMI conditions that

analyze the regional stability of system (5) providing an min v subjectto | W;; | <0, (33)
upper-bound on it€,-gain. 1 [ 0 a, O ]

Theorem 1. Consider system (1) wittA1-A3, and its
representation as defined in (10) wAHA. Let A.., B.., C. be ak [ ﬁij ] >0, Vk (34)

given constant matrices such that the unforced system (5) 0
is regionally stable. Le®(z,d) be a given affine matrix
function of (z, §). Consider the notation previously definedwhere U;; = W;i, ¥y, = A’ P + PA, + U'(M,Cy +
andQ,; = [ Omxng 0 ]1 B, = [ O'nzxng by ], CiM{)U + LuQc + QZLlll 4+ L12Q01 + 9:111/121 \ilgl =
N(z) 0 4:12P+C%J\4,-{U+L21§2< + LooQq1 + Q5 Lo, Uag = Wy,
I, —O(x,0) (0) Wy = M'B,P + (Mj + MaAy + MiC)U + L1 Q¢ +
L3201, V32 = MaAs + M1Cs + L3o€z, W33 = M3 +
Suppose that’, P, P», P3, P4, L;; and Ny, (for i = M} + MyB,M + M'B.,M,, U,y = B/, P + D) MU +
1,2,3,j = 1,2 gn_d k_ = 1,...,n.) are a solution to Ly + LaoQar + B\ L5, Wyp = Uyy, Wys = B M, +
the following optimization problem where the LMIs are py/ pp7 4 O Lig, Wag = =1, + Laz®y + @) L5, V5 =
constructed aV(X x A). Bly P+ DyM{U + L1 Q¢ + LsoQ1 + @4 L5, 5o = Wso,
W53 = ByMy + Dy My + O Lys, U5y = Usy, VUs5 = Uss,
V61 = Eia, Vo2 = Ea, Vo3 = FuM, Weq = F1, Yg5 =
Fy, Voo = I, ;; = Tly;, Ty = Py + Nig, + Ny,
g = Py — ©'Nj, + Nog, Ilog = Py — Noy© — ©'Ny,
H31 = Ngk, H32 = M2 — N3k,® andH33 = Mg.
Then, system (5) with the control matrices

Qe =

(1)

Where\I/ij = \Iljia Ui =vq1 +L119C+Q/CL,11 +L19Q41+
1L, Yo1 = vor + La1Q¢ + LaoQa1 + Q5L 5, Woy =
Loofle + Q4 L4y, U3y = w31 + L31Q¢ + L32Q41, Usa =
v32 + L32Qs, W33 = v33, Wy = vg1 + La1 Q¢ + Lyo8gq +
(I)/lL,13, \I/42 = L4QQQ+<I),1L/23, \I/43 = ’U43+(I)/1L§3, l1144 =
—1,, + Lag® + @1 L3, Usy = v51 + L51Q¢ + L5aQa1 +
(I)IQL’IS, Ugy = L5292+<I)I2L/23, Ugs = U53+(I)/2L§3, Wey =
Ls3®1+P5 L3, Va5 = LsgPo+P5 L1545, V1 = Erg, Ye2 =
Ey, Vo3 = F,Ce, Vo4 = I, Vo5 = I andWes = —71,,, .
Then, system (5) is exponentially stablefnfor all § € A,
w € W with © > 1/~ and zero initial condition. Moreover,
the £,-gain of system (5) satisfies (9).

min v subject to (26) and ¥;; | <0

A, = MsM; "', B.=M,, C.=MM;"' (35)

is exponentially stable iR = {(z,0) : V(z,z.,0) < 1},

whereP; = I,,. and P, = M, ', for all 6 € A andw(t) €

W with © > 1/~. Moreover, thel,-gain of system (5)

satisfies (9). O

The conservatism of Theorem 2 depends on the choice

of M which defines the control gaif'.. In other words,

a bad guess of\/ in Theorem 2 may lead to a poor
A straight application of Theorem 1 for control designperformance and even fail to provide a stabilizing controller.

leads to bilinear matrix inequalities (BMIs) [17]. However,To overcome this problem, we propose in the sequel a

we can transform the conditions of Theorem 1 into convegimple procedure for choosing the matrix.

ones using the parameterization proposed in [18] for filteTo this end, assume that the trigld;, B;, C;) is stabiliz-

design. able and detectable. In the sequel, an observer based algo-

The idea is to pre- and post-multiply the matrix inequalitiesithm is proposed to determine the matiix in Theorem 2

