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Abstract— This paper describes a model-based technique for
stabilizing the directional motion of a streamlined underwater
vehicle controlled in surge, roll, pitch, and yaw. The six
degree of freedom vehicle model allows for a broad range
of viscous force and moment representations. The control law,
which is derived using feedback passivation, makes steady,
streamlined translation in a desired inertial direction globally
asymptotically stable.

I. I NTRODUCTION

Conventional streamlined underwater vehicles are under-
actuated by design. Typically, they include a propulsor and
three or more torque actuators, such as tail fins, which pro-
vide control in four degrees of freedom: surge, roll, pitch,
and yaw. Linear methods can provide good directional con-
trol performance over a restricted range of motion, however
these approaches are not always well justified, particularly
for maneuverable vehicles in dynamic environments. In this
paper, we propose a nonlinear control law which globally
asymptotically stabilizes streamline translation in a desired
direction. The control law is derived using the theory of
passive systems and, in particular, the notion of feedback
passivation described in [9].

Nonlinear stabilization for streamlined, underactuated un-
derwater vehicles has attracted considerable interest. While
results on dynamic stabilization, trajectory tracking, and
path following are abundant for vehicles in planar motion,
results for motion in three dimensional space are more
scarce. In [1], a kinetic energy shaping technique known
as interconnection and damping assignment was applied
to stabilize a streamlined vehicle using only surge, pitch,
and yaw inputs. Internal rotor actuators were proposed
for this purpose in [12]; the stabilization result relied on
a similar energy shaping technique, the method of con-
trolled Lagrangians. These treatments focused solely on
stabilization of the vehicle dynamics, however, ignoring
the rotational kinematics. The problem of stabilizing an
underactuated vehicle to a particularpath in inertial space is
not a trivial extension of the dynamic stabilization problem.
In [3], a nonlinear path following strategy is proposed for
an underwater vehicle with surge, pitch, and yaw control.
The approach begins with Lyapunov-based control design
for the feedback linearized kinematic equations. The full
(force and moment) control law is then derived through
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Fig. 1. Spheroidal underwater vehicle.

backstepping. Simulations suggest that the approach is quite
effective, although the results stop short of a formal proof
of convergence. Another path following strategy is proposed
in [2] for a vehicle with surge, roll, pitch, and yaw control.
This approach makes use of backstepping and includes an
adaptive element to compensate for model uncertainty. The
results of [2] and [3], however, only hold locally.

In this paper, we derive a control law which globally
asymptotically stabilizes steady translation of a streamlined
underwater vehicle in a particular inertial direction. The
technique is based on the method of feedback passivation
described in [9]. In this approach, the system is transformed
into a feedback interconnection of two passive subsystems.
It follows that the interconnection is passive and one may
then use output feedback to asymptotically stabilize the
system. Intrinsic properties, such as passivity, allow oneto
derive control algorithms which are globally effective and
which work with the natural dynamics rather than supplant
them.

II. U NDERWATER VEHICLE EQUATIONS OFMOTION

The underwater vehicle is modeled as a rigid, spheroidal
hull, a shape which adequately represents streamlined un-
derwater vehicles. It is assumed that the vehicle massm is
equal to the mass of the fluid displaced by the vehicle; that
is, the vehicle is neutrally buoyant. The vehicle is equipped
with a single propulsor, which is aligned with the axis of
symmetry, and with torque actuators (e.g., tail fins) that
provide control moments about three axes. The dynamic
model places few restrictions on the expressions for viscous
force and moment, allowing viscous models that extend over
the full range of vehicle motion.

Vehicle kinematics. The principal axes of the spheroid
are taken as the axes of a body-fixed reference frame;
these are represented by the unit vectorsb1, b2, and b3

in Figure 1. Assuming uniform fluid density, the origin of



the body frame is the vehicle’s center of buoyancy, i.e.,
the center of mass of the displaced fluid. Another reference
frame, denoted by the unit vectorsi1, i2, andi3, is fixed in
inertial space. The location of the body frame with respect
to the inertial frame is given by the inertial vectorx.

