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Abstract— In many multivariable industrial processes a subset
of the available input signals is being controlled. In this paper
it is analyzed in which sense the resulting partial closed-loop
identification problem is actually a full closed-loop problem,
or whether one can benefit from the presence of noncontrolled
inputs to simplify the identification problem. The analysis
focusses on the bias properties of the plant estimate when
applying the direct method of prediction error identification,
and the possibilities to identify (parts of) the plant model
without the need of simultaneously estimating full-order noise
models.

I. INTRODUCTION

In the closed-loop identification literature, the experimental
situation generally considered is the one depicted in figure
1 (see [1], [3], [5]). However in industrial practice one will

Con-

troller
 Plant


Outputs


Extra

inputs /


excitation

signals


Inputs
Setpoints


Disturbances


Fig. 1. ”Complete” closed-loop configuration.

regularly encounter the situation as sketched in figure 2,
where only subsets of the input and output signals are used
in the control loop. Open-loop inputs might, for example, be
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Fig. 2. Partial closed-loop configuration.

either manipulated variables that are not manipulated by the

controller or measurable disturbances. Open-loop outputs
typically are variables of which measurements are available
apart from the controlled variables (closed-loop outputs) and
which one also would like to use as outputs of a model to be
estimated. This latter situation frequently occurs at modern
large scale industrial plants where the data acquisition sys-
tems typically deliver many more measurements of process
variables than just the controlled variables.
The identification of partial closed-loop systems has not
been dealt with extensively in the literature (although some-
times mentioned as e.g. in [9]). For analyzing the problem
one could rephrase the partial closed-loop identification
(PCLID) problem as a “complete” closed-loop identification
(CCLID) problem where the controller has zero entries and
some setpoint variables can not be excited. In this way the
statistical properties of estimates can be analyzed using ex-
isting theory on closed-loop prediction error identification.
It is well known that a closed-loop experimental situation
has a severe impact on identification methods. When fo-
cussing on the so-called direct method ([3]) of prediction
error identification, two main consequences of the closed-
loop situation are that

a) a consistent plant model can only be identified if also
the full noise model is estimated consistently; and

b) the variance of the plant estimate is determined by only
the noise-free part of the (closed-loop) input signals.

Point a) can be rather problematic in situations with large
numbers of inputs/outputs. Estimating a full-order plant
and noise model can easily lead to high-dimensional and
complex non-convex optimization problems that are hard
to solve. As a result a separation of the identification
problem can be attractive, where in a first step a plant
model is identified and in a second step the noise model is
estimated if required, while both models can be validated
separately. In an open-loop experimental setup this can be
achieved by using independently parametrized plant and
noise models. However in a closed-loop setting using the
direct identification method an identification of the plant
model separately will fail due to property a) mentioned
above.
In this paper the central question to be considered is: in the
given situation of a partial closed-loop setting, is a separate
identification of plant model feasible, or in other words: can



advantages of an open-loop experimental setup be used to
facilitate separate identification of (possibly a part of) the
plant model?
After specifying the appropriate setting and notation in
section II, the general convergence analysis for direct pre-
diction error methods will be recalled in section III. Next the
particular situation of a partial closed-loop setting will be
considered. Section VI will discuss some consequences and
consider alternative closed-loop identification methods. The
paper ends in section VII with conclusions summarizing the
answer to the question raised above.

II. SETUP AND NOTATION

The closed-loop system configuration to be considered is
sketched in figure 3, where u1 and y1 reflect the open-
loop inputs and outputs, while u2 and y2 are the closed-
loop (controlled) inputs and outputs. All indicated signals
are considered to be multivariate. The system equations are
given by

[

y1(t)
y2(t)

]

= Go(q)

[

u1(t)
u2(t)

]

+ Ho(q)

[

e1(t)
e2(t)

]

(1)

u2(t) = K (q)[r(t) − y2(t)] (2)

where r is a set of setpoint signals and K a feedback
controller. H0 is a monic stable and stably invertible noise
filter, and e = [eT

1
eT
2

]T a multivariate white noise process
with covariance matrix E[eeT ] = Λ0.
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Fig. 3. Partial closed-loop system (with both open- and closed-loop inputs
and both open- and closed-loop outputs).

