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Abstract—In integrated process networks, the presence of dynamic state feedback precompensator was proposed to
large flowrates induces a time-scale separation of the dynamics modify a general class of such DAE systems such that the
where the individual units evolve in a fast time scale while the  gta16_gpace of the resulting system is independent of the new
overall process evolves in a slow time scale. The slow dynamics . . .
of such networks are modeled by a high index differential manlpu!ate_d. inputs. Such an approach rell_es, of COUY_SG,. on
a|gebraic equation system which, in the case of cascaded the aVa|Iab|||ty of state measurements, which Clearly limits
control configurations, has a control dependent state-space. its applicability.

We propose a minimal-order dynamic extension to obtain a |n this paper, we show that structural rank properties of
modified DAE system of index two with a control invariant ~ {hage DAE systems allow the derivation of a minimal order

state-space that can be subsequently used as the basis ford - tension leading t DAE with trol i iant
controller design. We illustrate this method for a distillation ynamic extension leading to a with control invarian

column with large recycle where the top and the bottom State-space. The approach is applied to a high-purity distil-
compositions are the key outputs to control. lation column with large recycle flowrate. Control of high-

_ purity distillation column is a challenging problem owing
' to highly non-linear behavior, ill-conditioning and a strong
coupling between the top and the bottom of the column

[3]. We focus in particular on a two-point control problem

in such a column, i.e. control of both the bottom and the

Integrated process networks, i.e. process networks inteop compositions (known to be especially challenging), and
connected with large recycle of material and/or energy, aitustrate the appropriateness of the proposed method.
the rule rather than the exception in chemical plants. The
behavior of such networks is typically highly non-linear due Il. INTEGRATED PROCESS NETWORKS
to the feedback interactions induced by recycle. Effective We consider the generic network shown in Ejgconsist-
control of the network behavior is critical in the currenting of IV processes (e.g. reactors, separation systems) and a
industrial environment which dictates frequent changes ifaterial recycle stream for which the flowrakg; is much
operating conditions and targets. larger than the feed flowratgy.

This work focuses on process networks with large ma-
terial recycle compared to throughput. Owing to the co-
existence of large and small flowrates, such networks tyg.
ically exhibit dynamics in two distinct time scales. The &, F, Fp_ Ry Fy
dynamics of the individual units evolve in a fast time scale
while the dynamics of the overall network or process evolve
in a slow time scale. The natural approach for the control of
such two time scale systems consists of deriving separate
controllers that address the control objectives for the fast Defining the singular perturbation parameter —
and slow time scales [4] and, very often, involves cascadelg n

structures where set points are used as manipulated inp ﬁ/ Frs, where the subscript denotes steady state values,

in the slow time scale. In such cases, the underlying mode 1€ mathematical model describing the overall and compo-

of the slow dynamics are high index differential algebraidc"t Material balances has the form [2]:

equation (DAE) syst.e.ms for which the. constral_ned state- &= f(z) + ¢°(x)u® + lb(x)gl(x)ul 1)
space depends explicitly on these manipulated inputs. Due €

to this dependency, such DAE systems do not possesterex is the vector of state variables € X C IR"™), u® €

a control-invariant state space, which precludes a direfR"™- is a vector of scaled input variables corresponding to
derivation of the underlying ODE representation. In [5], ahe small flowratesK, and Fy), v € IR™ is a vector of
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I. INTRODUCTION

Fig. 1. Process network



scaled input variables corresponding to the large flowrateghere u = [ygplT u®T] is the (ns + ms) vector of
(FrandF; forj =1,...,N—1),b(z) isanxp fullcolumn manipulated inputs, so that the DAE model of the slow
rank matrix andg!(x) is ap x m; matrix. dynamics takes the form:

The system in Eq.1 exhibits dynamics in two time-scales, . - s
albeit it is not in a standard singularly perturbed form. = f@)+bz)z+ [ 0 ¢°(x) ] Y

— l l l ! l l l
In the fast time scaler(= t/¢), in the limit e — 0, the . g (S'T)a (@) + (¢'(2)8 )2y“"’2 +[ (' @)0 )1 0 Ju
- . y* = Hz
dynamics of Eq. 1 take the form: (5)
dx In typical examples of such networks (e.g. [2]) modeled by

_ l !
dr bz)g (x)u (2) Eq. 5, the following key rank properties can be verified:

Note that only the variables! associated with the large * ) then x p matrixb(z) is ‘;U” c?lumn_ rank,
flowrates are available for control in this fast time scale. * D) the (p x n) matrix [ (¢'(2)3'), | is full column