Let R denote the proper rotation matrix which transforms
free vectors from the body frame to the inertial frame.
From Euler’s theorem on rotations,R may be represented
as a rotation through an angleθ ∈ [0, 2π) about a fixed
axis defined by a unit vectorχ [8]. The matrixR may be
parameterized using unit quaternions as follows. Define

q =

[
q0

qχ

]
:=

[
cos( θ

2
)

χ sin( θ
2
)

]
.

Then
R(q) = I − 2

(
q0I − q̂χ

)
q̂χ,

where I is the identity matrix and where the operator·̂
denotes the3 × 3 skew-symmetric matrix satisfyinĝab =
a × b for vectorsa and b. Note that the identity rotation
corresponds to the unit quaternionq = [1, 0, 0, 0]

T .
The unit quaternions are a redundant parameterization.

Generically, any two quaternionsq and −q describe the
same rotation. To avoid this difficulty, one might choose
a three-parameter representation, such as the modified Ro-
drigues parameters described in [10]. Any three-parameter
representation, however, is necessarily singular at some
point. While this may or may not be a meaningful obstruc-
tion, in practice, we proceed using unit quaternions.

Let the body frame vectorv = [v1, v2, v3]
T represent

the translational velocity of the body frame origin with
respect to inertial space. Letω = [ω1, ω2, ω3]

T represent
the body angular velocity. Following [4], we define

η =

(
x

q

)
and ν =

(
v

ω

)
.

The kinematic equations are

η̇ = J(η)ν where J(η) =

(
R(q) 03×3

04×3
1

2
Q(q)

)

and where

Q(q) =

[
−qT

χ

q0I + q̂χ

]
.

In this paper, we consider only directional control. We
therefore consider only the attitude kinematics

q̇ =
1

2
Q(q)ω. (1)

Once the global directional control problem is addressed,
one may consider path following as a natural extension.

Vehicle dynamics. Let the diagonal matrixM11 =
diag(m1,m2,m3) represent the sum ofmI and the added
mass matrix, which is diagonal for a spheroid. For aprolate
spheroid, whose1-axis is the axis of revolution,m1 <

m2 = m3. Let the matrixM22 represent the sum of the
rigid body inertia and the added inertia matrix. Finally,
suppose that the center of mass is located by the body

frame vectorrcm and letM12 = −mr̂cm. The generalized
momentum is

µ = Mν

or (
P

Π

)
=

(
M11 M12

MT
12 M22

) (
v

ω

)
. (2)

In expression (2),P is the translational momentum of the
body/fluid system andΠ is the angular momentum about
the center of buoyancy.

The dynamic equations are

Mν̇ + C(ν)ν + g(η) = τ ext (3)

where

C(ν) = −C(ν)T =

(
03×3 −P̂

−P̂ −Π̂

)

is the “Coriolis and centripetal matrix” in [4] and where

g(η) =

(
0

−rcm × mg
(
R(q)T i3

)
)

is the generalized gravitational force. While there is no
true gravity force, because the vehicle is neutrally buoyant,
there is a gravity torque about the center of buoyancy.
Equation (3) may be rewritten in terms of the generalized
momentum:

µ̇ = −C
(
M−1µ

)
M−1µ − g(η) + τ ext (4)

The generalized forceτ ext in (3) and (4) represents ex-
ternal forces and moments which do not derive from scalar
potential functions. These forces and moments include, for
example, control torques, forces due to lift and drag, and
propulsive forces. We decomposeτ ext into control inputs
and viscous terms:

τ ext = τ c + τ v =

(
F c

T c

)
+

(
F v

T v

)
.

Let βi represent theith basis vector forR3; for example,
β1 = [1, 0, 0]

T . Because the vehicle’s single thruster is
aligned with the axis of symmetry,F c = Fc β1, whereFc

represents (scalar) thrust.
The termsF v and T v are generally quite complicated.

We make some simple and relatively general modeling as-
sumptions. For example, we make the following assumption
about the viscous moment.

