
 
 

 

  
Abstract—A new systematic framework for nonlinear 

observer design that allows the concurrent estimation of the 
process state variables, together with key unknown process 
or sensor disturbances is proposed. The nonlinear observer 
design problem is addressed within a similar 
methodological framework as the one introduced in  [8,11] 
for state estimation purposes only. From a mathematical 
standpoint, the problem under consideration is addressed 
through a system of first-order singular PDEs for which a 
rather general set of solvability conditions is derived. A 
nonlinear observer can then be designed with a state-
dependent gain that can be computed from the solution of 
the system of singular PDEs. Under the aforementioned 
conditions, both state and disturbance estimation errors 
converge to zero with assignable rates. The convergence 
properties of the proposed nonlinear observer are tested 
through simulation studies in an illustrative example 
involving a biological reactor.  
 

I. INTRODUCTION 
ECHNICAL limitations and/or prohibitively high cost 
associated with current sensor technology and 

measurement procedures entail the non-availability of all 
process state variables for direct on-line measurements. 
Furthermore, key process parameters frequently represent 
unknown or poorly known time-varying disturbances, 
that are particularly encountered in areas such as catalytic 
reaction engineering, bioprocess engineering and 
environmental engineering [2]. The operation of sensing 
devices is also subject to external disturbances, involving 
for example a sudden or gradual decalibration of the 
instrument. Therefore, there is an essential need for an 
accurate estimation of the unmeasurable process state 
variables together with key process or sensor 
disturbances, especially when they are used in the 
synthesis of model-based controllers or for direct process 
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monitoring purposes [14]. For the combined state and 
disturbance estimation task, an observer can be 
employed. In the case of linear systems, both the well-
known Kalman filter and its deterministic analogue 
realized by Luenberger's observer [2], offer a 
comprehensive solution to the problem under 
consideration. However, most chemical and physical 
processes are inherently nonlinear and nonlinear 
observers need to be designed that are capable of directly 
coping with the process nonlinearities. The nonlinear 
observer design problem is much more challenging and 
has received a considerable amount of attention in the 
literature leading to various approaches with different 
methodological characteristics [1,3-15]. The present 
research work aims at the development of a new 
systematic and practical framework for nonlinear 
observer design that allows the concurrent estimation of 
the state variables, together with key unknown process or 
sensor disturbances. In particular, the nonlinear observer 
design problem is formulated and addressed within a 
similar methodological framework as the one introduced 
in  [8,11] for state estimation purposes only, and from a 
mathematical standpoint, via a new system of first-order 
singular PDEs for which a rather general set of necessary 
and sufficient conditions for solvability is derived. A 
nonlinear observer can then be designed that possesses a 
state-dependent gain computed from the solution of the 
above system of singular PDEs. Under the above 
conditions, it can be proven that both state and 
disturbance estimation errors converge to zero with 
assignable rates. Finally, the performance of the proposed 
observer is evaluated in an illustrative bioreactor 
application through simulation studies. 
 

II. PROBLEM FORMULATION 
 

Consider a dynamic system 
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that represents the dynamics of a process, where x is the 
process state vector, y is the vector of measurements and  
w is the vector of unmeasurable process or sensor 
disturbances. The dynamics of the disturbances is 
governed by the exosystem 
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The problem of state and disturbance estimation 
becomes a pure state estimation problem when one 
considers the extended system: 

 

( )
( )
( )wxhy
wsw

wxfx

,

,

=
=
=
�
�

                                                             (3) 

 

where 



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
w
x

is the extended system’s state vector, which 

must be estimated via an appropriately designed 
observer.   

A special case of the above problem is the state and 
sensing error estimation problem, where the disturbances 
affect the sensing devices only, and in an additive way: 
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For the state and sensing error estimation problem, 
special results will be presented, which significantly 
simplify the design of the observer. 

The approach that will be taken in this work is the 
observer error linearization approach ([8], [11]), where 
the observer is designed so that, after coordinate 
transformation, the error dynamics is linear and with 
prescribed eigenvalues.  

Generally speaking, the degree of difficulty of the 
observer design problem depends on the nature of the 
eigenvalues of the linearization of the extended system, 
in particular whether their convex hull includes the origin 
(spectrum is in the Siegel domain) or does not include the 
origin (spectrum is in the Poincaré domain).  

The following definitions will be needed for the rest of 
the paper: 

• Given a set of eignevalues 1 n, ,…λ λ , a complex   
number µ is said to be nonresonant with this set of 
eigenvalues if it is not related with them through any 

relation of the form 
1

n

i i
i

m
=

= ∑µ λ , where 1, nm ,m…  

are nonnegative integers not all zero.  
• Given a set of eigenvalues 1 n, ,…λ λ , a complex 

number µ is said to be of type ( )C,ν  with respect to 
this set of eigenvalues if there exist constants 0C >  

and 0>ν such that 
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νµ λ  for any 

nonnegative integers 1, nm ,m…  that are not all zero. 
   As will be seen in the next section, nonresonance 
conditions will arise if the spectrum of the linearization 
of (3) is in the Poincaré domain, otherwise 
( )C,ν conditions will arise.  

