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H-Infinity Parameter Estimation for State-Space Models

Kiriakos Kiriakidis and Richard T. O’Brien, Jr.

Abstract— This paper investigates the nonlinear problem
of parameter identification for systems with time-varying
state-space models using the idea of an extended filter.
To treat uncertainty in the data or the model, the paper
follows the approach of H-infinity filtering. It shows that the
parameter estimation error satisfies exactly albeit locally the
prescribed gain criterion as long as the extended filter meets
a modified—tighter—criterion. In the infinite horizon case,
the paper also shows that the modified H-infinity criterion
leads to an asymptotically stable state estimation error
without assuming zero-state observability of the associated
error equation.

I. INTRODUCTION

Over the last decade, the problem of estimation and
filtering in an H. setting associated with discrete-
time models has been investigated in the literature
[1], 2], [3], [4]- The particular problem of parameter
identification using an 7H., criterion, however, has
received little attention. For a time-invariant system,
a technique based on transforming its ARMA model
to a state-space one has been reported [5]. Using the
extended filter approach [6], an H..-based parameter
identification algorithm—with guaranteed convergence
and performance for time-invariant models—has been
proposed [7].

The main issue with parameter estimation based on
state-space models is that it results in the intractable
problem of solving a Hamilton-Jacobi equation associ-
ated with a nonlinear state-space model. Linearization
of the model is an alternative but it implies that the H
criterion is no longer met exactly. Another is an issue
intrinsic to the Lo gain framework that encompasses the
Hoo criterion. To prove that the state estimation error
equation is asymptotically stable one must assume it
to be zero-state observable from the parameter estima-
tion error; refer to [8]. At the same time, zero-state
observability is difficult (if not impossible) to check.
Although the issue of asymptotic stability does not arise
in the finite horizon case, it is essential in parameter
identification where the filter’s horizon is infinite.

First, the paper shows that one can guarantee that
the Ho, performance criterion is met albeit locally by
designing the extended filter in order to meet a slightly
modified H ., criterion. Second, the paper analyzes the
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internal stability of the filter and finds that the modified
Hoo criterion circumvents the zero-state observability
assumption and implies asymptotic stability, at least
locally.

The next section presents the modeling assumptions
and the filter structure. Section III defines the filter’s
objective and provides a pointwise sufficient condition in
order to meet it. Then, Section IV presents the extended
filter’s modified objective and design. The analysis of
the extended filter’s performance follows in Section V.
Section VI investigates the internal stability of the
(exact) augmented state error equation and Section VII
concludes the paper.

II. MODEL ASSUMPTIONS

Consider the following set of linear time-varying
models:

Ai(0) 2
01(9) x; + wp

Ti41
Ui

(2.1)

where the sequence w; is a disturbance. (To simplify
presentation but without loss of generality, the distur-
bance term has been omitted from the state equation.)
Assumption 1: The parameter vector, 6, is constant
and belongs to the set DyCR™.
Assumption 2: The state equation is stable for all
0cDy.
Let Hv||§7[07(]] = ZEE)] v} v, where J can be finite or
J = 0o, denote the L5 norm of a sequence vj.
Assumption 3: The disturbance w is such that
Hw”;[o,J] < 00.
Based on the Assumptions 1-3, the trajectories of
the state equation lie within a set D,CR"=. From
Assumption 3, if J = oo, then the disturbance w;—0 as
[—00; thus, ||w;]|<co for all [€]0, 00).
To extract the unknown parameters using state-
estimation methods, the parameter vector, 6, needs to
be part of an augmented state vector as follows:

_| T
Because the parameter vector is constant, its drift

dynamics are
01+1 =0,
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In turn, one obtains the augmented model below:

21 = filz)
w = h(z)+w
0, = Lz (2.2)

where the nonlinear mappings f and h, and the matrix
L are given in the Appendix. As an estimator for the pa-
rameter vector or, equivalently, the output-of-interest,
#, one may assume the following filter structure, based
on the model (2.2):

Zir = filZ) + Ny — hi(2)]

6 = L3 (2.3)

where N; is the filter’s gain. A projection mechanism
may be employed to guarantee that z;€D, and 6;€Dy.

III. PERFORMANCE CRITERION

The design of the filter’s gain is based on the dynam-
ics of the error in the state estimate, e, ; := 2; — 2;, and
the error in the output-of-interest, eg; := 0; — él. The
governing equations for the above errors follow from
(2.2) and (2.3)

€141 filz) — fi(2) — Nillu(21) — ha(Z) + wi]
€o1 = LEZJ (3.1)
In the H., setting, the objective of the filter is

to make the Lo gain from the disturbance w to the
estimation error ey less than some (time-invariant)
tolerance 7. In this sense, a small disturbance will
produce a small error in the output-of-interest. At the
same time, a small tolerance will result in a robust
filter. Using a time-varying tolerance, +;, has certain
advantages, which have been investigated in [7]. With
this in mind, one may express the filter’s objective as
follows:

2 2
||€«9||2,[0,J] < ||wa||27[0,J] + ef,o Re:o (3.2)

where J is the filter’s horizon and the second term on
the right-hand-side reflects initial condition error.