Assumption 2.1:

T v · ω ≤ 0 when ω 6= 0

T v = 0 when (ω,v) = (0, vdβ1) ∀ vd ∈ R

In words, we assume that the viscous moment opposes
angular rate, in general, and that it vanishes for pure
translation along the symmetry axis.

We impose a bit more structure on the model of the
viscous force. By definition, drag opposes vehicle velocity
and lift acts orthogonally to the velocity vector. Considering
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Fig. 2. Hydrodynamic angles for an axisymmetric body.

axial symmetry, we assume that the lift force acts in the
plane determined by the velocity vector and the vehicle’s
longitudinal axis. This assumption fails to capture out-of-
plane forces due to asymmetric fluid flow, however it is
consistent with standard modeling assumptions.

To expressF v, we first introduce some hydrodynamic
angles. Let

µ =

{
arctan

(
v2

v3

)
v2 6= 0 and/or v3 6= 0

0 v2 = v3 = 0
(5)

The “4-quadrant” arctangent is used in the definition ofµ;
identifying π with −π, we haveµ ∈ (−π, π]. Rotating
through the angleµ about theb1 axis defines an inter-
mediate reference frame in which the velocity vector has
components only in the “1−3” plane. Moreover, the3-axis
component of velocity, in this intermediate frame, is non-
negative. Let

α = arctan

(√
v2
2

+ v2
3

v1

)
(6)

where, once again, the 4-quadrant arctangent is used. Note
that α ∈ [0, π]. Rotating through the angleα about the
intermediate2-axis defines a new reference frame in which
the 1-axis is aligned with the velocity vector, as shown in
Figure 2. Following the terminology of [4], we refer to this
reference frame as the “current” frame.

It is standard practice to express lift and drag in terms
of non-dimensional coefficients. To non-dimensionalize the
forces, we defineF0 as the product of dynamic pressure
and a reference areaS:

F0 =
1

2
ρ‖v‖2S.

Here,ρ is the fluid density. In the current frame, the viscous
force takes the form




−D
0
−L



 = −F0




CD(α)

0
CL(α)



 ,

In general, the dimensionless coefficientsCD and CL

depend on Reynolds number as well as angle of attack.
For convenience, we ignore Reynolds number effects in
the remaining discussion; these effects can be incorporated,
if necessary, with little impact on the assumptions and
conclusions.

To transform the viscous force from the current frame to
the body frame, we define the proper rotation matrix

RBC(µ, α) = e−µβ̂
1e−αβ̂

2

=




cos α 0 − sin α

sin µ sin α cos µ sin µ cos α

cos µ sin α − sin µ cos µ cos α



 .

Then

F v = −RBC(µ, α)




D
0
L





= −F0RBC(µ, α)




CD(α)

0
CL(α)



 .

We make the following assumptions about the form of
the drag and lift coefficients.

Assumption 2.2:

• CD(α) is a continuous, even function which is positive
for all α.

• CL(α) is a continuous, odd function which is positive
(negative) wheneiα lies in the first or third (second or
fourth) quadrant of the complex plane.

For a simple, prolate spheroid, the assumption thatCD

is even and positive is an empirical fact. The assumption
regarding the form ofCL is consistent with intuition for
a prolate spheroid in a steady flow. These assumptions are
satisfied, for example, by the drag and lift coefficients

CD(α) = CD0
+ CD1

(1 − cos(2α))

CL(α) =
1

2
CLα

sin(2α).

Constant parametersCLα
, CD0

, and CD1
can be approx-

imated from steady aerodynamic data as presented, for
example, in [5] and [6].

In reality, a spheroid moving at a large angle of attack is
subject to complicated, unsteady forces [11]. While these
effects certainly impact the dynamics, they are difficult
to model accurately. Such effects are typically ignored in
control design with the understanding that well-designed
model-based feedback can provide suitable system perfor-
mance even when the model is imperfect.