Go and Ho are partitioned according to

Go =

[

G11

o G12

o

G21

o G22

o

]

; Ho =

[

H 11

o H 12

o

H 21

o H 22

o

]

.

with Gji
o representing the part of Go with ui as its inputs

and yj as its outputs.
It is further assumed that possible excitation signals u1

are uncorrelated with e, and that setpoint signals r are
uncorrelated to u1 and e.
In the direct method of prediction error identification a
one-step ahead predictor model defined by Gθ and Hθ is
considered, leading to a prediction error

ε(t, θ) = Hθ(q)
−1[y(t) − Gθ(q)u(t)]

and an estimated model on the basis of N data is obtained
by

θ̂N = arg min
θ

1

N

N
∑

t=1

εT (t, θ)Λ−1ε(t, θ),

with Λ a symmetric positive definite weighting matrix.
For further details and assumptions on the prediction error
setting we refer to [3], where it is shown that under fairly
general conditions the parameter estimate θ̂N converges as
N tends to infinity with probability 1 to

Dc = arg min
θ

EεT (t, θ)Λ−1ε(t, θ). (3)

III. CONVERGENCE ANALYSIS OF THE DIRECT
APPROACH

The asymptotic parameter estimate Dc (3) can be repre-
sented as a frequency domain integral by applying Parsse-
val’s relation. For the considered closed-loop situation this
results in (see [3] for the scalar situation and [1] for the
multivariable case):

Dc = arg min
θ

∫ π

−π

tr

[

[(Go − Gθ) (Ho − Hθ)] Φχ0

×

[

(Go − Gθ)
∗

(Ho − Hθ)
∗

]

(HθΛH ∗

θ )−1

]

dω

(4)

where Φχ0
is the spectral density of the signal χ0(t) :=

[uT (t) eT (t)]T , and (·)∗ refers to the complex conjugate
transpose.
In corollary 5 of [1] the expression for Dc is reformulated
into an expression that more directly represents the bias
properties of the plant estimates Ĝ . This corollary states
that under the additional assumption that u is persistently
exciting (see [3] for a definition), Dc is characterized by

Dc = arg min
θ

∫

π

−π

tr [[(Go + BG −Gθ)Φu(Go + BG −Gθ)
∗

+(Ho − Hθ)Φ
r

e(Ho − Hθ)
∗](HθΛH

∗

θ )−1
]

dω

(5)

with
BG = (Ho − Hθ)ΦeuΦ−1

u (6)

and Φr
e = Λo − ΦeuΦ−1

u Φue .
The so called ”bias-pull” BG characterizes the amount of
bias that is obtained for the G-estimate due to the controller
induced correlation between the white noise terms e and
inputs u . This bias-pull term might be considered as an
extra bias on top of the bias introduced by the fact that
the model structure Gθ might not be flexible enough to
contain Go (Go /∈ G). It follows from the expression (5)
that if BG = 0, then Gθ = G0 is minimizing the trace
expression, provided that the parameters that occur in Hθ

are independent of the parameters in Gθ. In that situation
the plant model will be identified without bias.
Note that this situation typically occurs in a “full” open-
loop problem where there is no correlation between noise
signals and inputs. Then Φeu = 0, and by (6) it follows that
BG = 0.



IV. CONVERGENCE ANALYSIS IN THE CASE OF PCLID
DATA

A. General case

In order to find out if any of the elements of BG becomes
zero for the PCLID case, one simply has to analyse the
expression (6) for this situation. Because of the particular
closed-loop configuration considered in the setup of figure
3 it follows that Φe1u1

= 0 and Φe2u1
= 0 . As a result

Φeu will be structured as

Φeu =

[

0 ?
0 ?

]

where ? refers to a general (non structural-zero) element.
Substituting this into the expression (6), and taking into
account that because of the closed-loop configuration Φu

will be a matrix without structural-zero elements, there will
not be an entry in BG that is structurally equal to 0. This
leads to the following proposition.

Proposition 1: Consider the partial closed-loop identifica-
tion problem as formulated above. In this situation the pres-
ence of an open-loop excitation signal u1 does not imply
that entries of the plant Go can be identified asymptotically
unbiased independent of the choice of the model structure
for Ho. �

In other words: closing a single loop in an industrial
process does generally turn the identification problem into
a “full” closed-loop problem, and no single entries in Go

can be estimated asymptotically unbiased without fully
parametrizing and identifying the noise models also.

