
Fixed-point digital controller

Olivier Chételat
Swiss center of electronics and microtechnology

CSEM SA, Jaquet-Droz 1
2007 Neuchâtel; Switzerland
olivier.chetelat@csem.ch

Abstract— After system modeling, controller synthesis and
closed-loop simulation, the control engineer has still to imple-
ment the controller. In many applications, the controller must
be realized with a fixed-point digital processor. The translation
of the synthesized controller to its fixed-point realization is
intrinsically difficult, because there are an infinite number
of solutions and the optimum criterion is not well defined.
One would like a fixed-point controller to require as little as
possible computing power while at the same time to be the
closest from the ideal controller, i.e., the synthesized controller.
If it is difficult to define and reach the optimal controller, i t is
already not obvious to find a sub-optimal but working fixed-
point controller. This paper presents the key points that allow
a computer to automatically derive a fixed-point realization
of any given discrete-time transfer function. The derivation
can be controlled by three parameters, one being the number
of initial derivative, another the number of initial delay and
the last one the number of bits of the processor words. An
increase of any of these three parameters enhances the quality
of the realization for a relatively small extra cost of computing
power.

I. INTRODUCTION

One may think that in a near future all controllers will be
implemented with floating-point arithmetics and that fixed-
point controllers are relics of the first age of computer
science. The decreasing cost of floating-point micropro-
cessors and the possibility of using the same (floating-
point) controller for simulation and real experiment sup-
port this opinion. However, for mass production, one can
argue that a fixed-point processor is smaller, simpler and
consequently cheaper, and it is worth to invest more effort
on implementation issues. Since the power consumption of
the controller is directly related to the computing power,
in the applications the processor is a significant user of
battery power, a fixed-point controller generally means a
much longer autonomy. Moreover, for micro-controllers, the
silicon saved by a smaller fixed-point ALU (arithmetic logic
unit) can be used for other functionalities. Last but not
least, for a given technology, a fixed-point controller can
be significantly faster than its floating-point counterpart.

However, beside the not-obvious extra work required, a
fixed-point controller implementation is subject to detrimen-
tal effects due to saturation, roundoff of internal signals,
and roundoff of parameters. All these effects can lead to
controller fragility, instability, longer settling time,perma-
nent error, noise, etc. In addition, the number of possible
realizations is infinite and the optimal realization not well

This project has been partly supported by the Swiss government.

defined and application dependent—some applications need
more robustness while others require minimum computing
power, or minimum noise, etc. Many of these desired
specifications are actually contradictory to some extent.
However, a good compromise can be achieved without too
much effort when the good options are chosen. Below,
we will give a set of motivated choices (design drivers)
that will allow a computer to automatically generate the
C code of a satisfactory fixed-point realization of any
discrete-time transfer function, with minimum user inter-
action. The latter point is important, since many fixed-
point development tools (e.g. Matlab) provide simulation
support, but no or not much help for the translation process
‘transfer function→ fixed-point control algorithm’ (this is
all the more surprising that the authors of several papers—
see references in [1]—actually claim that they wrote such
a tool). Consequently, many fixed-point implementations
are still in practice tediously derived by hand. This is
costly, time consuming and error prone. Obviously, in many
applications, a program automatically generating a decent
implementation of a fixed-point controller is a significant
advantage. In our company, such a program has been written
in Matlab and is used to quickly implement fixed-point
controllers. The theory of this program is explained in this
paper and illustrated by an example.

Our first design driver concerns the saturations (or over-
flows) that we do not allow. This choice is first motivated by
the existence of an exact and non-conservative theory (see
for example [2]) that supports an easy computation of the
correct scaling of all internal signals of the controller. With
this scaling, no saturation is needed because the maximum
absolute value of any signal cannot be exceeded. However,
the maximum absolute value of every signal can be reached,
which makes scaling optimal. The second motivation for a
saturation-free algorithm comes from the detrimental non-
linear effects of saturations that can easily upset a great deal
of the care brought to the controller design.