Error dynamics. Our goal is to stabilize the motion

qe = qd, ωe = 0, ve = vd β1

whereqd is the unit quaternion representing some constant
desired attitude andvd > 0 is a constant desired speed. Let
q̄d represent the quaternion conjugate ofqd and define the
attitude error quaternion

e = q̄d ∗ q,

where ∗ denotes quaternion multiplication; see [8]. Thus,
when q = qd, we havee = ed = [1, 0, 0, 0]

T . To shift
the equilibrium to the origin, define the attitude error vector

ẽ = e − ed.



Next, define the generalized velocity error

ν̃ =

(
ṽ

ω̃

)
= ν − νe where νe =

(
ve

ωe

)
.

Correspondingly, the generalized momentum error is

µ̃ =

(
P̃

Π̃

)
= Mν̃.

The error dynamics are

˙̃e =
1

2
Q(ẽ + ed)ω̃ (7)

˙̃µ = −C
(
M−1 (µ̃ + µd)

) (
M−1 (µ̃ + µd)

)

+

(
0

rcm × mg
(
RT i3

)
)

+ τ c + τ v, (8)

where it is understood that the appropriate shift to error
coordinates is to be made in the rotation matrixR and in
the generalized viscous forceτ v. Our goal is to stabilize
the equilibrium at the origin for equations (7) and (8).

III. F EEDBACK PASSIVATION OF NONLINEAR CASCADE

SYSTEMS

With an appropriate choice ofT c and Fc, the system
described in Section II can be transformed into a nonlinear
cascade which can be treated using the method of “feedback
passivation” in [9]. In this section, we review some basic
concepts from the theory of passive systems.

Consider a systemH described by the state and output
equations

ẋ = f(x,u)

y = h(x,u), (9)

whereu is a vector of inputs andy is a vector of outputs
of the same dimension. We assume thatf(0,0) = 0, so
that the system has an equilibrium at the origin. We also
assume thath(0,0) = 0.

Definition 3.1: The system (9) ispassiveif there exists a
positive semi-definite functionS(x), with S(0) = 0, such
that for every inputu(t)

S(x(τ)) − S(x(0)) ≤

∫ τ

0

y(t) · u(t) dt (10)

for all τ ≥ 0. The functionS(x) is called astorage function.
Note that ifS is C1, then condition (10) may be written

Ṡ ≤ y ·u. Making an analogy between the storage function
S and a physical system’s total energy, the condition for
passivity requires that the rate of increase of stored energy
does not exceed the input power. A simple but important
observation is that the negative feedback interconnection
of two passive systems is also passive. The sum of the
two systems’ storage functions is a storage function for the
feedback interconnected system.

If a storage functionS(x) for the system (9) is positive
definite, then it is a Lyapunov function whenu = 0. Thus,
the equilibrium at the origin is stable in the absence of any

input. Choosingu = −Ky with K > 0 makesṠ ≤ 0
and one may examine asymptotic stability using Lasalle’s
invariance principle.

Now, consider a nonlinear cascade system of the form

ż = fz(z) + ψ̃(z, ξ) (11)

ξ̇ = f ξ(ξ) + g(ξ)u (12)

and suppose that this system has an equilibrium at the
origin. Following [9], we make two assumptions.

Assumption 3.2:The equilibriumz = 0 of ż = fz(z)
is globally stable and aC2, positive definite functionSz(z)
is known which satisfies

Lfz
Sz =

∂Sz

∂z
· fz ≤ 0.

Assumption 3.3:There exists an outputy = h(ξ) such
that

• the system (12) is passive with respect to inputu

and outputy, with a C1, positive definite, radially
unbounded storage functionSξ(ξ), and

• one may write

ψ̃(z, ξ) = ψ(z, ξ)h(ξ) = ψ(z, ξ)y.

u  = u1

y
2

y  = y1

u2

w
-

+

z = f (z) + (z, ) uy x 2

y = (L S )
2 y

T

z

z

y  = h(x)
1

x x= f  ( ) + g( ) uxx

x

1

Fig. 3. Passive feedback interconnection

The following theorem, given in [9], says that the com-
plete system (11) and (12) may be transformed into a
feedback interconnection of two passive subsystems.

