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Abstract— After system modeling, controller synthesis and defined and application dependent—some applications need
closed-loop simulation, the control engineer has still tomple-  more robustness while others require minimum computing
ment the controller. In many applications, the controller must ey - or minimum noise, etc. Many of these desired
be realized with a fixed-point digital processor. The transhtion ificati tuall tradict t tent
of the synthesized controller to its fixed-point realization is Speciiicalions are aclua y_ contradictory .0 somg extent.
intrinsically difficult, because there are an infinite numbe  However, a good compromise can be achieved without too
of solutions and the optimum criterion is not well defined. much effort when the good options are chosen. Below,
One would like a fixed-point controller to require as little as e will give a set of motivated choices (design drivers)
possible computing power while at the same time to be the 4 il allow a computer to automatically generate the
closest from the ideal controller, i.e., the synthesized adroller. C d f tisfact fixed int lizati f
If it is difficult to define and reach the optimal controller, it is g coae 9 a satslactory .|xe -pom _rga Ization O_ any
a|ready not obvious to find a Sub_optima| but Working fixed- dISCI‘ete-tIme transfer funC“on, W|th minimum user Inter-
point controller. This paper presents the key points that alow  action. The latter point is important, since many fixed-
a computer to automatically derive a fixed-point realizatim  point development tools (e.g. Matlab) provide simulation
of any given discrete-time transfer function. 'I_'he derivatbn support, but no or not much help for the translation process
can be controlled by three parameters, one being the number t fer functi fixed-noint trol algorithm’ (this i
of initial derivative, another the number of initial delay and ransier func |on—.> ) ixed-point control algorithm’ (this is
the last one the number of bits of the processor words. An all the more surprising that the authors of several papers—
increase of any of these three parameters enhances the qugli see references in [1]—actually claim that they wrote such
of the realization for a relatively small extra cost of compuing  a tool). Consequently, many fixed-point implementations
power. are still in practice tediously derived by hand. This is

|. INTRODUCTION costly, time consuming and error prone. Obviously, in many
One may think that in a near future all controllers will be-apphcatlons,. a program automaﬂcally gen_eratlng a (_jecent
implementation of a fixed-point controller is a significant

implemented with floating-point arithmetics and that fixed- dvant | h has b it
point controllers are relics of the first age of c:omputei"1 vantage. In ourcompany, Such a program has been written

science. The decreasing cost of floating-point microprdp Matlab and is used to quickly implement fixed-point

cessors and the possibility of using the same (floatin ontrollers. The theory of this program is explained in this

point) controller for simulation and real experiment sup aper and illustrated by an example.

port this opinion. However, for mass production, one ca Ourtfrllrstt desggn dtrlv:Tr CO?ﬁ?me] the §a;grat\t|on? (cir g\éer—
argue that a fixed-point processor is smaller, simpler arf%‘)ws) atwe do not atiow. This choice IS first motivated by

consequently cheaper, and it is worth to invest more effo e existence of an exact and non-conservative theory (see

on implementation issues. Since the power consumption 51 ex?mpIT_ [21) fthzlz}t_sijppolrts_ an leasl}/tﬁompu:atlllont;{/the
the controller is directly related to the computing powerCorreC scaling ot all internal sighais of the controtien

in the applications the processor is a significant user élfltioslc?émgl n:;a::\ra’gpnn;isl Qgﬁggszegagss dtgj E‘;‘X'zlgrn
battery power, a fixed-point controller generally means ute valu Y Sig X - nowever,

much longer autonomy. Moreover, for micro-controllers, tht e maximum absolute value of every signal can be reached,

silicon saved by a smaller fixed-point ALU (arithmetic IogicwrltICh tmakfes sc?llng_tr(:ptlmal. Thfe sec%nddm':)fuvan(:nl for a
unit) can be used for other functionalities. Last but no aluration-iree algoriinm comes from the detrimenta’ hon-

