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Abstract A practical approach to the design of controllergank constraint problem. In [8] a new heuristic algorithm
with fixed structure (low order, decentralized etc.) that canalledthe dual iteration algorithmwas proposed using an
be tuned viaH; or H., performance measures is proposedLMI formulation. Due to the non-convexity of this problem,
The design problem is split into a convex subproblem thahost of the published methods consider simple design
can involve a large number of decision variables, and &chniques like pole placement.
nonconvex subproblem with a small humber of decision In this paper as one application we consider the design of
variables. The former problem can be solved with efficienfixed structure controllers that are robust against parameter
Riccati solvers, while the latter one is solved using genetigncertainty. An approach that has proven to be useful in
algorithms. The proposed method is flexible and can heractical applications is the design of robugt optimal
used for different, or H,, performance or robustnesscontrollers, i.e. controllers that minimize the worst-case
measures. In this paper low-order robfstdesign and low- Hs norm. In [7] a design procedure was presented for
order decentralized mixed sensitivity design are presentecbntrollers referred to asi,/Popov” controllers. The main
Application of these methods to a benchmark problemroblem with this approach is the computational effort
and a large scale industrial problem demonstrates that theeded for estimating the gradients and for the gradient
approach is numerically efficient and leads to performancgearch algorithm. In [2] an iterative method for designing
comparable or superior to that of previously publishedull order Hs/Popov controllers that minimize an upper
methods. bound on the worstd; norm is proposed. The problem

Key words: Fixed structure controller, robust control,is formulated as Bilinear Matrix Inequality (BMI) and
decentralized control, algebraic Riccati equation, genetsolved using a similar approach to that proposed in [4],
algorithms. however this approach is not useable if constraints on the
controller structure are imposed. In this paper we present
a numerically efficient procedure for designing robuist

In many practical control problems, the structure otontrollers with fixed order and compare the performance
admissible controllers is restricted, e.g. by an upper bournwlith that achievable with the method proposed in [2]. To
on the controller order or by constraints on the informatioiilustrate the flexibility of our approach, we also present
that is available for feedback in each loop. In this paper wa mixed-sensitivity H,, optimal design of a low-order
present a new approach to solving such problems and illudecentralized controller for a large scale industrial problem.
trate the method by applying it to the problem of designing The paper is organized as follows: Section 2 introduces
robust low order and decentralized controllers. The key idetae idea of splitting a problem into a convex and a non-
is to split the problem in two parts: a convex part that cagonvex subproblem and solving it iteratively by using
involve a large number of decision variables and is solveRiccati solvers and genetic algorithms. In Section 3 this
efficiently by solving an algebraic Riccati equation, and @pproach is used to construct an algorithm for solving the
non-convex part that involves a small number of decisiotow-order robustH, problem. The proposed method is
variables and is solved by Genetic Algorithms. applied to a standard benchmark problem and compared

The problem of designing decentralized controllers wawith the method given in [2]. In Section 4, we present
extensively studied in the 1970's, see e.g. [11] or [12]. Foan algorithm for designing low-order decentralizéfl,
full state feedback a complete solution was given in [6]. lloptimal controllers and illustrate it with an application to
[5] a sufficient nonlinear matrix inequality condition for thea large scale industrial problem. Finally conclusions are
existence of a solution is provided. drawn in section 5.

The low order controller design problem has no complete
solution up to date either. It is well known however that a
constraint on the controller order can be formulated as a
rank constraint on a Lyaponuv matrix (see e.g. [13],[9]). In Let A, @ and R be realn x n matrices with@ and
[10] an alternative projection method was proposed as aR symmetric, andB and V' matrices of compatible size.
efficient computational tool for handling an LMI plus the Consider the algebraic Riccati equation
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I. INTRODUCTION

II. A COMBINED RICCATI EQUATION - GENETIC
ALGORITHMS APPROACH



Create Random
EP, N=0

ATP+PA— (PB+V)R(BTP+VT)+Q=0 (1)
New Child EP-Parent ARE Supplement

Efficient solvers are available for finding a solutiéh> Population
0 (if it exists); this problem appears often in a wide range ’—Mu!m—> l
of control applications.