Then, as the scaling is optimal, we can hope for minimal
effects of rounding of internal signals. Indeed, our second
driver is to go on in this direction and chose a controller
realization that minimizes the numerical noise. Mathemati-
cal rigor is here more difficult to keep, but some statistical
approaches have been proposed. A good rule of thumb is
to avoid cascading subsystems. Any input of the controller
is free of numerical noise (by definition), while the output
of any subsystem is already polluted with numerical noise

that can just be further amplified. Therefore, the shorter is
the ‘path’ from an input to an output, the better. Another
pragmatic rule is to sum up small numbers first.

The third design driver deals with efficiency. As the main
advantages of fixed-point over floating-point implementa-
tions are related with computing power, it is important
to keep the number of operations as low as possible.
Many studies (for example [3], [4]) work with a state-
space representation. This has the big advantage of a good
mathematical framework able to describe many (but not
all) possible realizations of a controller, each of them
corresponding roughly to a given state matrix. This matrix
is square and mostly zero for the most efficient realizations
(sparse matrices [5]), but in general, it contains numbers
different from zero. For example, a ten by ten matrix
would generally describe a realization with102 non-trivial
multiplications while in most cases, 10 (and possibly less)
would suffice.

For some realization, the roundoff of the parameters may
significantly shift the zeros/poles/gain of a transfer function.
It is not rare that a robust controller becomes fragile or
even unstable for some fixed-point realization. Some re-
searches focus on this point and propose methods supported
by solid theoretical backgrounds to find realizations that
save as much as possible the robustness properties of the
synthesized controller. However, these optimizations cannot
simultaneously follow the second and third design driver.
Our approach is to relax this criterion. We consider that
the two previous design drivers are more important. A
realization can always be rigorously checkeda posteriori. If
it is robust enough, no problem. Otherwise, we try and solve
the problem with a larger number of bits for the parameters.
This will take more computing power, but probably less than
for a random state matrix. In addition, the numerical noise
will be lower.

However, an optimized accuracy of the poles/gain of the
transfer function can be required without conflict with the
other design drivers. This is the fourth design driver.

The zeros are the looser. Their accuracy cannot be
directly and perfectly optimized. However they can be
indirectly improved through an optimization of the accuracy
of the impulse or the step response. This is the fifth design
driver.

For the sixth design driver, one may wish that the ap-
proach be efficiently extensible to MIMO systems (multiple
inputs, multiple outputs).

The last design driver is the possibility to easily enhance
the quality of the realization when needed. Obviously, one
can first increase the number of bits used (for example,
to switch from 16-bit to 32-bit implementation). However,
before using the ‘brute force’, other possibilities using less
computing power would be welcome.

Section II recalls the standard control architecture. Sec-
tion III discusses about different realizations of the same
transfer function. The parallel form is shown to be the best
trade-off. The next section presents some artifices (not pub-

H(z) K(z) G(z)

F (z)

d r e v u y
w

−

Fig. 1. System architecture

lished to the best of our knowledge) that can significantly
improve a realization for a low additional cost of computing
power. Section V develops the mathematical formulation
of the parameters. The section that follows deals with
scaling and finally, the last section before the conclusion
describes our approach to automatically generate the fixed-
point algorithm of any discrete-time transfer function.

II. CONTROL ARCHITECTURE

A controller is not limited to the compensatorK(z).
Fig. 1 shows the diagram of the complete system. A feed-
forward signal is generated by the transfer functionF (z).
The role of the transfer functionH(z) is important. In
the absence of disturbances and model uncertainties, the
signal r (output of H(z)) should be exactly the signaly
(output ofG(z)).

The feed-forward transfer functionF (z) would be ideally
the inverse of the system to controlG(z). However, in many
cases, the system to controlG(z) has some non-minimum
phase zeros. Consequently, the inverse is either non-causal
or unstable.

To make the feed-forward transfer functionF (z) both
causal and stable, one can pre-filter the desired signald
(typically with zeros that cancel the unstable poles). In
practice, the pre-filter must be distributed both onF (z)
and H(z), because the zero/pole cancellation must be
analytically done before any implementation. Additionally,
one would need to limit the feed-forward signalw, because
this signal would be infinite every time the desired signald
is changed. A low-pass pre-filter will generally solve the
problem. In this case, one has the choice either to use
a dedicated pre-filter directly filteringd, or to have two
pre-filters, one embodied inF (z) and the other inH(z).
The first option seems more attractive, because only half
of the operations are needed for the pre-filtering. However,
cascading two fixed-point filters may significantly increase
the numerical noise.

