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Directional Control of a Streamlined
Underwater Vehicle by Feedback Passivation

Hye-Young Kim and Craig A. Woolsey

Abstract— This paper describes a model-based technique for
stabilizing the directional motion of a streamlined underwater
vehicle controlled in surge, roll, pitch, and yaw. The six
degree of freedom vehicle model allows for a broad range
of viscous force and moment representations. The control law,
which is derived using feedback passivation, makes steady,
streamlined translation in a desired inertial direction globally
asymptotically stable.

I. INTRODUCTION

Conventional streamlined underwater vehicles are under-
actuated by design. Typically, they include a propulsor and
three or more torque actuators, such as tail fins, which pro-

vide Contrql in four degrees of fre_edom: surge, rgll, pitChbackstepping. Simulations suggest that the approachtes qui
and yaw. Linear methods can provide good directional conxtrective, although the results stop short of a formal proof
trol performance over a restricted range of motion, howeveys convergence. Another path following strategy is progose
these approaches are not always well justified, partigular|, [2] for a vehicle with surge, roll, pitch, and yaw control.
for maneuverable vehicles in dynamic environments. In thigp;g approach makes use of backstepping and includes an

paper, we propose a nonlinear control law which globallygaptive element to compensate for model uncertainty. The
asymptotically stabilizes streamline translation in airdes | ogyits of [2] and [3], however, only hold locally.

direction. The control law is derived using the theory of |, this paper, we derive a control law which globally

passive systems and, in particular, the notion of feedbaglymprotically stabilizes steady translation of a strémel

passivation described in [9]. _ underwater vehicle in a particular inertial direction. The
Nonlinear stabilization for streamlined, underactuated u technique is based on the method of feedback passivation

derwater vehicles has attracted considerable interesteWhjescribed in [9]. In this approach, the system is transfdrme

results on dynamic stabilization, trajectory trackingdaninig g feedback interconnection of two passive subsystems.
path following are abundant for vehicles in planar motiony foliows that the interconnection is passive and one may
results for motion in three dimensional space are MOfgen yse output feedback to asymptotically stabilize the
scarce. In [1], a kinetic energy shaping technique knowgystem. Intrinsic properties, such as passivity, allow tme
as interconnection and damping assignment was appligirive control algorithms which are globally effective and

to stabilize a streamlined vehicle using only surge, pitchynich work with the natural dynamics rather than supplant
and yaw inputs. Internal rotor actuators were proposegem.

for this purpose in [12]; the stabilization result relied on
a similar energy shaping technique, the method of con- Il. UNDERWATERVEHICLE EQUATIONS OFMOTION

trolled Lagrangians. These treatments focused solely onThea underwater vehicle is modeled as a rigid, spheroidal

stabilization of the vehicle dynamics, however, ignoring, | 4 shape which adequately represents streamlined un-
the rotational kinematics. The problem of stabilizing aryenwater vehicles. It is assumed that the vehicle mass
underactuated vehicle to a particupathin inertial space is equal to the mass of the fluid displaced by the vehicle: that

not a trivial e>_<tension of the d){namic stabili_zation prable is, the vehicle is neutrally buoyant. The vehicle is equippe
In [3], a nonlinear path following strategy is proposed for,it, 4 single propulsor, which is aligned with the axis of
an underwater vehicle with surge, pitch, and yaw controky mmetry” and with torque actuators (e.g., tail fins) that
The approach begins with Lyapunov-based control des'%{l}ovide control moments about three axes. The dynamic
for the feedback linearized kinematic equations. The fullyoqe| places few restrictions on the expressions for viscou
(force and moment) control law is then derived throughyce and moment, allowing viscous models that extend over
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Fig. 1. Spheroidal underwater vehicle.



the body frame is the vehicle’s center of buoyancy, i.eframe vectorr.,, and letM 5 = —m#.,,. The generalized
the center of mass of the displaced fluid. Another referencaomentum is

frame, denoted by the unit vectoig i2, andis, is fixed in u=Mv
inertial space. The location of the body frame with respect
. . - or
to the inertial frame is given by the inertial vector P M, M, v
Let R denote the proper rotation matrix which transforms ( ) = ( T ) ( ) . (2)
11 M12 M22 w

free vectors from the body frame to the inertial frame.

