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Abstract— In this paper we will consider a hierarchy of vehi-
cle formations exchanging information among themselves with
the intention of completing a given mission at pre-specified
coordinates in space. The objective is to understand how
the communication infrastructure can be used to construct
a decentralized controller and how it influences the stability
of hierarchical vehicle formations. Our main result is that
stability at higher levels of the hierarchy is guaranteed for
certain vehicle communication infrastructures.

I. INTRODUCTION

Recently the theory of vehicle formations has been
explored in great detail. Vicsek et al. in [14] consider
self-propelled particles using a neighbor-averaging law that
leads to a common heading. In [3], [4] conditions based
on a Nyquist criterion are developed that allow us to
predict when the dynamical system describing a vehicle
formation will be stable. Glavaski et al. in [6], [7] explore
the convergence to formation in the case where the trans-
mission connections between vehicles break randomly. In
[10], [11] the convergence to formation is looked at when
the communication graph depends on the relative physical
position of agents. One of the applications of interest to us
is being able to analyse stability of multiple formations of
uninhabited autonomous vehicles (UAV’s) by considering
the communication among them while performing a given
mission.

In this work we are concerned with the following prob-
lem: Given a group of homogeneous vehicle formations,
starting at random positions, with given dynamics and the
ability to transmit, or receive, information to, or from, each
other, how can a communication graph be found so that
all the vehicles achieve and maintain a pre-specified overall
formation? Also, can the vehicles simultaneously converge
to a desired fixed position or heading? In this context,
a natural first step is to investigate if, given the initial
vehicle formations, a communication graph that guarantees
stability of the entire system is possible. The tools used
for the stability analysis are graph theoretic and involve
the spectral properties of the communication graph. For
ease of understanding, the initial formations are called
“subformations” and in our examples the given vehicle
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subformations are in R2, however this can be extended to
higher dimensions.

The paper is organized as follows. In Section 2 we
provide the necessary background in algebraic graph theory,
in Section 3 we introduce the setup for the hierarchical
formations problem and analyze the stability of the forma-
tion, in Section 4 we extend this concept by considering
convergence to a pre-specified position or trajectory.

II. ALGEBRAIC GRAPH THEORY

The information exchange between vehicles can be mod-
elled by a directed graph, where the arrows show the
direction in which position and velocity information is
received by a vehicle from its “neighbor”. We refer to
vehicles as being neighbors in the information exchange
graph sense, and not necessarily in the physical sense.

Definition 2.1: A directed graph G consists of a vertex
set V (G) and an edge set E(G)⊆V (G)×V (G). For an edge
e = (u,v) ∈ E(G), u is called the head vertex of e and v is
called the tail vertex of e.

If (u,v) ∈ E(G) for all (v,u) ∈ E(G), then we call the
graph undirected. We call the graph simple if there are
no edges of the form (u,u) for u ∈ V (G). Let G be a
graph representing the communication links between a set
of vehicles. The properties of such a communication graph
are captured by its adjacency matrix Ad(G) defined by:

Definition 2.2: The adjacency matrix of a graph G, de-
noted Ad(G), is a square matrix of size |V (G)| × |V (G)|
defined as follows:

Ad(G)i j =

{

1 if (ui,u j) ∈ E(G)
0 otherwise.

where ui,u j ∈V (G).

Definition 2.3: The indegree of a vertex u is the number
of edges that have u as their head vertex. The indegree
matrix of a graph G, denoted D(G), is a diagonal matrix of
size |V (G)|× |V (G)| defined as follows:

D(G)ii = indegree(ui)

where ui ∈V (G).
We analogously define the outdegree of a vertex u for a

graph G, as the number of edges having u as the tail vertex.

Definition 2.4: Given a graph G, the Laplacian matrix
associated with it is given by

L = D(G)−Ad(G)



where D(G) is the indegree matrix and Ad(G) is the
adjacency matrix associated with the graph.