III. STRUCTURE

At least for the compensatorK(z), a good location of
poles and zeros is important to prevent the controller to
become fragile. A good way to keep a good control on
both poles and zeros is to cascade simple cells of one pole
and possibly one zero. However, we have just seen above
that cascading is a risky approach and need at least to take
into account the problem of the numerical noise. Moreover,
the order of the cells and the way poles are paired with

u

y

r0

z−1 r1

p1 r2

z−1

p2

z−1

p2

r3

p4 r4

z−1 z−1 r5

p5

Fig. 2. Parallel form—illustration with a feed-through (r0), one single
pole (p1, r1), one pair of poles (p2, r2, r3) and one pair of complex
conjugate poles (p4, p5, r4, r5)

zeros is important and unknowna priori. Because of these
drawbacks, we dismiss the cascade structure.

The direct form is popular in basic books, because
polynomials are usually written with their coefficient, butit
is probably the worse approach, since the location of both
poles and zeros cannot be controlled. Already for small
orders, the output of the realized filter can be totally wrong,
and in most case, the stability is lost.

A structure that keeps a good control on both numerical
errors and pole location is the parallel form (i.e., partial
fraction expansion), see fig. 2. The good behavior regarding
numerical errors comes from the short ‘paths’ linking the
input to the output. The input is free from numerical errors.
Each pole (except the multiple poles) has the same clean
input. The numerical errors come from the realization of
the poles and the final sum. The contribution of the latter
can be minimized if the smallest signals are summed up
first. The ‘size’ of the signals will be given by the scaling
described in section VI.

The direct and parallel forms (but not the cascade struc-
ture) are sub-cases of a more general family known as
state-space formulation. All state-space realizations have
the same (minimum) numbern of states. In the state-space
formulation, the further values of the states are a linear
combination of the actual values of the states. In the general
case, the number of operations is of the orderO(n2), but for
the special cases presented above (cascade of simple cells,
direct form and parallel form), the number of operations
is of the orderO(n). For the compensatorK(z) of our
example, the number of state isn = 17. A general state-
space realization will therefore require 17 more operations

than, e.g., a parallel form. This is significant, because for
the same expense, one can use numbers more than four
times (

√
17) larger. In other words, if a general realization

is proved best for a 16-bit implementation, a parallel form
can still challenge it with a 64-bit implementation.

Other well-known structures (not described by the state-
space formalism) include the lattice structure, and the LC
structure. They use twice as many multiplications as the
parallel form, but in some applications, they have interesting
properties. The lattice structure is especially useful for
adaptive filtering, because its stability can be guaranteed
if its parameters are kept within the range] − 1, 1[. The
parallel form has a similar property (the stability can be
checked on the poles), but the structure of the parallel
form is not well-posed and change if the poles are real
or complex, or, single or multiple. The LC structure makes
easy to guarantee that the zeros alternate with the poles.
This property is important, for example, for controllers that
must stay passive.

The cascade form can easily and efficiently be used
for MIMO system (the poles are shared by all inputs of
the transfer matrix, only the residues are specific to each
output).

IV. IMPROVEMENTS

As just discussed, a way to enhance the quality of
a realization is to increase the number of bits. For the
parallel form, the pole location can be improved if the pole
parametersp (see fig. 2) are encoded with more bits. The
quality of the zeros follows the precision of the residuesr.
Finally, the numerical noise is decreased when the words
used to contain the signals are widen.