From Euler's theorem on rotation® may be represented [N expression (2)P is the translational momentum of the
as a rotation through an angie e [0,27) about a fixed body/fluid system andI is the angular momentum about
axis defined by a unit vectog [8]. The matrix R may be the center of buoyancy.

parameterized using unit quaternions as follows. Define ~ The dynamic equations are

[ ] _ [ cos(§) MU+ CW)v +g(n) = Text ©)
1= { ay } ' { XSin(g) } ' where
Then s
R(q) =1-2 (a1 - @) . T G

where I is the identity matrix and where the operafor g the “Coriolis and centripetal matrix” in [4] and where
denotes the3 x 3 skew-symmetric matrix satisfyingb =

a x b for vectorsa and b. Note that the identity rotation g(n) = ( 0 - )
corresponds to the unit quaternign= [1, 0, 0, 0] . —rem % mg (R(q)"is)

The unit quaternions are a redundant parameterizatiog. the generalized gravitational force. While there is no
Generically, any two quaterniong and —q describe the true gravity force, because the vehicle is neutrally bugyan
same rotation. To avoid this difficulty, one might choosehere is a gravity torque about the center of buoyancy.

a three-parameter representation, such as the modified R@yuation (3) may be rewritten in terms of the generalized
drigues parameters described in [10]. Any three-parametgfomentum:

representation, however, is necessarily singular at some ) . .
point. While this may or may not be a meaningful obstruc- fr=—C (M 'p) M pp—g(n)+ Text (4)

tion, in practice, we proceed using unit quatTernions. The generalized force.; in (3) and (4) represents ex-
Let the body frame vectop = [v1, vz, vs]" represent terga| forces and moments which do not derive from scalar

the translational velocity of the body frame origin with potential functions. These forces and moments include, for

respect to inertial space. Let = [wy, wy, ws]” represent example, control torques, forces due to lift and drag, and

the body angular velocity. Following [4], we define propulsive forces. We decompose,; into control inputs
T - and viscous terms:
n= and v = .
q w F. F,
. . . Text = Te+ Ty = T + T .
The kinematic equations are c v

n=J(mr  where J(n)= ( Ois 1Q(q) B, = [1, 0, 0. Because the vehicle’s single thruster is

aligned with the axis of symmetry'. = F, 3,, whereF,
—q7 represents (scalar) thrust.
Qq) = X The termsF, and T, are generally quite complicated.
qol + g, . : i

We make some simple and relatively general modeling as-

In this paper, we consider only directional control. Wesymptions. For example, we make the following assumption
therefore consider only the attitude kinematics about the viscous moment.

.1 Assumption 2.1:
i=5Qqw. (1)

Once the global directional control problem is addressed,
one may consider path following as a natural extension.
Vehicle dynamics. Let the diagonal matrixM,; =
diag(mq, ma, ms) represent the sum ofl and the added In words, we assume that the viscous moment opposes
mass matrix, which is diagonal for a spheroid. Faralate angular rate, in general, and that it vanishes for pure
spheroid, whosel-axis is the axis of revolutionn; <  translation along the symmetry axis.
mo = mg. Let the matrix M o5 represent the sum of the We impose a bit more structure on the model of the
rigid body inertia and the added inertia matrix. Finallyyviscous force. By definition, drag opposes vehicle velocity
suppose that the center of mass is located by the bodwyd lift acts orthogonally to the velocity vector. Considgr
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R(q) 0sx3 ) Let B3, represent theé'® basis vector folR?; for example,

and where

T, w<0 when w#0
T, =0 when (w,v)=(0,v48;) V vg€R



To transform the viscous force from the current frame to
the body frame, we define the proper rotation matrix

Rpc(p, ) = e~ P e=oB,
cos 0 —sina
= sinpgsina  cosp  sinpcosa
cospsina —sing  cos pcosa

v

Then

Fig. 2. Hydrodynamic angles for an axisymmetric body. D

F, = —Rpc(p,a)| O
axial symmetry, we assume that the lift force acts in the L
plane determined by the velocity vector and the vehicle’s Cp(a)
longitudinal axis. This assumption fails to capture out-of = —FyRpc(p, @) 0
plane forces due to asymmetric fluid flow, however it is Cr(a)

consistent with standard modeling assumptions. . We make the following assumptions about the form of
To expressF,, we first introduce some hydrodynamicipe drag and lift coefficients.