Lemma 4: Consider any trajectory of the error dy-
namics (3.1). Suppose there exists a p.d. function V; =
Vi(es,1) such that Vy(e,0) = ezo Re, and

2 2
AVi(ez) <37 lwilly = lle.ll3 (3-3)

where AVi(e, ;) := Viti(es141)—Vi(es,). Then, inequal-
ity (3.2) holds.

Proof: From the hypothesis, letting the index [ vary
from 0 to J — 1 and adding the resulting inequalities
one gets

Vilezs) < llvwl o — lleall3 o,y + Volezo)  (3:4)

which proves the proposition. [ ]
In the sequel, the design and analysis of the extended
filter assume a time-varying tolerance, which the time-
invariant tolerance is a special case of.

IV. THE EXTENDED FILTER

The problem of solving for the filter’s gain, NV;, based
on the exact error equation (3.1) can be circumvented by
using the concept of the extended filter [6]. Applying
the mean value theorem, one expresses the nonlinear
mappings in (2.2) as follows (p. 867, [9])

filz) [+ FGE) 2 —2)+ 05,2 — 2)
hi(zi) = hi(z)+ Hi(Z)(z — Z2) + 92,21, 20 — 21)
(4.1)
where F' and H, given in the Appendix, denote the

Jacobian matrices of f and h, respectively.
From (4.1) and (3.1), one gets the error equation

[Fi(2) — NiHy(2)] ezq — Niwi + 93.1(21,€2.1)
(4.2)

€z l+1 =
eg; = Ley;

The remainder terms satisfy growth bounds as follows
(p. 147, [10]):

1950 (21, e0)|l2<pillell3, i =1,2,3

for some positive p;.

From the modeling assumptions in Section II, it
follows that ||F}(%)| and || H;(%)|, where || - || denotes
a matrix norm, are bounded for all [€[0, c0).

Example 5: Consider the following scalar model:

Ti+1 = O

Y= (4.3)
where €Dy = {0||0|<0.5} and zeD, = {z||z|<1.5}.

The Jacobian matrix F' evaluated along an estimated
trajectory Z is

X + wp

6
R = |0 (1.49)
Using the absolute matrix norm [11], one has
IE (2] < 2 max(|@y], |, 1)<3. (4.5)

In accordance with the concept of the extended filter
[6], the design of (2.3) will be based on the following
approximate error dynamics:

F.1(z2)e.; — Ny
L €z,

€z,1+1
€g = (4.6)

where F,. (%) = Fi(2) — N;H;(%). Then, one will need
to show that, at least for small ||e, |2, the exact error
equation (4.2) meets the objective (3.2). To accomplish
this, consider the following modified objective for the
extended filter:

2 2 2
||€9||2,[0,J]+5 ||eZ||2,[o,J] < ywl 2,[0,J]+€ZT,0Rez,O (4.7)

where the positive € is to be determined. By analogy
to Lemma 4, if

2 2 2
AVi(ez1) <7 lwilly = leoall; —llezall; — (4.8)
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then the objective (4.7) is met. Define the Hamiltonian
function

H(w, N) = Viga(ezar1) =7 will + lleolls +¢ llezll3
(.

which has a saddle point (w}, N}). In the sequel, the
derivation of saddle point (w}, N;}) assumes that the
underlying p.d. function is quadratic as follows:

Vilez1) = elelez,l

where Q9 = R. Maximizing the resulting Hamiltonian
with respect to w; and, then, minimizing with respect
to N; leads—after suppressing the x notation—to

(4.10)

Qrh = F(E)QF (%)
N [T+ BT (2)QC Hu(z) | NT
(4.11)
where
Qe =Q— 7 2LTL — eI (4.12)

The following is the optimal gain of the extended filter:

-1
N = F(2)Qz HT () |1+ HI (2)Q Hi(2)]
(4.13)
In the infinite horizon case, the existence of a filter
(2.3) so that (4.6) satisfies (4.7) is related to the exis-
tence of a bounded nonnegative solution for the Riccati
equation (4.11); refer to p. 138 in [12]. Therefore, for all
I€0, 50), one has [|Qy| <e1, | Ny <z, and || Fr(2) | <cs.
The next section shows that, under certain conditions,
the filter gain (4.13) forces the trajectories of the error
dynamics (4.2) to meet the objective (3.2).

V. PERFORMANCE ANALYSIS OF THE
EXTENDED FILTER

At this time, consider the exact error equation (4.2)
written as follows:

fei(Zi,ezp,wi) + g31(21,ez,1)
= LGZJ

ez,l+1

€o,1 (5.1)

where fe (2, €., w) = Fei(2)e,; — Njwy. The result
of this section is given for the infinite horizon case but
it also holds when J < oco. The following proposition
shows that the error equation above satisfies the filter
objective in the neighborhood of the origin and, fur-
thermore, quantifies the neighborhood in terms of the
design parameter .