least, for a given technology, a fixed-point controller ca inear effects of saturations that can easily upset a grest d

be significantly faster than its floating-point counterpart Of_r_f;]e care ::)hroughtllto t.he cgntrcl)ller de5|gr?. ; inimal
However, beside the not-obvious extra work required, a €n, as the scaling 1s optimal, we can nope for minima

fixed-point controller implementation is subject to detim effects of rounding of internal signals. Indeed, our second

tal effects due to saturation, roundoff of internal signalsdr'ver is to go on in this direction and chose a controller

and roundoff of parameters. All these effects can lead i alization that minimizes the numerical noise. Mathemati
controller fragility, instability, longer settling timeyerma- cal rigor is here more difficult to keep, but some statistical

nent error, noise, etc. In addition, the number of possibl%pproa(:hes hav_e been proposed. A good rule of thumb is
to avoid cascading subsystems. Any input of the controller

realizations is infinite and the optimal realization not lwel. . : o .
is free of numerical noise (by definition), while the output
This project has been partly supported by the Swiss govethme of any subsystem is already polluted with numerical noise
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that can just be further amplified. Therefore, the shorter is  F(2)

the ‘path’ from an input to an output, the better. Another w

pragmatic rule is to sum up small numbers first. d r e v U y
The third design driver deals with efficiency. As the main H(z) K (2) G(z) >

advantages of fixed-point over floating-point implementa-
tions are related with computing power, it is important
to keep the number of operations as low as possible.
Many studies (for example [3], [4]) work with a state-
space representation. This has the big advantage of a good

mathematical framework able to describe many (but nqished to the best of our knowledge) that can significantly
all) possible realizations of a controller, each of themmprove a realization for a low additional cost of computing
corresponding roughly to a given state matrix. This matriyoyer, Section V develops the mathematical formulation
is square and mostly zero for the most efficient realizations the parameters. The section that follows deals with
(sparse matrices [5]), but in general, it contains numbekgaling and finally, the last section before the conclusion
different from zero. For example, a ten by ten matrijescribes our approach to automatically generate the fixed-
would generally describe a realization with? non-trivial point algorithm of any discrete-time transfer function.
multiplications while in most cases, 10 (and possibly less)
would suffice. II. CONTROL ARCHITECTURE
For some realization, the roundoff of the parameters may A controller is not limited to the compensatdt ().
significantly shift the zeros/poles/gain of a transfer il Fig. 1 shows the diagram of the complete system. A feed-
It is not rare that a robust controller becomes fragile oforward signal is generated by the transfer functife).
even unstable for some fixed-point realization. Some rerhe role of the transfer functiodl (z) is important. In
searches focus on this point and propose methods supporigd absence of disturbances and model uncertainties, the
by solid theoretical backgrounds to find realizations thagignal » (output of H(z)) should be exactly the signal
save as much as possible the robustness properties of tbatput of G(2)).
synthesized controller. However, these optimizationsiodn  The feed-forward transfer functidfi(z) would be ideally
simultaneously follow the second and third design drivethe inverse of the system to cont@(z). However, in many
Our approach is to relax this criterion. We consider thagases, the system to contr@l z) has some non-minimum
the two previous design drivers are more important. Ahase zeros. Consequently, the inverse is either nonicausa
realization can always be rigorously checlkeposteriori If  or unstable.
it is robust enough, no problem. Otherwise, we try and solve To make the feed-forward transfer functidi(z) both
the problem with a larger number of bits for the parametergausal and stable, one can pre-filter the desired signal
This will take more computing power, but probably less thaftypically with zeros that cancel the unstable poles). In
for a random state matrix. In addition, the numerical noisgractice, the pre-filter must be distributed both Bifiz)
will be lower. and H(z), because the zero/pole cancellation must be
However, an optimized accuracy of the poles/gain of thgnalytically done before any implementation. Additiogall
transfer function can be required without conflict with theone would need to limit the feed-forward signal because
other design drivers. This is the fourth design driver.  this signal would be infinite every time the desired sighal
The zeros are the looser. Their accuracy cannot ke changed. A low-pass pre-filter will generally solve the
directly and perfectly optimized. However they can beyroblem. In this case, one has the choice either to use
indirectly improved through an optimization of the accyrac a dedicated pre-filter directly filtering, or to have two
of the impulse or the step response. This is the fifth desigsre-filters, one embodied if(z) and the other inH (z).
driver. The first option seems more attractive, because only half
For the sixth design driver, one may wish that the apof the operations are needed for the pre-filtering. However,
proach be efficiently extensible to MIMO systems (multiplecascading two fixed-point filters may significantly increase
inputs, multiple outputs). the numerical noise.
The last design driver is the possibility to easily enhance
the quality of the realization when needed. Obviously, one . STRUCTURE
can first increase the number of bits used (for example, At least for the compensatdk (z), a good location of
to switch from 16-bit to 32-bit implementation). However,poles and zeros is important to prevent the controller to
before using the ‘brute force’, other possibilities usiegd become fragile. A good way to keep a good control on
computing power would be welcome. both poles and zeros is to cascade simple cells of one pole
Section Il recalls the standard control architecture. Se@and possibly one zero. However, we have just seen above
tion Il discusses about different realizations of the samthat cascading is a risky approach and need at least to take
transfer function. The parallel form is shown to be the beshto account the problem of the numerical noise. Moreover,
trade-off. The next section presents some artifices (not puthe order of the cells and the way poles are paired with
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> T than, e.g., a parallel form. This is significant, because for
the same expense, one can use numbers more than four
times (/17) larger. In other words, if a general realization