Theorem 3.4:The feedback transformation

u = w − (LψSz)
T = w −

(
∂Sz

∂z
ψ(z, ξ)

)T

(13)

renders the system (11) and (12) passive from the inputw

to the outputy = h(ξ). A storage function is

S(ξ,z) = Sξ(ξ) + Sz(z). (14)

Figure 3 illustrates Theorem 3.4. Because the feedback
interconnected system is passive (with inputw, output
y, and storage functionS(ξ,z)), the equilibrium at the
origin is stable whenw = 0. Moreover, under a zero-state
detectability assumption described in [9], choosing

w = −Ky

with K > 0 makes the origin globally asymptotically sta-
ble. Alternatively, rather than require zero-state detectabil-
ity, one may use Lasalle’s invariance principle to investigate
asymptotic stability.



IV. CONTROL DESIGN

By defining the thrust and control moments appropriately,
equations (7) and (8) may be written in the nonlinear
cascade form (11) and (12).

Proposition 4.1:The feedback control law

Fc = F̄ := F0 (cos αCD(α) − sin αCL(α)) − kv1
ṽ1 (15)

and

T c = −
(
rcm × mg

(
RT i3

)
+ P × (vdβ1)

)
+ u, (16)

with kv1
> 0, renders the subsystem (8) passive with input

u, outputy = ω, and storage function

Sξ =
1

2
µ̃T M−1µ̃ (17)

Proof: Under the given choice of feedback,

Ṡξ = ν̃ · ˙̃µ

= ṽ · (F c + F v) − (vdβ1) · (P × ω)

+ω · (−P × (vdβ1) + u) + ω · T v

= ṽ · (F c + F v) + ω · u + ω · T v.

The last term is non-positive by Assumption 2.1. The first
term satisfies

ṽ · (F c + F v) = −




0
ṽ2

ṽ3



 · RBC(µ, α)




D
0
L





+ṽ1



Fc −




1
0
0



 · RBC(µ, α)




D
0
L









= − (ṽ2 sinµ + ṽ3 cos µ) (sinαCD(α) + cos αCL(α)) F0

+ṽ1 (Fc − F0 (cos αCD(α) − sinαCL(α))) .

Consider the first term. By definition ofµ,

ṽ2 sin µ + ṽ3 cos µ =
√

ṽ2
2

+ ṽ2
3
≥ 0.

Also, given the assumptions on the form ofCD and CL

and the fact thatα ∈ [0, π], we have

sin αCD(α) + cos αCL(α) ≥ 0

(and strictly positive forα ∈ (0, π)). Therefore, the first
term is non-positive. Now consider the second term and let
Fc = F̄ , as stated in the proposition. The rate of change of
Sξ becomes

Ṡξ = −
√

ṽ2
2

+ ṽ2
3
(sin αCD(α) + cos αCL(α)) F0

−kv1
ṽ2

1 + ω · u + ω · T v

≤ ω · u.

This inequality proves the proposition.¤

It follows by Lyapunov’s direct method that the origin
of (8) is stable whenu = 0. We have completed the
first step of a two-step design procedure in which we first
stabilize the vehicle dynamics and then the attitude.

The modified equations of motion, under the feedback
control laws (15) and (16), are

˙̃e =
1

2
Q(ẽ + ed)ω̃ (18)

(
˙̃
P
˙̃
Π

)
=





(
P̃ + P d

)
× ω̃ + F v + F̄β1(

Π̃ + Πd

)
× ω̃ +

(
P̃ + P d

)
× ṽ + T v + u





(19)

Define
z = ẽ and ξ = µ̃.