Clearly, the diagonal entry dii of the Laplacian matrix
is then the indegree of vertex i and the negative, non-
diagonal entries in row i correspond to the neighbors of
vertex i. Therefore the row sums of a Laplacian matrix are
always zero and hence zero is always an eigenvalue. The
eigenvalues of a Laplacian matrix for undirected graphs
have special properties [2], [8], some of which are that
all eigenvalues are non-negative; the smallest eigenvalue
of the Laplacian, λ1, is zero; and its multiplicity equals
the number of connected components of the graph. The
second eigenvalue, λ2, is directly related to the connectivity
of the graph [5]. In the case of directed graphs, the non-
zero eigenvalues of the Laplacian can be complex values
and their role is not as clear.

Definition 2.5: Given a directed graph G,
P = (u1, . . . ,uk) is a directed path in G if for every
1 ≤ i < k there exists edge (ui,ui+1) ∈ E(G).

Definition 2.6: Given a directed graph G, we call G
connected if there exists a path from at least one vertex
to all other vertices.

Definition 2.7: Given a directed graph G, we call G
strongly connected if there exists a directed path between
any two vertices in V (G).

All graphs in this paper are connected directed graphs,
unless mentioned otherwise. This is a more general class of
graphs than the class of undirected graphs. One property
of the eigenvalues for the Laplacian matrix of such a
graph can be derived from Gershgorin’s Theorem. Since
all diagonal entries of the Laplacian are the indegrees of
the corresponding vertex, it follows that all its eigenvalues
will be located in the disc centered at d = maxi(indegree(i))
of radius d, so for any eigenvalue λ of the Laplacian

|λ| ≤ 2d

In this paper it will become necessary to work with
Laplacian matrices from the set:

S = {In ⊗L1 +L2 ⊗One}

where In ∈Rn×n is identity matrix, L1 ∈Rm×m is a Laplacian
matrix, L2 ∈ Rn×n is a Laplacian matrix and One ∈ Rm×m is
a matrix with the first entry equal to 1 and all other entries
equal to 0.

For a matrix L ∈ S its eigenvalues depend on the Lapla-
cian matrices L1 and L2. In the case of undirected graphs,
some bounds for the eigenvalues of the matrix L are derived
as follows. First, notice that the graph G, corresponding to
the Laplacian L, has maximum vertex indegree

d = max{d1, indegree(1)+d2}

where d1 is the maximum indegree of the graph G1 cor-
responding to Laplacian L1, indegree(1) is the indegree of
the vertex labelled 1 in G1 and d2 is the maximum vertex

indegree of the graph G2, corresponding to the Laplacian
L2. So for all eigenvalues λ of L:

|λ| ≤ 2max{d1, indegree(1)+d2}

Other bounds can also be found, the reader is directed to
[1], [5], [8], [9]. In the case of directed graphs, we derive
a bound for the eigenvalues of L as follows.

Lemma 2.8: Let L1 ∈ Rm×m and L2 ∈ Rn×n be Laplacian
matrices of two directed graphs and suppose L1 has its first
diagonal entry equal to zero and all other diagonal entries
positive. If L = In⊗L1 +L2⊗One ∈ S , then the eigenvalues
of L are those of L2 and the non-zero eigenvalues of L1
repeated n times.

Proof: : We first notice that since the first entry of L1 is
zero, the indegree of vertex 1 is zero, so the first row of L1
must have only zero entries. Also, due to the assumptions on
the graph and since no other diagonal entries are zero, the
multiplicity of eigenvalue zero of L1 is 1. Then the matrix
L1 has the following form:

L1 =











0 0 · · · 0
?

...
?

L̃1











The non-zero eigenvalues of L1 are the eigenvalues of L̃1.
Linear transformation can be used to show that L is similar
to a matrix of the form:











L2 0 · · · 0
? L̃1 0 0
... 0

. . . 0
? 0 0 L̃1











that has n+1 blocks on the diagonal and whose eigenvalues
are the eigenvalues of L2 and the eigenvalues of L̃1 repeated
n times. We notice that if the n L1 matrices were in fact
distinct, then the eigenvalues of L would be the set of all
non-zero eigenvalues of the matrices replacing the matrices
L1 and the eigenvalues of matrix L2.

Definition 2.9: Given n graphs, we call G = G1 ×G2 ×
. . .×Gn their hierarchical product if the vertices of Gi+1 are
replaced by a copy of Gi such that only the vertex labelled
1 from each Gi replaces each of the vertices of Gi+1 for all
1 ≤ i ≤ n−1.