z J g is proved best for a 16-bit implementation, a parallel form

can still challenge it with a 64-bit implementation.

Other well-known structures (not described by the state-
space formalism) include the lattice structure, and the LC
structure. They use twice as many multiplications as the
P > P > o7y parallel form, but in some applications, they have intengst
properties. The lattice structure is especially useful for
adaptive filtering, because its stability can be guaranteed
b2 = p2 = if its parameters are kept within the range- 1,1[. The
parallel form has a similar property (the stability can be
checked on the poles), but the structure of the parallel
form is not well-posed and change if the poles are real
or complex, or, single or multiple. The LC structure makes
1 > o1 > T > easy to guarantee that the zeros alternate with the poles.
This property is important, for example, for controlleraith
must stay passive.

The cascade form can easily and efficiently be used
Fig. 2. Parallel form—illustration with a feed-throughoj, one single for MIMO SyStem (the poles ar? shared by a". .mpUtS of
pole (1, 1), one pair of polesyz, 2, r3) and one pair of complex th€ transfer matrix, only the residues are specific to each
conjugate polesp, ps, 74, 75) output).

ps

i . IV. IMPROVEMENTS
zeros is important and unknovenpriori. Because of these

drawbacks, we dismiss the cascade structure. As just discussed, a way to enhance the quality of

The direct form is popular in basic books, because realization is to increase the number of bits. For the
polynomials are usually written with their coefficient, iut parallel form, the pole location can be improved if the pole
is probably the worse approach, since the location of botbarameterg (see fig. 2) are encoded with more bits. The
poles and zeros cannot be controlled. Already for smatjuality of the zeros follows the precision of the residues
orders, the output of the realized filter can be totally wrongrinally, the numerical noise is decreased when the words
and in most case, the stability is lost. used to contain the signals are widen.