Consider now the modified problem where the above
matrices are all functions of a common parameter vector
0 € R™, i.e. A(9), B(0), V(0), Q(9), R(#): Find P =
PT >0 and# that satisfy

EP = Effective Population

Evaluate Fitness

Crossover

EP

Is Solution
Acceptable?

NO

Reproduction

Parent = Child

Output Solution

A(0)" P+ PA(9) — (PB(0) + V(0))R(0)(B(0)" P+
V(O)") +Q(#) =0 @

This problem is non-convex and cannot be solved using Fig. 1. The structure of the ARE-GA algorithm
standard solvers. Note however that for any fixed vélue

0, the problem can again be solved via Riccati solvers.
The approach proposed in this paper for designing fixed
structure robusfis or H,, optimal controllers is based on
transforming these problems into the form of (2).

Note that the solutior? is symmetric and containy’ =
1(n+ 1)n decision variables. It will be seen below that in
applications we typically havéV > m. This observation
motivates the idea to split the original problem into a small
non-convex part solved by a GA, and a large convex part
solved with a Riccati solver. The rationale for doing this is |I1l. PARAMETRIC ROBUST H, SYNTHESIS: ARE-GA

« to let a fast and efficient Riccati solver take care of the APPROACH

large convex part of the problem: for a givériind the In this section a combined ARE-GA approach is used to
unique solutionP (if it exists), and address the problem of designing fixed structural controllers
» tolet GA - which may be unreliable for a large numberthat minimizes an upper bound on the worst-casenorm.

of decision variables - deal with the smaller non-The analysis results given in this section are taken from [3]
convex part and search ovéwhich usually contains (chapter 8) and [2].

the controller parameters and stability multipliers).

Thus GA is used to construct the vecidr, and then a
Riccati solver is applied to calculat@ (if exists). The full Consider the following LTI system subject to sector
chromosome is constructed by adjoining the decision varbounded nonlinear uncertainty, i.e. a Lur'e system ([3] page
ables ind andP. On the other hand, if a standard GA is usedL.19), described by:
alone to solve the original problem, the GA chromosomes
must code botl# and P, and if P is large, the chromosome
consequently will be too long for an efficient and reliable

« Stochastic universal sampling with linear ranking fit-
ness assignment is used for selection.

« Non-uniform mutation was implemented for better
fine-tuning characteristic

« Simple and arithmetic cross-over were applied during
each evolution process

« Elitism mechanism is applied.

A. Problem Formulation

T = Aoz + Biw; + Bowy + Bu

solution. Reducing the dimension of the solution space for z1 = Cro + Dywy
Fhe GA not only accelerates the e\(olution process, but a!so 29 = Cox + Dayus
increases the chances of converging to the global solution y = C + Dawws 3)
of the problem. B
The overall algorithm is shown in Figure 1. Once the full w1 = ¢(z1)

chromosomes are constructed, the fitness value is evaluat@ghere » ¢ R™ is the state vectory € R™ is the
Note that all the standard GA operations (reproductiomyontrol input,w, € R™2 is a unit intensity white noise
crossover, mutation) are performed énonly (effective processy € R is the measured output, € R"=2 is
population). The full chromosome length is used only fothe performance outputy; € R™: andz; € R"=: are
the fitness evaluation process as shown in Figure 1. the input and output of the nonlinear uncertainty The

All numerical results presented in this paper were iMnonlinear perturbation is assumed to satisfy the sector
plemented using Matlab 6.5. The GA preferences are @gund[o, 1], ¢ € @ see [3] (page 129) for definition df. If
follows: we consider the special case where the functids linear,

« Floating point representation of chromosomes i.e, 9(z1) = Az whereA is a diagonal matrix that satisfies
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A diag(61,02,...,0n. ), 6;i € [0,1],i = 1,...,n;}

the above description simplifies to an important class of
uncertain system considered in many references [7]. Thede=

systems are described by= (~Ao+/~1)x+32w2—|—Bu, Ae
A, whereA = {A € R"*" : A = B;AC:}. Such systems
are known systems subject to parametric uncertainty.

where
Ao BCxk | - [B] - [ B
I vl B i A P
Cy =[C1 DiCk], Co=[Cy D3,Ck]

Using the definition of worst-case performance of non-

linear systems in [15], [2] we define the worst-caHeg
performance/ for (3) as

J:supZ/

i=1 70

oo

2 ()T z(t)dt, 4)

Using the Schur complement, the inequality constraint (6)
of Theorem Ill.1 can be written as

ATP + PA4+CTC, — (PB, + ATCTA + CT).