Figure 1 shows an example of a two-layer hierarchical
communication graph. The adjacency and the indegree
matrices of the G1×G2 graph are given by:

A = I4 ⊗A1 +A2 ⊗One

D = I4 ⊗D1 +D2 ⊗One

where Ai and Di are the adjacency and indegree matrices,
respectively, of the graph Gi and One is a 4 × 4 matrix
with only the first entry equal to 1, as defined prior. The
Laplacian L is given by:

L = I4 ⊗L1 +L2 ⊗One
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Fig. 1. Hierarchical communication graph example

where Li is the Laplacian matrix for the graph Gi. In our
model (see next Section), we allow a more general hierarchy
structure, and for this purpose we introduce the following
concept of a sum of graphs:

Definition 2.10: Given graphs G1,...,Gn and G with ver-
tex sets Vi = V (Gi) = {1Gi , ...,nGi} distinct for all i and
V (G) = {1, ...,n}, and edge sets Ei = E(Gi) and E, we call
a graph Γ the sum [G1 + ...+ Gn]G if V (Γ) = ∪n

i=1Vi and
there exist maps f : V (Γ) → ∪n

i=1Vi and f̃ : ∪n
i=1{1Gi |i =

1, . . . ,n}→ G such that vi and vk are adjacent in Γ if either
(1) f (vi) and f (vk) are adjacent in some graph Gl or (2)
f (vi) = 1Gi and f (vk) = 1Gk and f̃ (1Gi) and f̃ (1Gk) are
adjacent in G.

The graph Γ can be thought of as a graph with vertices
vi replaced by the vertices labelled 1Gi of graphs Gi.

G

G

G
G
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Fig. 2. Here the graph Γ is the sum of G1, G2, and G3 for the given G.

III. PROBLEM FORMULATION

We assume given N homogeneous vehicles with the
following discrete-time dynamics:

xi(k +1) = Avehxi(k)+Bvehui(k)

where i = 1,2, ...,N and the entries of xi represent the v
configuration variables for vehicle i and their derivatives,
and ui is the control input for vehicle i.

Definition 3.1: A group of N vehicles is said to be in
formation if at all times they are the vertices of a pre-
specified geometric shape.
The pre-specified formation shape can be any polygon, or
it can be linked to a probability function that describes
the desired area coverage for the formation. The formation

shape is given by an offset vector h = hp ⊗

(

1
0

)

∈ R2vN ,

where the entries of hp represent the positions of the N
vehicles. See [13] for a more detailed explanation of the
offset vector.

Definition 3.2: A group of N vehicles is said to be in
a hierarchical f ormation if they are in formation and the
vehicles’ communication graph is a sum of hierarchical
products of graphs.

1

1
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Layer 2
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G 3	

Fig. 3. Example of a three level hierarchy

At each level of the hierarchy the vertices represent a
subformation. Each subformation may be constructed of
other subformations, but we also allow the subformation
at level 1 to be constructed of individual vehicles. Since
the communication between vehicles is done via a sum of
hierarchical products of graphs, the vehicle labelled 1 from
a subformation is the only one that can receive or transmit
information from or to other subformations, or vehicles.
We will call vehicle 1 the subformation “leader”. For the
remainder of this paper we assume that the vertices corre-
sponding to the non-leader vehicles have positive indegrees.
Practically, this is interpreted as follows: the non-leader
subformations receive information from at least one other



subformation in their group. In the subformation graph this
is captured by having the first diagonal entry of the laplacian
equal to zero and all other diagonal entries positive.