A structure that keeps a good control on both numerical But before increasing the number of bits, there are other
errors and pole location is the parallel form (i.e., partialess costly improvements to try. A typical problem of some
fraction expansion), see fig. 2. The good behavior regardingalization shows a permanent error of the step response.
numerical errors comes from the short ‘paths’ linking thd=ig. 3 gives a good example of this phenomenon. As a
input to the output. The input is free from numerical errorsfixing, we propose to pre-filter the input signal with the
Each pole (except the multiple poles) has the same cleaerivative’ 1 — z~1. Of course, the transfer function of the
input. The numerical errors come from the realization ofilter to be realized in parallel form has to be revised with an
the poles and the final sum. The contribution of the latteadded integrator, and becomg$z)z/(z — 1) (F(z) being
can be minimized if the smallest signals are summed upe overall transfer function to implement). This artifice
first. The ‘size’ of the signals will be given by the scalingcosts almost nothing (an extra state, two additions and the
described in section VI. multiplication of the integrator residue). It works very e

The direct and parallel forms (but not the cascade stru¢see fig. 4), because the derivative makes the signal to
ture) are sub-cases of a more general family known amnish after the transient. All residuesnultiply then a null
state-space formulation. All state-space realizationge hasignal, except the integratay (z — 1). Thus, for final time,
the same (minimum) number of states. In the state-spacethe fixed-point approximation is localized to the integrato
formulation, the further values of the states are a lineaesidue only. The control engineer reflex may make think
combination of the actual values of the states. In the génethat the derivativel — z~! adds some noise. In this case,
case, the number of operations is of the or@én?), but for  this is wrong. No significant bit is lost by the derivative.
the special cases presented above (cascade of simple celis, integrator1/(z — 1) following a derivativel — =1
direct form and parallel form), the number of operationperfectly reconstitute the signal with no added noise. Note
is of the orderO(n). For the compensatoK (z) of our also that for this same reason, the integrator added to the
example, the number of statesis= 17. A general state- parallel form can be omitted, since its output is actually
space realization will therefore require 17 more operatiorthe derivative input. The derivative idea can be extended
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Fig. 3. Fixed-point (lower line) compared with floating-pb{upper line)  Fig. 5. Step response of the same filter as fig. 4, but implesdeirt
step response of a parallel realization of a cascade of twiteBeorth  fixed-point with 20 initial delays, most of them having a npller too
filters of S order each (cutoff frequency is 0.02 sampling frequencysmall to really contribute to the outpyt

implemented withn = 32 bits for the signals anen = 16 bits for pole

parameters and residues)
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Fig. 6. Parallel realizatiod’ (=) (see fig. 2) improved with initial delays
7 (here 3) and derivative (here 1)
70'50 0.(;05 0.‘01 0.(;15 0,‘02 0,(;25 0.‘03 0,(‘335 0.‘04 0,(‘)45 0.05
time ¢ (s) significant bits are lost. To make things worse, at ‘medium’
Fig. 4. Step response of the same filter as fig. 3, but implezdemt  time, the magnitude of the modes is much smaller, but
fixed-point with the initial ‘derivative’l — z~! the impulse response should be big. Again, the residues

have to laboriously make up for the situation. The solution

here is to delay the modes until they can be big where the
further, and if necessary, more than one derivative can l@pulse response has to be big. For the initial time no longer
inserted. covered by the modes, the samples of the impulse response

The problem of the permanent error is solved at fig. 4Gan be independently and accurately controlled by dedicate

but still, the beginning of the step response is not correanultipliers. Again, the extra cost is small (one more state,
The impulse response (which is the derivative of the stepn addition and a multiplication for every inserted delay),
response) is also wrong at initial time. Again, the reasohut the result is comparatively spectacular (see fig. 5).
of this comes from the approximative zeros. Actually, the Fig. 6 summarizes the derivative and delay artifice de-
signals generated by the poles (modes) are big at initiatribed above, and the next section gives more details about
time and quickly vanish. However, at the beginning, thé¢he computation of the parametessr, a andb of fig. 2
impulse response should be small. This is unfortunatand 6.
because to generate such a response, the residues have ts for a given filter, the poles are getting closer to 1
make differences of big and close numbers and lots afhen the sampling rate increases, for transfer functioh wit