In order to specify possible special cases the bias pull term
BG is specified in terms of its several entries. By simply
analyzing the expression (6) (for Φe1u1

= 0 and Φe2u1
= 0 )

it follows that

BG =

(

B11

G
B12

G

B21

G
B22

G

)

(7)

with

B11

G = −(H 11

o − H 11

θ )Φe1u2
Φ−1

u2
Φu2u1

∆−1

−(H 12

o − H 12

θ )Φe2u2
Φ−1

u2
Φu2u1

∆−1

B12

G = (H 11

o − H 11

θ )Φe1u2
(Φ−1

u2
+

Φ−1

u2
Φu2u1

∆−1Φu1u2
Φ−1

u2
) +

(H 12

o − H 12

θ )Φe2u2
(Φ−1

u2
+

Φ−1

u2
Φu2u1

∆−1Φu1u2
Φ−1

u2
)

B21

G = −(H 21

o − H 21

θ )Φe1u2
Φ−1

u2
Φu2u1

∆−1

−(H 22

o − H 22

θ )Φe2u2
Φ−1

u2
Φu2u1

∆−1

B22

G = (H 21

o − H 21

θ )Φe1u2
(Φ−1

u2
+

Φ−1

u2
Φu2u1

∆−1Φu1u2
Φ−1

u2
) +

(H 22

o − H 22

θ )Φe2u2
(Φ−1

u2
+

Φ−1

u2
Φu2u1

∆−1Φu1u2
Φ−1

u2
) (8)

and ∆ = Φu1
− Φu1u2

Φ−1

u2
Φu2u1

. Notice that none of the
elements of BG is zero, i.e. they all remain dependent on

the bias of some part of the noise model: one might have
expected that at least some part of BG , e.g. B11

G
would

have become zero. The fact that all elements of BG remain
nonzero immediately leads to the conclusions that, for this
PCLID case, (i) the complete noise model must be estimated
without bias in order to obtain a completely unbiased G-
estimate (in case Go ∈ G) and (ii) no explicit user-defined
tuning of any part of the bias of the G-estimate is possible.
These conclusions are exactly the same as for the CCLID
case and, thus, this PCLID problem should be treated as
a CCLID problem (or one should resort to an alternative
PCLID method).
The expressions given above for the bias-pull terms are
valid for the most general situation possible, i.e. without
any additional structural conditions on Go and/or Ho. It
is interesting to find more restrictive, i.e. less general,
assumptions and experimental conditions for which some
or all of the bias-pull expressions (8) become zero.

B. The case of uncorrelated disturbances v1 and v2

A particular case that leads to special results is when the
disturbances v1 acting on the open-loop outputs are un-
correlated with those acting on the closed-loop outputs v2.
This can be represented by the requirements that H 21

o = 0 ,
H 12

o = 0 , and Λo block-diagonal. The direct consequence
then is that Φe1u2

= 0 and this can further simplify the
expressions for BG , as formulated next.

Proposition 2: Consider the partial closed-loop identifica-
tion problem as formulated before. Under the additional
conditions:
(i) v1 and v2 are uncorrelated, and

(ii) the model structure used for identification satisfies
H 12

θ = 0

BG will satisfy

BG =

[

0 0
? ?

]

.

As a result the plant transfers G11

o and G12

o can be identified
asymptotically unbiased, irrespective of the noise model Hθ,
provided that

• u is persistently exciting, and
• the parameters of G11

θ and G12

θ are independent of the
parameters in the remaining transfers of Gθ and Hθ.
�

The proposition shows that when the output disturbances
on the two different types of outputs are uncorrelated, the
entries in Go related to the open-loop output y1 can be
identified in an unbiased way, irrespective of the noise
model. To this end the two inputs u1 and u2 need to be
considered jointly. One can not retain the same properties
of unbiasedness if simply u1 and y1 are taken to identify
the transfer G11

θ separately.