We start our analysis by considering a two-level forma-
tion hierarchy with n vehicles at the subformation level
and m subformations. For simplicity we assume that the
subformation dynamics are identical, however this is not
necessary. Let each subformation be represented by a sys-
tem of the form:

x(k +1) = Asx(k)+Bsu(k)

z(k) = Ls(x(k)−hs)

u(k) = Fsz(k)

where the entries of the vector x represent the n vehicles’
states (e.g. positions and velocities), As and Bs are the
individual subformation dynamics, Ls is the communication
graph Laplacian, Fs is the subformation control feedback
matrix and hs is the corresponding subformation offset
vector. The system of all N = nm vehicles becomes:

x1(k +1) = Asx1(k)+BsFsLs(x1(k)−h1
s )

...
xm(k +1) = Asxm(k)+BsFsLs(xm(k)−hm

s )

Theorem 3.3: Suppose we have a two-level formation
hierarchy, with n vehicles at the subformation level and m
identical subformations, as above. With Fs such that each
subformation is stable, if G is a graph on m vertices whose
Laplacian eigenvalues λG have the property that As +λGBsFs
has eigenvalues with negative real part, then G can be used
as the communication infrastructure for the second level of
the formation so that the entire system converges to a new
overall stable formation.

Proof: Let h be the vector of offsets that specify the
overall formation and L f be the Laplacian for the entire
communication graph. Consider the system Σ of all N = nm
vehicles:

x(k +1) = Ax(k)+Bu(k)

z(k) = L(x(k)−h)

u(k) = Fz(k)

where A = Im ⊗As, B = Im ⊗Bs, L = L f ⊗ I2vN and F is a
new feedback matrix. As in the previous Section, the overall
Laplacian L f takes the following form:

L f = In ⊗Ls +LG ⊗One

where LG is the Laplacian for the graph G. For the purpose
of analyzing stability, we consider the case when h = 0. Let
F = Im ⊗Fs. Then

u(k) =







Fs 0
. . .

0 Fs






L







x1(k)
...

xm(k)







We will show that with this feedback control matrix F ,
all vehicles achieve a stable hierarchical formation, or
equivalently the system

x(k +1) = (A+BFL)x(k)

is stabilizable with a “decentralized” control. Let U be
an invertible matrix such that L̃ f = U−1L fU is an upper
triangular matrix. Then, given the block structure of the
matrices A, B and F we have:

(U−1 ⊗ Im)(A+BFL)(U ⊗ Im) = Im ⊗As + L̃ f ⊗BsFs

The right side of this equation is upper triangular with
diagonal blocks of the form As + λBsFs, where λ is an
eigenvalue of L f . Therefore, the eigenvalues of A + BFL
are given by the eigenvalues of As + λBsFs, where λ is an
eigenvalue of L f .

From Lemma 2.8, the set of eigenvalues of L f is equal to
the set {λs, non-zero eigenvalues of Ls } ∪ {λG, eigenvalues
of LG}. Clearly the eigenvalues of As +λsBsFs have negative
real part for the chosen matrix F and for each nonzero
eigenvalue λs. By hypothesis the eigenvalues of As +λGBsFs
also have negative real part for λG nonzero. Therefore the
matrix A+λBF is stable for each nonzero eigenvalue of L f
and all vehicles converge to a hierarchical formation [13].

Example 3.4: In Figure 4 level 1 has four vehicles and
level 2 has five subformations. The twenty vehicles achieve
a stable hierarchical formation.
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Fig. 4. Twenty vehicle starting from random positions and converging to
formation. In this case the communication graph at level 1 is a directed
star and at level 2 is a directed cycle.

We note that when converging to formation, the vehicles
achieve consensus on where the center of the formation is
[4]. This consensus is achieved at both the level 2, i.e. the
subformation leaders, as well as at the level 1. This is done
independently, in the sense that the relative position of each



subformation vehicle only depends on the positions of the
vehicles in its group.

We note also that although Theorem 3.3 assumes identical
subformations, the proof is readily extended to the case
where subformations have distinct communication graphs
and dynamics. The choice of LG should be such that each
of As +λBsFs should be stable. An example of such is the
case when at all levels, the information exchange graphs
can be modelled using directed tree graphs. In essence,
Theorem 3.5 shows that, given a local feedback controller
that makes the subformations stable, there exists an entire
class of communication infrastructures at the next hierarchy
level for which we can guarantee stability for the entire
formation.

Conjecture 3.5: The assumptions that the subformations
have a leader is sufficient, but not necessary.

Corollary 3.6: Theorem 3.4 can be extended to an m-
level hierarchy.