angles. Let Assumption 2.2:

_ { arctan (Z—z) vy # 0 and/or vz # 0 5) « Cp(«) is a continuous, even function which is positive
- for all a.

o Cr(«) is a continuous, odd function which is positive
The “4-quadrant” arctangent is used in the definitionuof (negative) where® lies in the first or third (second or
identifying = with —7, we haveu € (—m,7]. Rotating fourth) quadrant of the complex plane.
through the angle: about theb, axis defines an inter- For a simple, prolate spheroid, the assumption tHat
mediate reference frame in which the velocity vector hag gyen and positive is an empirical fact. The assumption
components only in thel*-3" plane. Moreover, th&-axis  eqarding the form ofC;, is consistent with intuition for
component of velocity, in this intermediate frame, is noNy hgjate spheroid in a steady flow. These assumptions are
negative. Let satisfied, for example, by the drag and lift coefficients

« = arctan <4”U§+U§> (6) Cp(a) = Cp, +Cp, (1 —cos(2a))
o Crla) = %C’LQ sin(2a).

0 U2:U3:0

where, once again, the 4-quadrant arctangent is used. Note
that a e [0,7]. Rotating through the angle about the Constant parameteisy,, Cp,, andCp, can be approx-

intermediate2-axis defines a new reference frame in WhicH.mated from steady aerodynamic data as presented, for

the 1-axis is aligned with the velocity vector, as shown in€%@mple, in [5] and [6].

Figure 2. Following the terminology of [4], we refer to this [N reality, a spheroid moving at a large angle of attack is
reference frame as the “current” frame. subject to complicated, unsteady forces [11]. While these

It is standard practice to express lift and drag in termE/T€Cts certainly impact the dynamics, they are difficult
of non-dimensional coefficients. To non-dimensionalize thtO model accurately. Such effects are typically ignored in

forces, we defingF, as the product of dynamic pressurecontrol design with the understanding that well-designed
and a reference aret model-based feedback can provide suitable system perfor-

mance even when the model is imperfect.

Fy = %pH’Ust. Error dynamics. Our goal is to stabilize the motion
Here,p is the fluid density. In the current frame, the viscous qdo =qq, we=0, ve=1vq0
force takes the form whereg, is the unit quaternion representing some constant
-D Cp(a) desired attitude andy > 0 is a constant desired speed. Let
0 =-F 0 , g, represent the quaternion conjugateggfand define the
—L Cr(a) attitude error quaternion
In general, the dimensionless coefficients, and Cp, e=gq,*q,

depend on Reynolds number as well as angle of attack . S

. ) Where « denotes quaternion multiplication; see [8]. Thus,

For convenience, we ignore Reynolds number effects i h T hif
the remaining discussion: these effects can be incormhrate, eng = qq, e havee = eq = [1, 0, 0, 0] . To shift

! She equilibrium to the origin, define the attitude error wect

if necessary, with little impact on the assumptions an
conclusions.

o

= € — €4.
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Next, define the generalized velocity error input. Choosingu = —Ky with K > 0 makesS < 0
5 » and one may examine asymptotic stability using Lasalle’s
U= ( ) =V — U, where v, = ( © ) invariance principle.
Now, consider a nonlinear cascade system of the form

w We

Correspondingly, the generalized momentum error is

) 2= f.u2)+9(28) (11)
o < P ) e € = fe&)+g(&u (12)
and suppose that this system has an equilibrium at the
The error dynamics are origin. Following [9], we make two assumptions.
) 1 Assumption 3.2:The equilibriumz = 0 of 2 = f,(2)
e = §Q(é + eq)w (7) is globally stable and &, positive definite functiors. (2)
- 1 1~ is known which satisfies
o= —C(M ™" (p+p) (M i+ py))

08,
L¢ S, = . < 0.