RYBIP+ACLA+TC) <0 (9)

where the supremum is taken over all nonzero output

trajectories{z1(t), ..., zn,, (t)} of the nonlinear system (3)
starting fromz(0) = 0.

Theorem IIIl.1 If there exists a Lyapunov function
Nz

V(z) =2 Pz +2 Z Ai
=1

Cl,iw
/ ¢i(0) do (5)
0

where C,; denotes theith row of C;, and A

diag(\1,...,A,) > Oand T = diag(r,....7) > 0,
satisfying
ATP+PA+CIC.  PB +ATCIA+CT ] _
B?P—F AC1A+TC, AC{B; + B?ClTA =27 | —
(6)

then the upper bound qf is finite and can be computed

by minimizingTr BL (P + Cf'ACy)B,,, over the variables

w

P, A and T, i.e. by solving the problem
minimize Tr Ba (P + CFTAC}) By 7
subjectto: (6), P>0,A>0 ,T7>0
Proof: See [3], (pages 121-122).

B. Controller Synthesis

R=ACB, + BIC\TA —2T <0 (10)

Since the optimal solutio# subject to the above inequal-
ity constraint occurs always on the boundary, the inequality
can be replaced by an equation. Note that the left hand side
of inequality (9) has the same form as the Riccati equation
(2), wheref = col(Ay, By, Cx, A, T) and co[My, ..., M,)
denotes the columns of the matrickg stacked together in
one column vector.

Note that the size of the matriR = PT is (n + n.) x
(n + n.). Even if the order of the controller is low, the
size of the Lyaponuv matrix will be large when dealing
with large scale systems. For example, consider the task
of designing a first order controller for a 10th order SISO
uncertain system with scalar uncertainty. Solving (9) with
GA alone means that each chromosome should consist of 72
decision variables (floating number). Splitting the problem
means that GA is searching only for the controller and the
multiplier (the chromosomes consist of just 6 variables), and
a Riccati solver is used to search for the unigaevhich
allows the evaluation of the objective function (7).

The population structure for this example is shown in
Table | below. Once the solutioR is available, the upper
bound onJ is calculated adr BI (P + C{ AC;)Bs. Then

The problem considered in this section is to find a strictijhe fitness of each chromoson¥€ (s), P, T, A) is evaluated

proper controller
¢(t) = Ag((t) + Bry(t)
Ko { ol Zerey ™

where ( € IR™ with n. fixed, such that the worst-
case performance upper boufid B (P + C{ AC4)B,, of

the closed-loop system is minimized; such a controller
referred to as Popov controller [10].

(8)

The closed-loop representation of the above system is

given by

as a linear function o/ (P;, A;).

GA ARE Worst-Case Fit-
Controller variables Multipliers P H, Cost ness
Aky Bk ,Cky Dy A1, T Py J(P1, A1) f1
AkyBlyChyy Dy A2, T Py J(P2, Az) f2
ie Akny Brny, Cringy Dhny AnpTny | Prp | J(PrpsAny) | frp
TABLE |

GA POPULATION STRUCTURE

IV. NUMERICAL EXAMPLE: THREE-MASS-SPRING
SYSTEM
The efficiency of the approach presented in the previous
section is illustrated by comparing it with the method pro-
posed in [2], one of the most efficient synthesis techniques
reported so far. To make the comparison fair, the same
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example used in [2] was used here again. The syste
consists of three masses connected by two springs, in whi 5
the spring uncertainty between the second and the thi ", s
mass is expressed in the forfty = ko om (1 + 6) where ™™
k2 nom iS the nominal value, and the uncertainty is capture
by 6 € R. All the system parameters are set to a nomine
value (TTLl = mo = mg = 1, ki = kQ,nom = ].)
The uncertainty in the spring stiffness is approximated & L4p
Ks(y) = kanomly + po(y)], Wwherep > 0 is a measure
of the relative guaranteed uncertainty bound, aitd) is
a[—1, 1] sector-bounded memoryless nonlinear function
the spring displacement

The population size is 60, the number of iterations is 30( il
with an average computation time of less than 5 minute
for one complete run (computed on a Pentium 5 2.0G cg
speed, 256 DDR ram).