In the slow time scale t, multiplying Eq. 1 by and rank, . . oo
considering the limit — 0, since the matri(z) has full  * C)l the Jalcob|an of the vectorg(z)a’(x) +
column rank, the quasi steady state constraifts)u' = (9'(2)B') , vy, has full row rank.

l ! i i inli
. .- o g (z)u Given the rank property), the constraints can be multiplied

0 are pbta|ned. Defining: = lime—o e the slow by a constant invertible matrix such that the DAE model of
dynamics of the network take the form: Eq. 5 is written

& = fl(:z:) —|—l b(x)z + g°(x)u® 3) & = f(z)+bx)z+g(@)u

0 = g(z)u 0 - {k(m)}Jr{C(x) o}u ©)
The slow dynamics are thus modeled by a high index DAE, k() 0 0
since the solution for the algebraic variablesannot be y = Hz
obtained directly from the algebraic equations. where the following rank properties are fulfilled:

For control purposes, lej' denote the output variables « i) the n x p matrix b(z) is full column rank
that are associated with control objectives in the fast time « ii) C(z) is an invertiblen, x n, (with n, < ]’)) matrix
scale (e.g. holdups that need to be stabilized) gnd that accounts for the usé of ‘(’)f the se; points! as
associated tq control o_bjec_ti\_/es in the slpw time sc_ale (e.g. additional manipulated inputs, p
prochct sty For Sy, e onsier  stalc S ) e jcobin of the v« (5] is

) 5P s . row rank.
set point for the outputg', to stabilize the fast dynamics . .
and induce a desired output response in the fast time scaleVé consider DAE systems in the form of Eq. 6. The
Then, the DAE model of the slow dynamics of the networil€Pendence of the state-space on the manipulated inputs

takes the form: precludgs a ldirect derivgtion c_)f an expression for_ the
) N . algebraic variables by differentiation of the constraints.
T = fl(:v) + bl(x)z +% gw)“ However, the rank conditions mentioned earlier allow us to
0 = ij(f) [o' (@) + B'yg,) (4) modify the DAE system into a new DAE system of index
yS — Sx

two with a control-invariant state-space.
where it is assumed that the outpytsare linear combina-
tions of the state variables. Note that, in the slow-time scale, _
the small flowrates:® are available as manipulated inputs. O DAE systems of the form in Eq. 6, a natural approach
Typically, some of the set points of the fast output variable$ONSists of designing a precompensator with the goal of
y.,. are also used as additional manipulated inputs. sudpodifying the constraints that involve the; set points
a cascaded control configuration becomes necessary whifd as additional manipulated inputs in order to obtain
the number of controlled outpuig in the slow time scale @ modified DAE system with a control-independent state-
exceeds the number of available variablesuin In the SPace. The following proposition gives the general form of
case of such configurations, the algebraic constraints in t§&Ch @ precompensator: _

DAE description of the slow dynamics explicitly involve the Proposition: Consider a DAE system of the form in Eq. 6
manipulated input variables, which leads to a DAE modeaihere the rank conditions, ii), ii7) are satisfied. Then the

Ill. PRECOMPENSATOR DESIGN

with control-dependent state-space. following dynamic extension:

Without loss of generality, it can be assumed that the RE—
ng first components of the vectqylgp correspond to the set _ I, 0 0 7
points used as additional manipulated inputs. After splitting u 0 + 0 I._ v
the matrixg'(z)3' in a similar way, the constraints of the _ ,
DAE model of Eq. 4 yield: wherew is then, vector of the precompensator states yields

the desired index-two DAE system.
0=g'(z)a!(z) + (¢"(2)8"), ulp, + [ (¢'(2)B"), 0 ]Ju Proof:
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The direct substitution of the dynamic extension of Eq. s a state-space realization of the modified DAE system,
into the DAE system of Eq. 6 yields the following DAE where z = [z7 w”]T, the extended state vector, is con-

system: strained to evolve on the manifold defined by the constraints
i B (@) . b(z) o (z) . in the DAE system in Eqg. 8,is the new manipulated input
W = 0 0 0 vector, and

I,, 0
' oy f(z) +b(z)R(z,w) + g1 (z)w
- N f(l‘) - |: 0
o~ [F) ], [C@ T,
~ | k@) 0 (12)
© g = [ MOS0 KIS )
where the matrixg(x) is partitioned in then x n, and I, 0
n X (m — ng) matricesg; (x) and go(x), respectively, as
g(x) = [ q1(z) g2(x) ]. The state-space of this modified
DAE system is clearly independent of the new manipulated
inputs v. whereg(z) = [g:(x) g ()]

Upon one differentiation of the new constraints, the
matrix coefficient for the algebraic variables takes the Note that the integrators were added only to the ma-
following form: nipulated input channels associated with the matfixhat
accounts for the use of; set points as manipulated inputs.