0
+ ( Fom X TG (RTZ.S) ) +Tet+ Ty, (8)
o _ _ Assumption 3.3There exists an outpup = h(§) such
where it is understood that the appropriate shift to errafat

coordinates is to be made in the rotation matixand in . the system (12) is passive with respect to input
the generalized viscous foree,. Our goal is to stabilize and outputy, with a C, positive definite, radially
the equilibrium at the origin for equations (7) and (8). unbounded storage functiost (¢), and
IIl. FEEDBACK PASSIVATION OF NONLINEAR CASCADE ¢ One may~write
SYSTEMS ¥(2,8) = ¥(z,§h(§) = ¥(z,8)y.
With an appropriate choice dI'. and F;, the system
described in Section Il can be transformed into a nonlinear ow=u | E=f(E)+g®)u,
cascade which can be treated using the method of “feedbacky — ¢ y. = I:(g) n=y
passivation” in [9]. In this section, we review some basic !
concepts from the theory of passive systems. g
Consider a systeni#/ described by the state and output |
equations v 2= 6@+ vz B, .
T = f(:c, ’U,) : Y,= (L\vsz)T ?
y = h(zu), )

Fig. 3. Passive feedback interconnection
wherew is a vector of inputs ang is a vector of outputs

of the same dimension. We assume tif&0,0) = 0, so The following theorem, given in [9], says that the com-

that the system has an equilibrium at the origin. We alsplete system (11) and (12) may be transformed into a

assume thak(0,0) = 0. feedback interconnection of two passive subsystems.
Definition 3.1: The system (9) ipassivef there exists a ~ Theorem 3.4:The feedback transformation

positive semi-definite functioi$(x), with S(0) = 0, such T 058, T

that for every inputu(t) u=w—(LyS:)" =w— ( P 1/’(%5)) (13)

renders the system (11) and (12) passive from the imgput

S(x(7)) - 5(x(0)) < A y(0) -u®)dt (10) 15 the outputy = h(£). A storage function is

for all 7 > 0. The functionS () is called astorage function S(&,z) = Se(§) + 5:(2). (14)
Note that if S is C!, then condition (10) may be written

S < y-u. Making an analogy between the storage function rigyre 3 illustrates Theorem 3.4. Because the feedback
S and a physical system’s total energy, the condition fojterconnected system is passive (with input output
passivity requires that the rate of increase of stored gnerg, and storage functiors (¢, z)), the equilibrium at the
does not exceed the input power. A simple but importardrigin is stable whenw = 0. Moreover, under a zero-state

observation is that the negative feedback interconnectiqfetectability assumption described in [9], choosing
of two passive systems is also passive. The sum of the

two systems’ storage functions is a storage function for the
feedback interconnected system. with K > 0 makes the origin globally asymptotically sta-

If a storage functionS(x) for the system (9) is positive ble. Alternatively, rather than require zero-state detieitt
definite then it is a Lyapunov function whem = 0. Thus, ity, one may use Lasalle’s invariance principle to investig
the equilibrium at the origin is stable in the absence of angsymptotic stability.

w=-Ky
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IV. CONTROL DESIGN The modified equations of motion, under the feedback

By defining the thrust and control moments appropriatel;fontrOI laws (15) and (16), are

equations (7) and (8) may be written in the nonlinear . - N 18
cascade form (11) and (12). e=;0Q(e+eq)w (18)

Proposition 4.1: The feedback control law P - (13 i Pd) x @&+ F, + FpB,
F, = F := Fy(cosaCp(a) — sinaCL(a)) — ky, 01 (15) I (l:I—l—Hd) X@+(13+Pd) x0+T, +u
and (19)

T. =~ (rew x mg (RTis) + P x (aB,)) +u, (16) Define
z=e¢€ and &= .

with k,, > 0, renders the subsystem (8) passive with input

u, outputy = w, and storage function Then equations (18) and (19) are in the nonlinear cascade

form (11) and (12) with

Se= 3" M~ (17)
Proof: Under the given choice of feedback, f.(z)=0 and (2§ = Q(e +eq)w.
Se = U and with
= f}'(FcﬂLFVI)D—(vdﬁl)-(wa) . e — ( (13+Pd)><Ca+FV+F51 )
et T () o (e py) o,
The last term is non-positive by Assumption 2.1. The first9(§) = < O3HX3 )

term satisfies
Equation (18) satisfies Assumption 3.2 with

0 D
v (Fo+F,) = (gz) RBC(N&‘)(E) Sz(z):%é'é — %ke[(1—60)2+€x‘6x]
1 = kc(]- - 60)
1 (FC - ( 0 ) Rpc(n, o ( )) and k. > 0. The choice ofS. is inspired by [7], where
the problem of rigid body attitude control is considered.
— (D2 sin p + 3 cos p) (sinaCp(a) + cos alr(a)) Equations (18) and (19) also satisfy Assumption 3.3 with
+01 (Fe — Fy (cos aCp(a )fsmaC’L( ) - y=£€=w, ¥(z,€ = 1Q(é + eq), and with S¢ given