 

III. NONLINEAR OBSERVER DESIGN 
 

Consider the system (3) 
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where  
nn RRRf →× A: , AA RRs →: , ρRRRh n →× A:  are 

real analytic functions, with ( ) 00,0 =f , ( ) 00 =s , 
( ) 00,0 =h . A nonlinear observer for  (3) can be designed 

following the methodology introduced in [8,11]. A local 
diffeomorphism ( )wxz ,θ=  is sought that maps the 
system (3) into 
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where A is a ( ) ( )AA +×+ nn  matrix and A+→ nRR ρβ :  
is a real analytic function with ( ) 00 =β . As long as such 
a transformation can be found, (5) can be used as 
observer dynamics and the inverse transformation can be 
used to reconstruct the system states: 
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It turns out that the unknown transformation map θ  
must satisfy the following system of singular PDEs 
[8,11]: 
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Therefore, the problem of interest reduces to the study of 
the PDEs (7) and the properties of the solution. The 
following Propositions are direct consequences of the 
results in [8] and [11,12] respectively. 
 
Proposition 1:  Let  

ρRRRhRRsRRRf nnn →×→→× AAAA :,:,:  

and A+× nRR ρβ :  be real analytic vector functions with  
( ) ( ) ( ) 00,0,00,00,0 === hsf , ( ) 00 =β  and 
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∂
∂= β . Denote by ( )Fσ  and ( )Sσ  

the spectra of S and F respectively. 
Suppose: 

1. There exists an invertible ( ) ( )AA +×+ nn  matrix T 

such that [ ]QHBAT
S
PF

T +=
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2. All the eigenvalues of A are non-resonant with 
( ) ( )F Sσ σ∪ . 

3.  0 does not lie in the convex hull of ( ) ( )F Sσ σ∪ . 



 
 

 

Then there exists a unique analytic solution ( )wxz ,θ=  
to the PDE (7) locally around (x,w)=(0,0). The solution 

has the property that ( ) ( )0,0 0,0 T
x w

∂ ∂  = ∂ ∂ 
θ θ  and so, 

θ  is a local diffeomorphism. 
 
Proposition 2: Under the notations of Proposition 1, 
suppose: 
1. There exists an invertible ( ) ( )AA +×+ nn  matrix T 

such that [ ]QHBAT
S
PF

T +=







0

 

2. There exist C > 0, 0>ν  such that all the eigenvalues 
of A are of type ( )C, ν  with respect to ( ) ( )F Sσ σ∪ . 
3. There exist C > 0, 0>ν  such that all the eigenvalues 
of F and S are of type ( )C, ν  with respect to 

( ) ( )F Sσ σ∪ . 
Then there exists a unique analytic solution ( )wxz ,θ=  
to the PDE (7) locally around (x,w)=(0,0). The solution 

has the property that ( ) ( )0,0 0,0 T
x w

∂ ∂  = ∂ ∂ 
θ θ  and so, 

θ  is a local diffeomorphism. 
  
Remark 1: Assumptions 1 and 2 of either Proposition 

imply that [ ]
F P

H Q ,
0 S

  
  

  
 is an observable pair. On 

the other hand, if [ ]
F P

H Q ,
0 S

  
  

  
 is an observable 

pair, it is always possible to find matrices A, B, T which 
satisfy the matrix equation of Assumption 1, with T 
invertible and A having prescribed eigenvalues.  

 
Remark 2: Under the assumption that ( )Fσ  and ( )Sσ  
are disjoint sets, it is possible to show that the pair of 

composite matrices [ ]
F P

H Q ,
0 S

  
  

  
 is observable if 

and only if the following conditions hold: 
a) ( H , F ) is an observable pair  
b) ( HR + Q , S ) is an observable pair, where R is the 
solution of RS – FR = P.  
Condition b) implies that no eigenvalue of S is a 
transmission zero of ( F, P, H, Q ). 