Then equations (18) and (19) are in the nonlinear cascade
form (11) and (12) with

fz(z) = 0 and ψ̃(z, ξ) =
1

2
Q(ẽ + ed)ω̃.

and with

f ξ(ξ) =





(
P̃ + P d

)
× ω̃ + F v + F̄β1(

Π̃ + Πd

)
× ω̃ +

(
P̃ + P d

)
× ṽ + T v





g(ξ) =

(
03×3

I

)

Equation (18) satisfies Assumption 3.2 with

Sz(z) =
ke

2
ẽ · ẽ =

1

2
ke

[
(1 − e0)

2 + eχ · eχ

]

= ke(1 − e0)

and ke > 0. The choice ofSz is inspired by [7], where
the problem of rigid body attitude control is considered.
Equations (18) and (19) also satisfy Assumption 3.3 with
y = ξ = ω, ψ(z, ξ) = 1

2
Q(ẽ + ed), and with Sξ given

in (17). By Theorem 3.4, the feedback control law

u = w − (LψSz)
T

= w −

(
∂Sz

∂z
·

(
1

2
Q(ẽ + ed)

))T

= w −
1

2
keeχ

renders the system passive from the new inputw to the
outputy = ω with respect to the storage function

S(ξ,z) = Sξ(ξ) + Sz(z).

The rate of change of the storage function is

Ṡ = −
√

ṽ2
2

+ ṽ2
3
(sinαCD(α) + cos αCL(α)) F0

−kv1
ṽ2

1 + T v · ω + y · w

≤ y · w.

Suppose we choosew = −Ky with K > 0. Then

Ṡ = −
√

ṽ2
2

+ ṽ2
3
(sinαCD(α) + cos αCL(α)) F0

−kv1
ṽ2

1 + T v · ω − ωT Kω ≤ 0.



BecauseS is radially unbounded, this proves that the origin
is globally stable. To conclude global asymptotic stability,
we apply Lasalle’s invariance principle. Define the set

E =
{

(ẽ, µ̃) | Ṡ = 0
}

and letM be the largest invariant set contained inE. By
Lasalle’s principle, trajectories converge to the setM as
t → ∞. If M = {0}, then the equilibrium is globally
asymptotically stable. Now,̇S ≡ 0 implies that ν̃ ≡ 0.
Thus,

˙̃ν = 0 ⇒ ˙̃µ = 0.

Within the setM,

˙̃µ =

(
0

− 1

2
keeχ

)
.

Thus, eχ = 0 so e0 = 1 and ẽ = 0. Global asymptotic
stability follows from Lasalle’s invariance principle.

V. CONCLUSIONS ANDFUTURE WORK

This paper has presented a control strategy which glob-
ally asymptotically stabilizes translation of a streamlined
underwater vehicle in a desired inertial direction. The
approach relies on the technique of feedback passivation,
in which the system is transformed through feedback into
a passive system. Using known results from the theory
of passive systems, one may then define output feedback
to provide asymptotic stability. The main result uses very
general modeling assumptions for the viscous force.

The problem of directional control is a simplification
of a more practical problem: nonlinear path following.
Intuitively, having globally asymptotically stabilized the di-
rection of travel, one might close an “outer loop” to stabilize
motion along a straight path. The more challenging problem
of following a parameterized curve in space remains as
future work. This problem was partially addressed in [3],
where the error kinematics were expressed in terms of
the Serret-Frenet frame associated with the desired path.
The hydrodynamic model was limited, however, because
it neglected added mass and assumed small angles of
attack and sideslip. Our hope is that the present results on
feedback passivation will serve as a preliminary step toward
global nonlinear path following for streamlined underwater
vehicles.

Several other issues remain to be addressed, including
the effect of non-zero mean disturbances, such as a net
buoyant force or cross currents. There are also the issues
of actuator dynamics and actuator limits. Regarding the
actuators, it may be feasible to eliminate roll control for
a vehicle with a low center of gravity. Some streamlined
underwater vehicles use control planes that are slaved to
provide only pitch and yaw actuation. Thus, the problem
has practical relevance. An increasing number of vehicles
use vectored thrusters, which offer improved agility but do
not provide roll control. For agile vehicles, it is especially

important to develop control schemes which perform well
over a broad operating envelope.
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