, i _ in (17). By Theorem 3.4, the feedback control law
Consider the first term. By definition qf,

u = w—(LyS,)"
Do sin pu + 3 cos u = /03 + 03 > 0. (85 <1Q(~+ )>)T
= w — - e e
Also, given the assumptions on the form 6% and Cp, 0z 2 d
and the fact thatv € [0, ], we have 1
= w-— §keex

sin aCp(a) + cosaCL(a) > 0 ] )
renders the system passive from the new inputo the

(and strictly positive fora € (0,7)). Therefore, the first outputy = w with respect to the storage function
term is non-positive. Now consider the second term and let
F. = F, as stated in the proposition. The rate of change of S(€,z) = S¢(8) + 5=(2).

Sg becomes The rate of change of the storage function is

S¢ = - v 93 + 73 (sin aCp @) + cosaClr(a)) Fo S = —y/92+ 02 (sinaCp(a) + cosalr(a)) Fy

kb, i+ w utw- T, ke 4Ty wty-w
V1 v

< - Uu.
< w-u < y-w.
This inequality proves the propositionl

It follows by Lyapunov’s direct method that the origin Suppose we choose = —Ky with K > 0. Then

of (8) is stable whemu = 0. We have completed the . o 5. )
first step of a two-step design procedure in which we first © = V02 05 (sinaCp(a) + cosaCy(a)) Fo
stabilize the vehicle dynamics and then the attitude. fkmﬁf +T, w-—w Kw<O0.
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Becauses is radially unbounded, this proves that the originmportant to develop control schemes which perform well
is globally stable. To conclude global asymptotic stapilit over a broad operating envelope.

we apply Lasalle’s invariance principle. Define the set

E={(e.pn) |5=0}
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and let M be the largest invariant set contained/n By
Lasalle’s principle, trajectories converge to the 3t as

t — oo. If M = {0}, then the equilibrium is globally 1]
asymptotically stable. NowS = 0 implies thaty = 0.
Thus,
. . 2
vr=20 = n=0.
Within the setM, [3]
- 0
= . (4]
# ( *%keex )
. 5
Thus,e, = 0 soey = 1 andé = 0. Global asymptotic =l
stability follows from Lasalle’s invariance principle. 6]
(71

V. CONCLUSIONS ANDFUTURE WORK

This paper has presented a control strategy which glob[-8]
ally asymptotically stabilizes translation of a strearatin
underwater vehicle in a desired inertial direction. Thel9]
approach relies on the technique of feedback passivatio[%]
in which the system is transformed through feedback into
a passive system. Using known results from the theo
of passive systems, one may then define output feedba%ll
to provide asymptotic stability. The main result uses very
general modeling assumptions for the viscous force. [12]

The problem of directional control is a simplification
of a more practical problem: nonlinear path following.
Intuitively, having globally asymptotically stabilizetie di-
rection of travel, one might close an “outer loop” to statli
motion along a straight path. The more challenging problem
of following a parameterized curve in space remains as
future work. This problem was partially addressed in [3],
where the error kinematics were expressed in terms of
the Serret-Frenet frame associated with the desired path.
The hydrodynamic model was limited, however, because
it neglected added mass and assumed small angles of
attack and sideslip. Our hope is that the present results on
feedback passivation will serve as a preliminary step tdwar
global nonlinear path following for streamlined underwate
vehicles.

Several other issues remain to be addressed, including
the effect of non-zero mean disturbances, such as a net
buoyant force or cross currents. There are also the issues
of actuator dynamics and actuator limits. Regarding the
actuators, it may be feasible to eliminate roll control for
a vehicle with a low center of gravity. Some streamlined
underwater vehicles use control planes that are slaved to
provide only pitch and yaw actuation. Thus, the problem
has practical relevance. An increasing number of vehicles
use vectored thrusters, which offer improved agility but do
not provide roll control. For agile vehicles, it is espelsial
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