The plant model is of 6th order, and it turns out that withrig. 2.  H, cost vs. parameter variation for Popov and ARE-GA
the ARE-GA approach it can be stabilized with controllergontroller, both designed assuming 10% uncertaintykin. A standard
of 3rd order or higher. Table IV shows that while a 3rd Q¢ controller is included for comparison.
order controller leads to higher bounds on the chsh 4th
order controller leads to cost values almost identical with
the full order controllers reported in [2]. Figure IV below (rectifier firing anglen = 21°, inverter extinction angle =
shows that ARE-GA controllers achieve robustness agains£a.6°) and extensively validated against nonlinear EMTDC
larger range of variation in the spring constéft compared simulation for small changes. A controller is to be designed

with the controller derived using the approach proposed ithat achieves a fast response to command step changes with
[2] and a standard LQG controller. little overshoot and little cross-coupling between channels.

Moreover, the controller should have low order and must

LMI- 6th order

12+
< GA-ARE
4th order

. . . .
05 1 15 2 25 3
Second spring constant - K2

Controller Upper bound| Upper bound| Upper bound|  use only the information available on one side of the DC
order onJ, 5% on J, 10% on J, 20% ; ; ;
Uncertainty | Uncertainty | Uncertainty link for feedback, i.e. only measurement bfo; is used
3rd order ARE-GA 26 284 £ 75 to generata;; and measurement dfpco for us.
4th order ARE-GA 3.22 3.36 3.69 To solve this problem, we use the generalized plant model
Full order [2] 3.19 3.34 3.69
TABLE Il & = Az + Byw + Bu

z=C,z+ D,,w+ D,u
Yy = Cx + Dyw

COMPARISON OF THE WORSTCASE Ho BOUND OF ARE-GA AND
LMI- BASED POPOV CONTROLLERS

The task is to find a biproperlXi # 0) controller K (s)

such that theH/, norm of the closed loop systeffi(s) is

less thary, where T(s) is given by:

In this section we present the application of the ARE- ) {
T(s

GA approach to a large-scale industrial problem: control
of a high voltage direct current (HVDC) system. HVDC

Systems are used in electrica' power grids as a Supp'emenﬂn addition, the controller must Satisfy the constraints on
to AC transmission. Power transfer by means of HVDGhe information available for feedback. We will deSign a
is used in case of (i) inter-connecting asynchronous A@tixed sensitivityH., optimal controller, and make use of
systems with different power frequencies, (i) high voltagéhe following result.

cables longer than about 80km, and (iii) long overhead lines B

with lengths in excess of about 600km. A two-input two-Theorem V.1 The matrixA is stable and|T'[| < v if and
output state space model for such a plant was presentedoly if there exists a symmetric solutigh = P > 0 to

[1]; the controlled outputs are the direct currépt; on the the system of LMIs

rectifier side and the direct voltag& - on the inverter side
and control inputs are excursion in firing angtesandus.

The high dynamic order (35 state variables) reflects the large
number of passive elements. This model has been linearized
for nominal AC voltages (1pu) and nominal firing anglesProof: See [3].

V. MIXED SENSITIVITY DECENTRALIZED LOW-ORDER
CONTROLLERDESIGN FOR AHVDC SYSTEM

T = Al‘cg + Bw

z=Cxq+ Dw

ATP+PA+~71CTC PB+~7'CTD

BTP+~7'DTC I+~ D7D | =0

(11)
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Again using the Schur complement, the inequality (11 %
of Theorem V.1 holds if and only if