The restriction on the parametrizations that is formulated
in proposition 2 implies that there will occur problems if
a multivariable parametrization for Gθ is used in which



coupling of parameters in several entries of the transfer
matrix occur. The entries that will be identified asymptoti-
cally unbiased need to be parametrized independent of the
parameters in the other transfer entries of Gθ. Attractive
parametrizations that allow independent parametrizations in
the transfer entries to different output signals are e.g. finite
impulse response models, models based on orthogonal basis
function expansions [6], [4], and state space models in out-
put companion forms [2]. Less attractive model structures
are general state space models, as e.g. used in subspace
identification [8], and multivariable polynomial models as
e.g. ARX models [3].

C. The case of no cross-coupling: G21

o = 0

If the plant’s transfer from open-loop inputs u1 to closed-
loop outputs y2 is known to be 0, a situation results where
Φu2u1

= 0 and consequently Φu becomes block diagonal.
The situation is rather restrictive, but is still special enough
to be considered separately. Substituting Φu2u1

= 0 into the
expressions for BG it follows that

BG =

[

0 ?
0 ?

]

.

As a result the plant transfers G11

o and G21

o can be identified
asymptotically unbiased, irrespective of the noise model
Hθ, under conditions that are similar as formulated in
proposition 2. Note that the situation of the entry G21

o now
is trivial, as it is presumed to be 0!

This situation allows for a separation of the identification
problem. By only considering the measurements u1 and
y1, the transfer function G11

o can be identified unbiasedly
(irrespective of Hθ) even when discarding the effect of u2.
Discarding the effect of u2, i.c. discarding the transfer G12

o ,
then leads to an increase of the variance of the estimate, but
not to a bias.

If both the condition G21

o = 0 and the set of assumptions
from the previous subsection are satisfied, the resulting
structure for BG is

BG =

[

0 0
0 ?

]

.

As a result unbiased estimates (irrespective of Hθ) can be
obtained for G11

θ , G12

θ and G21

θ , provided that these model
entries are parametrized independent of the the remaining
entry in Gθ and from all entries in Hθ. An unbiased estimate
for G22

θ can, again, only be obtained if an unbiased estimate
is obtained of the noise model H 22

θ .

V. THE PCLID PROBLEM WITH ONLY CONTROLLED
INPUTS OR OUTPUTS

In this section the same line of analysis will be followed
to investigate and discuss, briefly, convergence of the direct
approach when applied to the PCLID situations where either
no open-loop inputs or no open-loop outputs are present. It
will become evident that similar conclusions as stated in the
previous section are valid also for these PCLID situations.

A. The case of no open-loop inputs: dim(u1) = 0

In this PCLID case the bias-pull term can be shown to be

BG =

(

B12

G

B22

G

)

(9)

with

B
12

G = (H 11

o − H
11

θ )Φe1u2
Φ−1

u2
+ (H 12

o − H
12

θ )Φe2u2
Φ−1

u2

B
22

G = (H 21

o − H
21

θ )Φe1u2
Φ−1

u2
+ (H 22

o − H
22

θ )Φe2u2
Φ−1

u2

(10)

Also here, as can be seen, none of the bias-pull terms
becomes independent of the biases of the noise model esti-
mates. Hence, also this PCLID problem should basically be
treated as a full closed-loop identification problem meaning
that a completely unbiased H -estimate must be obtained in
order to obtain a completely unbiased G-estimate.
Under the additional assumptions of proposition 2 (distur-
bances v1 and v2 uncorrelated, etc.)

BG =

(

0

(H 22

o − H 22

θ )Φe2u2
Φ−1

u2

)

. (11)

As a result, an unbiased estimate of G12

o can be obtained
irrespective of Hθ under the usual conditions of independent
parametrization. The transfer G22

o can only be estimated
unbiasedly, if the noise model H 22

θ is estimated without
bias.

B. The case of no open-loop outputs: dim(y1) = 0

If y1 is not present, the bias-pull term reduces to

BG =
(

B21

G
B22

G

)

(12)

with

B21

G = −(H 22

o − H 22

θ )Φe2u2
Φ−1

u2
Φu2u1

∆−1

B22

G = (H 22

o − H 22

θ )Φe2u2
Φ−1

u2
(Inu2

+

Φu2u1
∆−1Φu1u2

Φ−1

u2
) (13)

and ∆ as given before. Since BG does not contain any
structural zeros, the PCLID problem basically should, again,
be treated as a full closed-loop identification problem.
The additional (and simplifying) assumption that B 21

G
= 0 ,

implying that Φu2u1
= 0, does not lead to any apparent ad-

vantage as it only affects B21

G
which is zero by assumption

in this case.