2867



high sampling rate, it has been proposed [1], [6] to replace VI. SCALING

-1 — . .
Fhe deIayhoperatlpf . by :'he delta ohpertr;\toi f_ Zf ﬁ t% | Assume that the fixed-point numbers for the parameters
Improve the realization. However, the benefit of the delta r, a and b are m-bit signed integers (i.e., covering the

operator greatly depends on the structgre. For a paral@nge[_Qm,l om=1 _ 1)). Theoretically, scaling consist
form, both operators are essentially equivalent. in splitting a number into two factors, ore priori and
V. COMPUTATION OF THE PARAMETERS the other such that the product gives the number. However,

Assume that the transfer function to realizeFig(z). To  in practice, in order to minimize the needs of computing
improve the realizationp > 0 initial derivatives anch > 0 Power, thea priori factor is chosen a power of 2, because in

initial delays are added. such case, the multiplication can be replaced by the (much
After the first initial derivative, the residual transferfaster) logical shift. The binary logarithm of tree priori
function is factor gives the position of the period in the number in
z—1 binary radix. It is called the exponei, and is optimally
Fi(z) = > [Fo(2) = ao] defined such as the other factor, called the mantigsis
As the step response &f (=) vanishes for infinite time, we Maximized.
EaveFrl](lz i 0 gnd ap = 1_70(1). For. more derivatives, we llog, (f/(2m~1 = 1))| for f >0
ave the following recursive equations = _
g a llog, (£/(~=2m1)|  for f <0

z—1
F(z) = 2 [Fim1(2) = ai] ai-1 = Fia(1) where f is the floating-point number (here the parameters
fori=1...m. p, r, a Or b), log, the binary logarithm, andlz| the integer
After the first initial delay, the residual transfer functio part of z. The mantissa/ is given by

b
ecomes M= /25 4 0.5]

1
Fm+1(z) = ; [Fm(z) — bo}
. . . The mantissalM/, which is the fixed-point parameter, is
As the impulse response &%, (z) is null for time 0, we in the rangeM € [-2m-1 2m~1 _ 1]. Moreover, the

Z?Q/ebo = £im(00). For more delays, the recursive equatlorL?:orresponding floating-point parameyé(which is approx-

1 imatively the original floating-point parametg? can be
Frnti(2) = = [Fntio1(2) = bi1], bioy = Fppio1(00)  computed by
z 7 E
fori=1...n. f=M-2
Let us denote the transfer function to implement infhe effects of the quantization of the parametgrbe-
parallel form F’(z). This function is equal taF7.1n(2).  coming f can therefore be studied by simulation and by

The partial fraction expansion is analysis.
N r Assume that the computer words ardit signed integers
F'(z) =m0+ Z (2_716)“ (i.e., covering the rang¢-2"—1 271 — 1]). All signals
i=1 ! (including internal signals) must be scaled in order to

wherer is the coefficient ofeed-throughr; the residues, never exceed the computer word boundaries, while being
andc; the poles with multiplicityu;. The partial fraction as large as possible to minimize the effects of roundoff
expansion is known to be ill-posed. When two poles aref internal signals. For LTI (linear time invariant) system
close, the computation of the residues can lead to numericgd considered here, there is a theory (see for example [2])
problems. To avoid this, we recommend in these casesat allows the exact computation of the maximum and
to extend the partial fraction expansion by increasing theiinimum reached by any internal signal. Let us focus on
multiplicity of the close poles. The sum (V) will contain one particular internal signal of the system of fig. 1. The
more terms with residues that should be theoretically nulsignal s can be any internal signal in the implementation
Then we compute the numerical values of the residues ky any of the transfer functio®’(z), G(z) or H(z). Let us