 
It should be noted that observer (6) can be expressed 

in the original coordinates via the inverse transformation 
1−θ , so that x̂  and ŵ  explicitly represent the observer 

states: 
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Finally, it should be noted that the estimation error in 
the transformed coordinates follows linear dynamics, 
governed by the arbitrarily selected matrix A (design 
parameter): 

 

( ) ( )[ ] ( ) ( )[ ]wxwxAwxwx
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IV. NONLINEAR OBSERVER DESIGN FOR STATE AND 
SENSING ERROR ESTIMATION 

 

Consider now the special case where the disturbances 
affect the sensing devices only, and in an additive way: 
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Also, suppose that for the design of the observer, 
linear output injection ( )y Byβ =  is used, where B is a 
( ) ρ×+ An  matrix. Then, the system of PDEs (7) 
becomes: 
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The solution of (10) can be expressed as: 
 

( ) ( ) ( )wxwx ωψθ +=,                                             (11) 
 

 where ψ  and ω  satisfy the following system of PDE’s: 

( ) ( ) ( ) ( )x f x A x h x
x

∂ = +
∂
ψ ψ Β                                  (12) 

 

( ) ( ) ( ) ( )w s w A w q w
w

∂ = +
∂
ω ω Β                                 (13) 

 

In this way, the system of PDEs for θ  (10) is broken 
into two decoupled sub-systems of PDE’s of smaller 
dimension, and therefore, the computational effort is 
significantly reduced. PDE (12) is exactly the PDE for 
the observer design for the disturbance-free part of the 
system, whereas (13) is the corresponding observer PDE 
for the disturbance dynamics. 

For ( )wx,θ  of the form (11), with ψ  and ω  being 
solutions of (12) and (13), the observer (8) takes the 
form: 
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where the corresponding gains are given by the following 
expressions: 
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It should be noted that in most engineering 
applications, there are two further simplifications:  

i) the disturbances w are considered to be prototype 
disturbances (e.g. steps, ramps, sine waves, etc.) that 
follow linear dynamics, which means ( )⋅s  and ( )⋅q  are 
linear functions: 

( )
( ) Qwwq

Swws
=
=

                                                           (16) 

where S and Q are matrices of appropriate dimensions. 
Then the solution to the PDE (13) is also a linear 

function: 
( )w w=ω Ω                                                               (17) 

where Ω  is the solution of the matrix equation 
S A BQ− =Ω Ω . 
ii) The dynamics of the process states ( )xfx =�  is 

hyperbolically stable, which means that the eigenvalues 
of its linearization are in the Poincaré domain. Then the 
results in [8] lead to the following:       

 

Proposition 3: Let n nf : R R→  and nh : R R→ ρ  be real 
analytic vector functions with ( ) ( )0 0 0 0f , h= =  and 

( )0fF
x

∂=
∂

, ( )0hH
x

∂=
∂

.  

Suppose: 
1. There exists a ( )n n+ ×A  matrix T with Rank T = n 
such that  TF = AT + BH . 
2. All the eigenvalues of A are non-resonant with ( )Fσ . 
3. 0 does not lie in the convex hull of ( )Fσ . 
Then there exists a unique analytic solution ( )z x=ψ  to 

the PDE (12) locally around 0 0x with ( ) T
x

∂= =
∂
ψ . 

 

Remark 3: From a practical point of view, the proposed 
observer design method requires the development of an 
approximate solution method for PDEs (7) and (12). In a 
similar spirit as in [8,11], one can develop a 
comprehensive power series solution scheme by taking 
advantage of the real analyticity property of all the 
functions involved. The calculations for the power series 
solution scheme can be executed, up to a finite truncation 
order, using symbolic computations software. 
 

V.  BIOREACTOR APPLICATION  
 

Consider a typical bioreactor, where biochemical 
reactions take place, resulting in biomass production and 
substrate consumption following Monod kinetics: 
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where x is the biomass concentration, s the substrate 
 

 

concentration, sf the inlet substrate concentration, D the 
dilution rate, K a reaction constant, Y the yield coefficient 
and maxµ the maximal specific growth rate. The biomass 
x is measurable on line, but the measurement could be 
subjected to a systematic error w. This is assumed to 
remain constant over a certain period of time, but 
potentially undergoing step changes. The objective is to 
estimate both the bioreactor’s state and the systematic 
error (step disturbance) w. Therefore the dynamic system 
under consideration is: 

( )

max

max
f

µ sdx = Dx+ x
dt K+s

µ sds 1=D s s x
dt Y K+s
dw=0
dt
y=x + w

−

− −
                                    (19) 

 

and the objective is to design a full-order observer for 
this system, to estimate the unmeasured substrate 
concentration s and the error w, following the method 
developed in the previous section. 

For the design of the nonlinear observer, the following 
PDE needs to be solved: 
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around a reference equilibrium point ( s s sx ,s ,w ). Once 
(20) is solved, the nonlinear observer is given by: 
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and where θ(x,s,w)=ψ(x,s)+Ωw with -1Ω= A B− . 
A MAPLE code has been written, which solves the 

PDE (20) up to a finite truncation order N, calculates the 
observer gains via (22) and conducts numerical 
simulations, in order to test the observer (21). 