(26) and (31) respectively by taking into account the following sub-system

T —1
Q1 = diag{1, Iy, 4n,, PsP; '}, (32) { no=
y =

Q2 = diag{ln,z+7ng+7zgaP3P4_1a I7Lw+n¢}-
and then redefine some multipliers.
Note from Theorem 1 thaP; is nonsingular and then the Algorithm 1. (Initial guess ofAf) Consider sub-system
matricesQ; and Q, are well defined. In the following, (36) and the following steps
we state the main result of this paper where is proposezfep 1Solve the optimization problem
sufficient LMI conditions for nonlineat{., control design
via measurement feedback.

Theorem 2: Consider system (1) wittA1-A3, and its

V. OUTPUT FEEDBACK SYNTHESIS

Al’f] + Blw + Buu,

Cin+ Diw, z = Fhx + Fiw + Fyu. (36)

r)r(l}}r/l ’y:X>O,[Eij]<O,

representation as defined in (10) wikd. Consider the
notation used in Theorem 1. Léi(z, ) be a given affine
matrix function of (z,d). Let M € R™*"= be a given
constant matrix. Suppose thay, Py, P2, L;j, Nji, and
M; (fori=1,...,5;j =1,2,3;andk = 1,...,n.) are

where Eij = Eji, 211 = AX + X'A+ B,Y + Y/B;,
BEo1 =B}, B =, 51 = E1X+FY,E3 =1
and=Z33 = —vI,,_. In addition, definek = Y X~

Step 2Determine matrice$) = W’ and Z such thatV’ >
0: AAWH+W A1 +ZC1+C Z' < 0 and defineg? = W~1Z.
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Step 3 Determine a symmetric positive definite mati
such that

A'P+PA PB C
min 7y B'P —~I,, Fy <0
i ¢ F1 _’YInz
whereC =| F, F,K ], and
A Ay B, K B By
| -GCy A1+ GCi+BK |’ | =GD,

Consider the following partition of the Lyapunov matrix
D Pa Pb
P=[ B

Finally, defineM = KP'P,. O

To illustrate the proposed approach, we give the following

example. [

Example 2: Consider a controlled pendulum described

by @1 = @9, &3 = 2sin(z1) —z2 +u+0.1wy, y = 21 +wo,

z =1, Wherex = [ x; x4 |’ is the state vector bounded [2]

by

] ) }:tz, }:% 5 }:1: c H§i7ll,>< Ny

1]

reX={z:|n|<n/2 |2 <1} @7) Bl

The above system is non-rational and then cannot be mod-
elled in the differential-algebraic representation as defined"
in (10). To avoid this restriction, consider the following (2nd

order Taylor) approximation ofin(z) (5]
3

sin(a:l) =T — % + (5331 (38) [6]

where § represents the mismatch between(-) and its
approximation. Taking into account (37) and aboveand  []

0 are bounded by
(5.6) € A={(5.6): 5] <005, 1§ <3m/2}  (39) &
From above, we get the following [9]
2 .

l"l = T2, ig = 2171 — §If—I2+25$1 +u+ 0.1w. (40) [10]

As the above nonlinearities are rationalin we can rep-
resent it by the differential-algebraic representation definggh,
in (10). In addition, applying Algorithm 1 we get/ =

[ 3.25454 —0.41021 |. From Theorem 2, we obtain an [12]

upper-boundy = 17.14 for all § € A andw € W with 3]
wu > 1/~. Figure 1 shows the closed-loop trajectorymgft)  [14]
for the disturbance signats, (¢) = 0.06 for 0 < ¢ <1 and

wa(t) = 0.05 x sin(100 = t) for 0 < ¢ < 10. (15]

VI. CONCLUDING REMARKS

This paper has proposed an alternative approach to t[wl%]
nonlinearH ., output feedback problem for a class of uncer-
tain nonlinear systems in terms of linear matrix inequalities.
The proposed LMI conditions assure the regional stabiliti*7]
of the closed-loop system for bounded disturbance signals
and zero initial conditions while providing an upper-bound
on its (induced)L,-gain. As future topic of research, the (18]
authors are studying the nonlinear dynamic output feedback
case.

29e-4
z1(t)
25e-4 7|
2le-4 7|
17e-4 7|
13e-4 7|

9e-47]

5e-47]

le-47]

Be-a T T T T T T T T T T T T T T T T T

Fig. 1. Closed-loopr; (t) trajectory.
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