VI. DISCUSSION OF RESULTS AND
ALTERNATIVE METHODS

The results presented in the previous sections point to
limited possibilities for the direct PE identification method
to partition a partial closed-loop identification problem into
several subsequent steps. Such a partitioning can be very
attractive in open-loop problems. In multivariable open-loop
identification problems (cf. figure 4) it is generally possible
to perform the following subsequent steps:

• First identify a consistent plant model Ĝ , and validate
this model;
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Fig. 4. Multivariable open-loop configuration.

• Next (if necessary) identify an accurate noise model
Ĥ .

The separation of these steps is attractive from a computa-
tional point of view, but also in view of a separate order and
structure determination (validation) of the model transfers
Ĝ and Ĥ . The first step in this procedure can even be
partitioned in separate experiments, where one input signal
at a time is excited, and corresponding SIMO models are
identified. If the input signals are uncorrelated, i.e. Φu is
diagonal, the separation into SIMO identification problems
can even be made on the basis of one dataset where all
inputs are excited simultaneously. In all these situations
there will be no bias in the plant estimate Ĝ .

For the partial closed-loop identification problems as
sketched and discussed in the previous sections, it appears
that all these properties are lost when using the direct
closed-loop identification method, once one single loop
around the system is closed. Identification of an unbiased
Ĝ generally requires a full identification of the noise model
Ĥ .
Only in special cases (v1 and v2 uncorrelated) a part of Go

can be estimated unbiased without any limiting conditions
on the estimated noise model. For the remaining part of
the plant model a full noise model needs to be identified
simultaneously.

Separation of the multivariable experiments into single input
excitations (and SIMO model identifications) will always
lead to biased models, because of the fact that input signals
will be correlated through the presence of feedback.

As an alternative for the rather pessimistic results on closed-
loop identification with the direct prediction error method,
indirect methods or joint input-output methods as e.g. the
two-stage method [7] can be considered. In this latter ap-
proach the transfer function from reference input to closed-
loop input is estimated first, and this (unbiased) model
estimate is used to construct a filtered closed-loop input in
which the noise-dependent part of the signal is removed. In
the second stage the plant model is then estimated on the
basis of the reconstructed input signal and the measured

output. When applying the two-stage method to the PCLID
problem, the first stage consists of estimating the transfer
from both r and u1 to u2 and subsequently constructing
the noise free part û2 of the latter signal(s). In the second
stage, the plant and (if necessary) noise model can then be
obtained unbiasedly and in separate steps via estimating the
transfer from û := [uT

1
ûT
2

]T to the outputs y . Note that it
is important to also include u1 in the first step, in order to
avoid that its effect is being considered as an unmeasured
disturbance, leading to increased variance of the estimated
model.
Although the direct prediction error method is attractive
from a statistical efficiency point of view, alternative indirect
(or joint i/o) methods can have particular advantages as
indicated here.

VII. CONCLUSIONS

In this paper, it has been shown that for the direct method
of (closed-loop) prediction error identification in general
any partial closed-loop identification (PCLID) problem has
basically the same characteristics as a full closed-loop
identification problem and should therefore be treated as
such.
This implies that also for PCLID problems all transfer
functions of the noise model must be estimated without bias
for all transfer functions of the G-estimate to be unbiased.
Only in the special case that the output disturbances on
open-loop and closed-loop outputs are uncorrelated, parts
of the plant model can be identified unbiased without
identifying a noise model.
The implication of these results is that the option to partition
the (large scale) identification problem into subsequent steps
(first identifying Go and subsequently Ho) is not feasible
for this approach, nor is it possible to partition the MIMO
identification problem into independent SIMO problems.
It has been illustrated that these latter problems can be
overcome by other methods of closed-loop identification
as e.g. the two-stage method. Especially in multivariable
problems with only a limited number of loops closed,
it can be very attractive to remove the noise influence
on the closed-loop inputs in a first step, and reformulate
the identification as an open-loop problem, retaining all
favorable properties of open-loop identification methods.
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