In the present study, the following parameter values 
were used in all simulations: 

50.0fs = , 0.4D= , 2.0K= , 0.5Y= , 0.9maxµ =  
and the reference equilibrium is: 

24.2sx = , 1.6ss = , 0.0sw =  



 
 

 

which corresponds to zero sensing error. 
The Jacobian of the dynamics of (19), evaluated at the 

reference equilibrium forms an observable pair with 
[ ]1 0 1 , i.e. system (19) is linearly observable.  

The process (18) and the observer (21) were simulated 
with the following initial conditions: 

( ) ( )
( ) ( )
( ) ( )

ˆ20.0 22.0
ˆ7.0 3.0
ˆ1.0 0.0

x 0 = ,  x 0 =

s 0 = , s 0 =

w 0 = ,          w 0 =

 

This accounts for a unit step change in the sensing 
error, in the presence of non-equilibrium initial 
conditions.  

Figures 1-3 depict the effect of speed of the error 
dynamics for the same truncation order. Three different 
sets of eigenvalues were used, ‘slow’ (-0.05,-1.5,-3.0), 
‘medium-speed’ (-0.35,-0.45,-3.9) and ‘fast’ (-1.5,-3.0,-
3.0), which are all non-resonant with the linearization of 
(19). In all cases shown, the truncation order was N=5.  

 

 
Fig. 1: True and estimated biomass concentration for different sets of 
eigenvalues 

 
Fig. 2: True and estimated substrate concentration for different sets of 
eigenvalues 
 

 
Fig. 3: True and estimated sensing error for different sets of eigenvalues 

 
From Figures 1-3, one can see that the response of the 

observer with ‘fast’ eigenvalues converges to the process 
response very fast, but with significant deviations during 
the transient period, while the case of ‘medium speed’ 
eigenvalues shows a rapid response as well, but with 
smaller deviations. On the other hand, the observer with 
the ‘slow’ eigenvalues gives rise to a very slow approach 
of the error to zero. 

The selection of error dynamics eigenvalues is, of 
course, application-dependent. If large short-lived errors 
can be tolerated and the settling time for the error is the 
most important performance parameter, fast eigenvalues 
may be preferable. Notice however, that using 
eigenvalues of higher speed than the ‘fast’ eigenvalues 
shown here, results in responses with excessively large 
deviations in the transient period, which appear 
unacceptable for all practical purposes.  

Also, it must be noted that it is not only the “speed” of 
the eigenvalues (as measured by the eigenvalue that is 
closest to the imaginary axis) that affects the performance 
of the observer, but also the relative magnitudes of the 
eigenvalues. In the particular problem, it was found that 
using eigenvalues that are reasonably spread out, 
generally yields better performance than eigenvalues of 
similar magnitude. 

Figures 4-6 depict the effect of truncation order on the 
observer response for the ‘medium-speed’ eigenvalues. It 
is seen that numerical convergence is achieved for N=3 
and above. The effect of truncation order has also been 
studied for ‘slow’ and ‘fast’ eigenvalues. The results are 
not shown here for brevity. The results for ‘slow’ 
eigenvalues were quite similar in terms of numerical 
convergence, whereas the ‘fast’ ones converged at higher 
truncation order N=4. 

 
 
 
 
 
 



 
 

 

The case N=1 needs special attention, since it 
corresponds to a constant gain observer, with gains being 
equal to what a linear design would have given for the 
linearized system. We see from Figures 4-6 that the 
constant-gain observer is significantly inferior to the 
nonlinear observer. The same behavior was found in the 
case of ‘slow’ eigenvalues. On the other hand, as the 
speed of eigenvalues increases, the response of the 
constant gain observer gets closer to the one of the 
nonlinear observer, while at the same time performance 
deteriorates due to larger deviations in the transient 
period.  

Further simulation results (not shown) have studied the 
effect of size of sensing error. It was found that, as the 
size of the sensing error decreases, convergence with 
respect to N becomes faster and the discrepancy between 
nonlinear observer and constant-gain observer becomes 
smaller, because the problem becomes less nonlinear.   

 

 
Fig. 4: True and estimated biomass concentration for different 
truncation orders for the ‘medium-speed’ eigenvalues 
 
 

 
 
Fig. 5: True and estimated substrate concentration for different 
truncation orders for the ‘medium-speed’ eigenvalues 
 
 

 
Fig. 6: True and estimated sensing error for different truncation orders 
for the ‘medium-speed’ eigenvalues 

VI. CONCLUDING REMARKS 
 

A new design framework for nonlinear observers 
capable of offering reliable concurrent estimates of the 
process state variables, along with key unknown process 
or sensor disturbances, was presented. In particular, the 
proposed nonlinear observer has a state-dependent gain 
that can be computed from the solution of a system of 
singular first-order PDEs. Within the proposed design 
framework, both state and disturbance estimation errors 
converge to zero with assignable rates. 
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