But before increasing the number of bits, there are other
less costly improvements to try. A typical problem of some
realization shows a permanent error of the step response.
Fig. 3 gives a good example of this phenomenon. As a
fixing, we propose to pre-filter the input signal with the
‘derivative’ 1− z−1. Of course, the transfer function of the
filter to be realized in parallel form has to be revised with an
added integrator, and becomesF (z)z/(z − 1) (F (z) being
the overall transfer function to implement). This artifice
costs almost nothing (an extra state, two additions and the
multiplication of the integrator residue). It works very well
(see fig. 4), because the derivative makes the signal to
vanish after the transient. All residuesr multiply then a null
signal, except the integrator1/(z−1). Thus, for final time,
the fixed-point approximation is localized to the integrator
residue only. The control engineer reflex may make think
that the derivative1 − z−1 adds some noise. In this case,
this is wrong. No significant bit is lost by the derivative.
An integrator1/(z − 1) following a derivative1 − z−1

perfectly reconstitute the signal with no added noise. Note
also that for this same reason, the integrator added to the
parallel form can be omitted, since its output is actually
the derivative input. The derivative idea can be extended

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

time t (s)

Fig. 3. Fixed-point (lower line) compared with floating-point (upper line)
step response of a parallel realization of a cascade of two Butterworth
filters of 5th order each (cutoff frequency is 0.02 sampling frequency,
implemented withn = 32 bits for the signals andm = 16 bits for pole
parameters and residues)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

time t (s)

Fig. 4. Step response of the same filter as fig. 3, but implemented in
fixed-point with the initial ‘derivative’1 − z−1

further, and if necessary, more than one derivative can be
inserted.

The problem of the permanent error is solved at fig. 4,
but still, the beginning of the step response is not correct.
The impulse response (which is the derivative of the step
response) is also wrong at initial time. Again, the reason
of this comes from the approximative zeros. Actually, the
signals generated by the poles (modes) are big at initial
time and quickly vanish. However, at the beginning, the
impulse response should be small. This is unfortunate,
because to generate such a response, the residues have to
make differences of big and close numbers and lots of

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

time t (s)

Fig. 5. Step response of the same filter as fig. 4, but implemented in
fixed-point with 20 initial delays, most of them having a multiplier too
small to really contribute to the outputy

u y

z−1

− z−1 z−1 z−1

a0

b0

b1

b2

F ′(z)

Fig. 6. Parallel realizationF ′(z) (see fig. 2) improved with initial delays
(here 3) and derivative (here 1)

significant bits are lost. To make things worse, at ‘medium’
time, the magnitude of the modes is much smaller, but
the impulse response should be big. Again, the residues
have to laboriously make up for the situation. The solution
here is to delay the modes until they can be big where the
impulse response has to be big. For the initial time no longer
covered by the modes, the samples of the impulse response
can be independently and accurately controlled by dedicated
multipliers. Again, the extra cost is small (one more state,
an addition and a multiplication for every inserted delay),
but the result is comparatively spectacular (see fig. 5).

Fig. 6 summarizes the derivative and delay artifice de-
scribed above, and the next section gives more details about
the computation of the parametersp, r, a and b of fig. 2
and 6.

As for a given filter, the poles are getting closer to 1
when the sampling rate increases, for transfer function with

high sampling rate, it has been proposed [1], [6] to replace
the delay operatorz−1 by the delta operatorδ = z − 1 to
improve the realization. However, the benefit of the delta
operator greatly depends on the structure. For a parallel
form, both operators are essentially equivalent.

V. COMPUTATION OF THE PARAMETERS

Assume that the transfer function to realize isF0(z). To
improve the realization,m ≥ 0 initial derivatives andn ≥ 0
initial delays are added.

After the first initial derivative, the residual transfer
function is

F1(z) =
z − 1

z

[

F0(z) − a0

]

As the step response ofF1(z) vanishes for infinite time, we
haveF1(1) = 0 anda0 = F0(1). For more derivatives, we
have the following recursive equations

Fi(z) =
z − 1

z

[

Fi−1(z) − ai−1

]

ai−1 = Fi−1(1)

for i = 1 . . .m.
After the first initial delay, the residual transfer function

becomes
Fm+1(z) =

1

z

[

Fm(z) − b0

]

As the impulse response ofFm+1(z) is null for time 0, we
haveb0 = Fm(∞). For more delays, the recursive equations
are

Fm+i(z) =
1

z

[

Fm+i−1(z) − bi−1

]

, bi−1 = Fm+i−1(∞)

for i = 1 . . . n.
Let us denote the transfer function to implement in

parallel form F ′(z). This function is equal toFm+n(z).
The partial fraction expansion is