Proposition 6: Suppose there exists a bounded non-
negative solution Q; of the Riccati equation (4.11) for
l€[0,00). Then, inequality (3.2), associated with the
error dynamics (5.1), holds as long as

(5.2)

where [Jwi]l2<co, |Qi[|<c1, [ Ni]|<cz, and || F (%) <cs.

e > (2coc1ez + 2ciczlezlla + cilezl3)ua

Proof: Using the p.d. function (4.10), one has

Vigi(eziv1) = el Qi€
= [fea+930]" Quit[feua + 93]
= fLQuirfer + 215011193,
+93T,1Ql+193,l

Since @Q; is a solution of the Riccati equation, the
approximate dynamics (4.6) satisfy the inequality (4.8);
thus,

(5.3)

~ ~ 2 2 2
Fa1Qui feq — €2 Quezy <A willy = lleaalls — € llexll;

(5.4)
In regard to rest of the terms on the right-hand-side of
(5.3), one observes that

2f5Quagss < 2llezpllall FeallllQusallllgs.ll2
+2[|will2[[ Ve[| Q11 lg3,1 1|2
< 2czerpsllesll3 + 2cicocapslles |3
(5.5)
as well as
93.:Qui19s; < 1Quialllgsal3
< cipslleslls (5.6)

From (5.4), (5.5) and (5.6), the rate of change of
Vi(e.,;) along a trajectory of the exact error equation
(5.1) is bounded as follows:

2 2
AVi(ez )< lwill; — lleaalls

—[e — (2ciesllex]l2 — 2cocica — crllexal3)ma] llexulls
(5.7)

Then, from Lemma 4, the hypothesis (5.2) proves the
proposition. [ |

VI. STABILITY OF THE EXACT ERROR
EQUATION

In the infinite horizon case, the inequality (3.2)
guarantees that the filter is input-output stable, but
provides no information on whether the filter is asymp-
totically stable. The following proposition examines the
asymptotic stability of the exact error equation (4.2),
whose unforced version has as follows:

Fei(Z)ezn + g3,1(21,ez,)
Lez’l

€z l+1 =

€p,1 = (6.1)

As mentioned earlier, inequality (3.3) does not imply
asymptotic stability, for (6.1) may not be zero-state
observable from ey.

Proposition 7: Suppose the Riccati equation (4.11)
has a bounded nonnegative solution @Q; for [€[0, c0) and
€ is such that

s (6.2)

where ||Q;]|<c; and || F.;(2)||<cs. Then, the exact error
equation (6.1) is a.s.

€ > (2cicsllez 2 + erllex,i]
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Proof: Use of (4.10) as a candidate Lyapunov
function leads to

[Feiez1 + g3]T Qi41 [Fepezi + g3
elec,l(fz)TQz+1Fc,zez,z

+2621Fc,l(2l)TQl+193 + gngHgg

Vigi(ezi41)

The matrix Q; satisfies the Riccati equation (4.11) and,
in turn, in inequality (4.8) holds for the approximate
error dynamics. After setting w=0 in (4.8), one gets

el Fou(2)" QuiaFua(2)ey — el Que=y < —leaylls
2

e lesall?

(6.3)

Therefore, the rate of change of candidate Lyapunov
function along a trajectory of the exact error equation
is bounded as follows:

AVi(ez )< — [leg, 2

—(e — 2c1espllexllz — cipsllexil13) llexlls
(6.4)

Then, from the hypothesis, (4.10) is a Lyapunov func-
tion. [ ]

The next corollary follows readily from Propositions
6 and 7.

Corollary 8: Suppose the modified objective (5.2) is
used for the design of (2.3) as an extended filter. Then,
at least locally, the original filter objective (3.2) will be
met and the error dynamics (4.2) will be a.s.

VII. CONCLUSION

The design of the extended filter using the modi-
fied criterion (4.7) may result in a more conservative
parameter estimator through a necessarily larger time-
varying tolerance. In return, it guarantees, at least
locally, that the filter is internally stable and its
objective is met. In future research, the authors will
investigate the possibility of inducing less conservatism
by introducing a p.d. matrix, i.e., more than one design
parameters in lieu of ¢ in the left-hand-side of (4.7).
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Appendix

The output-of-interest matrix is the following:

L::[OI]

The definitions of the nonlinear mappings f and g are
given below:

o = [ 497
h(z) = CO)=x
The respective Jacobian matrices are as follows:
2 T
F(z) = %f(z) _ [ Aée) ae[AI(a) ] }
H) = oh(:) = [ C0) B[00 ]

(1]

2]

(3]

(4]

[6]

7]

(8]

(9]
(10]
(11]

(12]
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