% Moreover, the matrix coefficient for takes the form in
K= O b(z) (9) Eq. 9 which does not involve or any of its time derivatives,
ok so that we require only that the DAE system has a finite
o index for some smooth(t).
Given the properties) andiii), it is clear that the matri¥ On the basis of this state-space realization, an output
as the product of a full row rank matrix and a full columnfeedback controller can be designed using existing tech-
rank matrix is invertible, which completes the proof. niques for non-linear ODE systems.
The constraints obtained after one differentiation are now
solvable inz:
—1
=TT [ébw)k(x)} [éfmk(x) t Ly k@) w
égQ(w)k(x) vy + C(x)vq
IV. CASE STUDY
= R(xz,w)+ S1(x) v1 + Sa(x) ve
where,
w0 = | i | cw=| N |
& . We consider a distillation column with N trays (numbered
_ _ from top to bottom), to which a saturated liquid containing
Ok (10)  a mixture of three components with mole fractiong, z;
L k()= Ox bx) of componentsl and 2 respectively, is fed at (m_olar)
=b(x) ok flowrate F, on tray Ny. The heavy componer& which
a—; is the desired product is removed at the bottom from the

. - . , . ) reboiler at a flowratd3, while the lighter componentsand
A direct substitution of the solution for in the differential 5 ;.o ramoved at the top from the condenser at a flowiate
equation forz yields a state-space realization of the origina|, this column, a large vapor boili; and liquid recycleR
system. This is given in the following proposition: are used compared to the feed, distillate and bottom product
Proposition: Consider a DAE system of the form in EQ. 6q,yrates; to attain a high purity of the desired comporgent
for which the rank conditionsi), i), iii) are satisfied, i, the hottom product. The key outputs to be controlled are
subject. to the dynamic precompensator of Eq. 7. Then ﬂfﬁe bottom purityzs 5, the top composition:; 1, and the
dynamic system: two liquid holdupsM - and Mg that behave like integrators.

T = f(@ +g(z)v (11) Under the above assumptions, a standard dynamic model

y = HZ of the column is obtained, which is given by the following
2911



ODE system [6]:

the column, compared to the inlet and outlet flowrates from
the column, induces a time-scale separation in the column

Condenser dynamics with the dynamics of individual stages evolving
y _ o in a fast time scale, and the dynamics of the overall column
Me = Vg—R-D . ) 7 : :
in a slow time scale [6]. Defining the singular perturbation
. _ E ) parameter€ = Dnom/Rnomu and R1 = VBnom/Rnom =
LD = (Y11 =210 O(1), where the subscriptom refers to nominal steady
) Vs state values and)(.) is the standard order of magnitude
3,0 = m(y3,1 —3.0) notation, the process model, under standard modeling as-
sumptions, takes the general form of Eq. 1 [6], where
Trayi < Ny is the vector of state variables (compositions and holdups
in each stage)u® = [D B]T € R? is the vector of
. 1 manipulated inputs corresponding to small flowrates and
i = 7 VBWiit1 — Y1) + R(@1i-1 — 21, g . . )
oL Mi[ B Y1) + R@Lio = o10)] u! = [R Vp]T € R? is the vector of manipulated inputs
. 1 corresponding to large flowrates whelke= R/R,,,,, and
i = VB(Ysit1 —Y3,) + R(z3i-1 — T34 5
T3, My[ B(Y3,i+1 — Y3,4) + R(w3,-1 — 23,4)] Vi = Vi/Vinom.