F ′(z) = r0 +

N
∑

i=1

ri

(z − ci)µi

wherer0 is the coefficient offeed-through, ri the residues,
and ci the poles with multiplicityµi. The partial fraction
expansion is known to be ill-posed. When two poles are
close, the computation of the residues can lead to numerical
problems. To avoid this, we recommend in these cases
to extend the partial fraction expansion by increasing the
multiplicity of the close poles. The sum (V) will contain
more terms with residues that should be theoretically null.
Then we compute the numerical values of the residues by
a least mean square regression on the impulse response of
F ′(z) with respect to the linear combination of the modes
(a mode is the impulse response of1/(z− ci)

µi). This may
cost a little more computing power (two multiplications by
added poles), but it is numerically well-posed.

Poles are real or complex conjugate. If the poleci is real,
then we have

pi = ci

If ci is complex conjugate withci+1, we have

pi = ci + ci+1 pi+1 = −cici+1

VI. SCALING

Assume that the fixed-point numbers for the parameters
p, r, a and b are m-bit signed integers (i.e., covering the
range [−2m−1, 2m−1 − 1]). Theoretically, scaling consist
in splitting a number into two factors, onea priori and
the other such that the product gives the number. However,
in practice, in order to minimize the needs of computing
power, thea priori factor is chosen a power of 2, because in
such case, the multiplication can be replaced by the (much
faster) logical shift. The binary logarithm of thea priori
factor gives the position of the period in the number in
binary radix. It is called the exponentE, and is optimally
defined such as the other factor, called the mantissaM is
maximized.

E =

{

blog2

(

f/(2m−1 − 1)
)

c for f ≥ 0

blog2

(

f/(−2m−1)
)

c for f < 0

wheref is the floating-point number (here the parameters
p, r, a or b), log2 the binary logarithm, andbxc the integer
part of x. The mantissaM is given by

M = bf/2E + 0.5c

The mantissaM , which is the fixed-point parameter, is
in the rangeM ∈ [−2m−1, 2m−1 − 1]. Moreover, the
corresponding floating-point parameterf̃ (which is approx-
imatively the original floating-point parameterf) can be
computed by

f̃ = M · 2E

The effects of the quantization of the parametersf be-
coming f̃ can therefore be studied by simulation and by
analysis.

Assume that the computer words aren-bit signed integers
(i.e., covering the range[−2n−1, 2n−1 − 1]). All signals
(including internal signals) must be scaled in order to
never exceed the computer word boundaries, while being
as large as possible to minimize the effects of roundoff
of internal signals. For LTI (linear time invariant) systems
as considered here, there is a theory (see for example [2])
that allows the exact computation of the maximum and
minimum reached by any internal signal. Let us focus on
one particular internal signals of the system of fig. 1. The
signal s can be any internal signal in the implementation
of any of the transfer functionF (z), G(z) or H(z). Let us
call T (z) the transfer function linking the input signald to
the signals. The signald is assumed to be within the same
range as the outputy. In practice, this makes sens, because
the digitizer of the outputy codes the quantity to control,
let us say, inn0-bit signed integers. It is also assumed that
a white noise is a possible signal for the inputd. This
means that a given sample can be any thing in the range
[−2n0−1, 2n0−1 − 1] independently of what it was before.
Note that when this assumption is not true, the input is
actuallyr and notd, and an appropriate filterH has to be
inserted (see fig. 1) such thatd can be a white noise.

The signals can be computed for any inputd by a
convolution

s(k) =

∞
∑

i=0

h(i)d(k − i)

whereh(k) is the impulse response ofT (z). For k → ∞,
the value ofs(k) can be maximized if the magnitude of
d(k − i) is maximized and its sign the same as the sign of
h(i). Similarly, the minimum ofs(k) is reached when the
magnitude ofd(k− i) is maximized and its sign opposite to
the sign ofh(i). Thus, the boundsA andB of the signals ∈
[A, B] are

A = −2n0−1
∑

h+(k) + (2n0−1 − 1)
∑

h−(k)