Proof: : We use strong mathematical induction as
follows: Suppose levels 1, 2, . . . , k have information graphs
given by G1, G2, . . . , Gk and are stable, altogether forming a
system Σ. Then at level k+1 we have stable subformations
given by Σ. We construct F as above and choose a com-
munication graph G that satisfies the criteria from Theorem
3.3. Then, the entire system is stable.

This allows us to construct a communication structure
and indirectly a decentralized control for the next level of
the hierarchy based on the feedback controls used at the
previous level. We can thus build as large a hierarchy as
required.

IV. CONVERGENCE TO A PRE-SPECIFIED POSITION OR
HEADING

In Section 3 we showed that communication exchange
graphs exist so that the stability of the hierarchical for-
mation is ensured. In this Section we address the problem
of the position and the heading of the final formation in
space. This position information could be given to any one
or more vehicles in the formation. If no vehicle has this
information, we introduce a virtual vehicle. Such a vehicle
could also be representing a pre-computed desired trajectory
or a target. The virtual vehicle represents the knowledge that
some vehicles have and in the information exchange graph
it would be connected to those vehicles as transmitting its
position and velocity information at each time step to one or
more of the vehicles. Then this vehicle becomes the “leader”
for the entire group of vehicles.

A control will be designed such that the vehicles converge
to formation at the specified position in space. Suppose
for simplicity that the vehicles are supposed to converge
to formation at a certain position in R2, given by the vector
h. Then the system of N vehicles is:

x(k +1) = Ax(k)+Bu1(k)+Bu2(k)

where the control u1 depends on the communication ex-
change between the vehicles and the formation offsets h

and the control u2 depends on the desired final position (or
heading) x f for the formation. Without loss of generality
we will give the final position or heading information to a
vehicle which we will call vehicle 1. Since vehicle 1 is the
only one that has that information, u2 will only influence
the dynamics of vehicle 1.

Theorem 4.1: Given a leader hierarchy of m stable sub-
formations of n vehicles there exist controls u1 and u2 such
that the vehicles achieve formation and position (or heading)
stability.

Proof: : Let x f represent the desired position (or
heading) of the formation. Let:

u1 = FL(x(k)−h)

u2 = −Q(x(k)− x f )

Where F and L are the matrices defined in the previous
Section and Q = One ⊗ Qveh1 for an appropriate matrix
Qveh1. For the purpose of analyzing stability, let h = 0 and
x f = 0. Then the system becomes:

x(k +1) = (A+BFL−BQ)x(k) (1)

Let vehicle 1 be the formation leader. Then the first row of
the Laplacian matrix L has only zero entries and essentially
system (1) is composed of two systems: vehicle 1 and all
other vehicles:

x1(k +1) = (Aveh −BvehQveh1)x1(k)

x̃(k +1) = (Ã+ B̃F̃L̃)x̃(k)

So vehicle 1 is the leader of the formation and the rest
of the vehicles have a control that depends on vehicle 1’s
position and velocity. Our choice of Qveh1 is such that the
vehicle 1 system is position (or heading) stable [12]. We
showed in Section 3 that we can choose communication
graphs that make the formation stable. Therefore the system
(1) converges to the pre-specified formation and position.

In figures 5 and 6 we show vehicles achieving formation
while converging to a fixed position or a fixed heading in
R2. The individual vehicles’ dynamics model used in our
simulations is a double integrator vehicle model. There are
several methods for designing a control that takes vehicle
1 to its desired trajectory, however for the purpose of this
paper we chose a linear control [12]. Other controls may
be used as well.

V. CONCLUSION

This work shows how we can use the structure of a
communication graph to ensure stability of a hierarchy
of formations. We have allowed the information exchange
graph to be as general as possible, our only assumption
being subformation leaders and that all non-leader vehicles
should be able to receive information from at least one
other vehicle. Since mission completion was also one of
the objectives, where the mission requires the vehicles to
go to a particular location or follow a specific trajectory,
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Fig. 5. Four subformations converging to a circular hierarchical formation
and fixed position. The communication graphs are directed stars.
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Fig. 6. 20 vehicles starting at random positions and achieving hierarchical
formation and common heading.

we show how this is possible in the case that one of the
vehicles is given this information.
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