Feed trayi = Ny
1
M;
+F(z15 —21,4)]

M;
+E (x5 — x3,)]

1, = —[VBWi,i+1 —v1,i) + R(z1,i-1 — z1,4)

. 1
X3, = 7[VB(y3,i+1 - ydz) + R(xS,ifl - xdl)

In the fast time scaler( = t/¢), in the limit ¢ — 0,
only the outputsu' are available for control purposes. In
particular, the control of the liquid holdups in the condenser
and the reboiler ¥/~ and M) is easily achieved by using
simple proportional controllers:

Vg =

In the slow time scale t, the dynamics take the general

Trayi > Ny form of Eq. 4. Only the small flowrate® and B affect
the slow dynamics. At this time scale, the outputs to be
iy = L[VB(yl,i—&-l — 1)+ R(21i1 — 21,) controlled consist of the total liquid holdup that needs to
M; be stabilized as it is not affected by the large flowrates [6],
+F(z1,-1 — 21,4)] the top and the bottom compositions. Hence, we need an
1 additional manipulated input. A natural approach to this end
i3; = —[VB(y3ir1 —ys.) + R(x3-1 — 3,) is a cascaded control configuration where one of the set
M; points for the condenser/reboiler holdups used in the fast
+F(23,i-1 — 3] proportional control is treated as an additional manipulated
input variable. Considering/,,.., as an additional manip-
Reboiler ulated input, andM¢ + Mg, z3 5,23, p as the controlled
. outputs, the DAE system for the slow dynamics can be
Mr = R-Vp+F-B expressed in the form of Eq. 6:
. 1
T = WR[R(QULN —z1,8) = Ve(y1,B — 21,B) &t = f(x)+b(z)z+ g(z)u
_ [ k@) Clx) 0
+F(z1,ny —21,8)] 0 = { k(z) :| + { 0 0 U
: 1 y1 = Mg+ Mgr=2z1+ToN+4
Isp = N [R(zs.n —23.8) — VB(Ys.B — *3.B) Y2 = Zap=TaNis
+F(x3 N — 1’373)] Ys = T1,D = T2

whereM¢, 1 p andxs p are the molar liquid holdup and
mole fractions of components and 3 in the condenser,
M;,xz1,; and z3,; are the molar liquid holdup and mole
fractions of component$ and 3 in tray ¢, and Mr,z1,5 . _
andzs p are the corresponding holdup and mole fraction§’ (%) = [ Ke }

in the reboiler. k(z) = [-1 = KaMc — k1Ko Mpnom + k1(1 + Ko Mg)]

The presence of large vapor boillip and liquid recycle
R, and hence, large internal liquid and vapor flowrates iand the2 N + 2 linearly independent constraints that do not

2912
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involve the inputs are: the presence % error in«q, —3% and 7% unmeasured
step disturbances in the feed compositiory and zqf, at

t = 15 min. Note that the increase in the bottom purity
and the decrease in the top composition have to lead to a
consistent steady-state. Clearly, the controller eliminates the
effect of disturbances and induces the desired input/output
behavior.

k1VB(ys1 — 23,0)

~ k1VB(y11 —71D)
k(z) = lﬁ‘fB(yLi-s-l — Y1 T T1i-1 — T1)
k1VB(Y3,it1 — Y3, + T3i-1 — 34)
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dy; .
Yi Jr%idftl =Yisp, t=1,2,3 (13) 20
wherey; ., ya2..p andys ., denote the set points for the  *| S |

respective outputs. The controller consists of an input/output
linearizing state feedback controller coupled with an 'open- /
loop’ observer and an external linear controller [1]. The *°| /| ]
controller was tuned with the parameters= vy, = v3 =

20 min. The following table gives the nominal values of =

N}

ok

200 —" B

(mole)

the process variables at steady state. 5 el |
Variable | Description Value |© |

B bottom product flowrate (mol/min) | 50.0 170} .
D distillate flowrate (mol/min) 50.0
F feed flowrate (mol/min) 100.0 Leor 1
K, proportional controller gain (mint) | 20.0 150} ]
Ko proportional controller gain (mint) | 20.0
Mc | condenser liquid holdup (mol) 180.0 | % 50 100 150 200 250
M; liquid holdup on trayi (mol) 175.0 L
Mg reboiler liquid holdup (mol) 200.0 Fig. 2. Liquid holdups
N total number of trays 15
Ny feed tray 8
R liquid recycle flowrate (mol/min) 1000.0
VB vapor boilup flowrate (mol/min) 1050.0
a1 relative volatility of component 1.5
Qo relative volatility of componeng 1.3

Figures2, 3,4, 5,6 show the performance of this nonlin-
ear output feedback controller for the slow dynamics of the
column. We consider a.7% increase in the bottom purity
x3.p, and a27% decrease in the top compositian p in
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Fig. 3. Small flowrates Fig. 5. Bottom purity
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Fig. 4. Large flowrates Fig. 6. Top composition
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