B = −2n0−1
∑

h−(k) + (2n0−1 − 1)
∑

h+(k)

where h+(k) is h(k) if h(k) ≥ 0 and 0 otherwise, and
h−(k) = h(k) − h+(k). Note that when the bounds ofs
have the same magnitude, the expression is simpler, because
∑

|h(k)| = ‖h‖1. As in our case, the bounds differ only
by one, we can redefineA andB in a slightly conservative
way

A = −B B = (2n0−1 − 1)‖h‖1

In a similar way to the scaling of the parameters, the scaling
of the signals is given by

X = blog2

(

B/(2n−1 − 1)
)

c s̃ = N · 2X

whereN is the fixed-point representation ofs with a bit
shift of X . The corresponding floating-point signal iss̃.

VII. SEQUENCE OF COMPUTATION

In practice, the automatic generation of fixed-point code
from a transfer functionF (x) needs three passes. At the
first pass, Matlab-Simulink s-functions are generated. For
a control scheme like in fig. 1, an s-function is generated
for F (z), H(z) and K(z). These s-functions simply per-
form the filter computation in floating-point (with rounded
parameters), following the computation diagrams of fig. 2
and 6. Only one simple operation (e.g., one addition or one
multiplication) is performed by statement. The s-functions
output all internal signalss, and of course the filter output.

The diagram of fig. 1 is run in Simulink with an impulse
signal as inputd until the outputy vanishes. The magnitude
of this impulse signal is2n0−1 − 1. The internal signalss
computed by the s-functions are actually the impulse re-
sponse of all internal signals. The 1-norm is used to get
the boundB (and consequentlyA) of every internal signals
according to the theory described above. The boundsB of
the signalss at the output of the residuesr (see fig. 2) and
at the output of the coefficientsa andb (see fig. 6) are used
to rearrange the order of the computation of the final sum.
The new sum starts with the signals with smallerB, and
adds progressively signals with growing boundB.

Then, the s-functions are corrected with regard to the
order of the final sum, and a second pass is run. With

the newly computed boundsB, all signals can be properly
scaled, and the final pass generates the fixed-point algorithm
in C.

Note that there is no disturbances in the diagram of
fig. 1. Actually, the computation of the boundsB during
passes 1 and 2 should also take into account any potential
disturbance. This can be done by computing the boundsB
for each system input (d and disturbances) in turn (the
others being set to zero), and eventually summing them up.

VIII. CONCLUSION

There are an infinity of fixed-point realizations of a
given transfer function. The goal for the engineer is to
find one that works well for a low computing power.
As the task is not easy and costly to perform by hand,
a way to automatically generate the C-code algorithm is
proposed. The choice of the ‘best’ realization structure is
motivated, and two artifices that allow one (when needed)
to significantly improve the quality of the realization for a
low cost of computing power are proposed.

REFERENCES

[1] H. Hanselmann, “Implementation of digital controllers: A survey,”
Automatica, vol. 23, pp. 7–32, 1987.

[2] M. Steinbuch, G. Schootstra, and H.-T. Goh, “Closed-loop scaling
in fixed-point digital control,”IEEE transactions on control systems
technology, vol. 2, no. 4, pp. 312–317, December 1994.

[3] J. Whidborne, D.-W. Gu, J. Wu, and S. Chen, “Optimal controller
and filter realisations using finite-precision floating point arithmetic,”
submitted to Int. J. Systems Science, 2003.

[4] J. Wu, S. Chen, J. Whidborne, and J. Chu, “A unified closed-loop
stability measure for finite-precision digital controllerrealizations im-
plemented in different representation schemes,”IEEE trans. automatic
control, vol. 48, no. 5, pp. 816–822, May 2003.

[5] M. Gevers and G. Li,Parametrizations in control, estimation and
filtering problems: accuracy aspects. London: Springer Verlag, 1993.

[6] G. Orlandi and G. Martinelli, “Low sensitivity recusivedigital filters
obtained via the delay replacement,”IEEE trans. circuits and systems,
vol. 31, no. 1, pp. 453–460, 1984.

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM08.4
	Page0: 2864
	Page1: 2865
	Page2: 2866
	Page3: 2867
	Page4: 2868
	Page5: 2869