a least mean square regression on the impulse response:a@if T () the transfer function linking the input signdlto
F’(z) with respect to the linear combination of the modeshe signals. The signald is assumed to be within the same
(a mode is the impulse responseldiz —c;)*?). This may range as the output In practice, this makes sens, because
cost a little more computing power (two multiplications bythe digitizer of the outpuy codes the quantity to control,

added poles), but it is numerically well-posed. let us say, im-bit signed integers. It is also assumed that
Poles are real or complex conjugate. If the polés real, a white noise is a possible signal for the inpiit This
then we have means that a given sample can be any thing in the range
Di =i [—2m0—1 9no=1 _ 1] independently of what it was before.
If ¢; is complex conjugate with; 1, we have Note that when this assumption is not true, the input is
actuallyr and notd, and an appropriate filtef/ has to be
pi = Ci+ Ciya Pit1 = —CiCit1 inserted (see fig. 1) such thdtcan be a white noise.
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The signals can be computed for any input by a
convolution

s(k) = h(i)d(k — i)
=0

whereh(k) is the impulse response @f(z). For k — oo,

the newly computed boundB, all signals can be properly
scaled, and the final pass generates the fixed-point algorith
in C.

Note that there is no disturbances in the diagram of
fig. 1. Actually, the computation of the bound$ during
passes 1 and 2 should also take into account any potential

the value ofs(k) can be maximized if the magnitude of yisyyrbance. This can be done by computing the bouds
d(k — 1) is maximized and its sign the same as the sign Gy each system inputd(and disturbances) in turn (the
h(i). Similarly, the minimum ofs(k) is reached when the ihers being set to zero), and eventually summing them up.

magnitude ofi(k —1) is maximized and its sign opposite to

the sign ofi.(i). Thus, the boundd and B of the signals €
[A, B] are

A==2""N"hy (k) + (20 = 1) ho(k)
B=-2"""%"h_(k)+ (2 =1)) hy(k)

VIII. CONCLUSION

There are an infinity of fixed-point realizations of a
given transfer function. The goal for the engineer is to
find one that works well for a low computing power.
As the task is not easy and costly to perform by hand,
a way to automatically generate the C-code algorithm is

where h (k) is h(k) if h(k) > 0 and O otherwise, and proposed. The choice of the ‘best’ realization structure is

h_(k) = h(k) — hy (k). Note that when the bounds ef

motivated, and two artifices that allow one (when needed)

have the same magnitude, the expression is simpler, becawsignificantly improve the quality of the realization for a
> |h(k)| = [Ih]l1. As in our case, the bounds differ only jow cost of computing power are proposed.

by one, we can redefind and B in a slightly conservative

way

A=-B B = (2%~ |l

o . 2
In a similar way to the scaling of the parameters, the scaling

of the signals is given by

X = |log, (B/(2"' = 1))]

where N is the fixed-point representation efwith a bit
shift of X. The corresponding floating-point signalds

§=N-2%
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a control scheme like in fig. 1, an s-function is generated
for F(z), H(z) and K(z). These s-functions simply per-
form the filter computation in floating-point (with rounded
parameters), following the computation diagrams of fig. 2
and 6. Only one simple operation (e.g., one addition or one
multiplication) is performed by statement. The s-function
output all internal signals, and of course the filter output.

The diagram of fig. 1 is run in Simulink with an impulse
signal as input/ until the outputy vanishes. The magnitude
of this impulse signal i27°~! — 1. The internal signals
computed by the s-functions are actually the impulse re-
sponse of all internal signals. The 1-norm is used to get
the boundB (and consequentiyl) of every internal signals
according to the theory described above. The bouBdsf
the signalss at the output of the residues(see fig. 2) and
at the output of the coefficientsandb (see fig. 6) are used
to rearrange the order of the computation of the final sum.
The new sum starts with the signals with smaller and
adds progressively signals with growing bouBd

Then, the s-functions are corrected with regard to the
order of the final sum, and a second pass is run. With
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