1I\NT ll\NS
ATP+ PA+~"20TC — (PB+~"'CTD)R™- e
. \v\\\}\\\ /‘\ W,
(BTP++47tDTC) <0 (12) —sof ; ; SO
“1ATA dB 1w R
R=—~I+~y"D"D<LO0 (13) s N
. e . . i Q\ T(j
For a mixed sensitivity design we solve the problem ~100p \l o
. . Ws(s)S(s) \\\\
min subject to < : X
K(s)e)C’y J H WT(S)T(S) - v -150} 5 3 .
where IC denotes the set of admissible controllers. W \\\
consider two possible choices of controller structurgs: -zofo;;“‘ e = - - 18"\ "
can either contain all controllers of the form (rad/sec)
[ Tys+1 i
K (s) — NTyst1 93 Fig. 3.  Singular values of sensitivity and complementary sensitivity
f g4 g2 %’ii} function with K¢ (s)
4

with variablesg; andT;, or all controllers
50

I Tis+1
91T, 541 TO )
38+
O gQT4S+1

where g5 and g4 have been fixed to zero. In this ex- PARRVE
ample the parameter vecto? in (2) becomesf = sl N
[91 92 93 94 T1 T T3 T4]". Note that the size of the of KR
Lyapunov matrixP in (12) isn + n. + order of weighting T
filters = 35+ 2+ 4 = 41. If GA is used alone to solve the -100- "
above problem, there will be 861 variablesiihin addition

W
N\

W

to the controller variables. This huge number of variable
requires a length of chromosomes which would render tt
use of GA impractical.

In contrast, if the ARE-GA approach is applied the

-200

-150

/= 1w \

Y
W
W
N
AR
VA

)

10 10 10 10 10 10 10° 10°

chromosomes will consist of only 8 variables for the con (radisec)

troller K¢ (s) and 6 variables for the decentralized controller
K,(s). For a given controller, equation (12) is solvedFig. 4. Singular values of sensitivity and complementary sensitivity
easily using a Riccati solver. The advantage is that thnction with Kq(s)

size of the plant does not contribute to the size of the

chromosomes, leading to a much faster evolution process

and better chances of convergence to the global minimuraf T'(s) within the frequency range of interest to control the

To limit the size of this paper, all minor details (filter oscillatory behavior of the closed loop system.

selection and tuning) will be omitted. Applying the ARE- The tracking behavior in terms of settling time, steady

GA algorithm yields the controllers

state error and peak overshoot can be further improved by

Koo [ 0171%'?2221% 0.122 } shaping the response with a pre-filter
= ) .120s 1
! 0.394 —0.254 112041 Kpe(s) = | 00051 0
and 0 0.01s+1
3.1550:5525+1 0 Figures 5 and 6 show the closed loop step response of the
Ky(s) = { ’ 60537S+1 11,6306 26214541 } HVDC system withK ¢ (s) and K4(s) respectively. Figure 5
. 2.263s41

also shows the responses obtained with a manually designed
The singular values of the sensitivity functiodgs) and lead-lag compensator that uses unconstrained information
T(s) (see e.g. [14]) and the corresponding weighting filterfor feedback (not decentralized). When comparing the per-
for the two controllersK¢(s) and Ky(s) are shown in formance of both controllers it should be kept in mind
Figures 3 and 4 respectively. Note that a second order filtédrat the manual design of a lead-lag compensator for
W, is used to shape the low frequency response of theach channel is a time-consuming, tedious trial and error
system (for good tracking and fast response). On the othprocedure, whereas the GA-ARE design is carried out in
hand, the first order filtel/; was just used to limit the peak a semi-automatic manner and can be easily repeated for
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controllers of different order or structure. It can also bdor controllers with a fixed structure is of considerable
seen that the cross-coupling betwelgjr-; and Vpeo with  practical value. The flexibility of genetic algorithms allows
controller K4(s) is worse than with controllef(s(s); this its use for a wide range of applications. Here we are
is due to the constraint on the information available foproposing a way of integrating this non-convex optimization
feedback. tool with a convex one to form a much more efficient
The total computation time for 200 iterations with 50combined tool. The idea is to split the problem into two
chromosomes is less than 12 minutes (all calculations weparts: a convex part solved via efficient Riccati solvers, and
performed on the full order model with 35 states). a non-convex part solved by GA. This simple idea can be
extended to other design techniques suchuasgnthesis,

From: |

oRDER From: V.

ORDER

15

0.5

To: |DC (pu)

— — Lead-Lag
— ARE-GA

15

0.5

To: Voc (pu)

15

To: |DC (pu)

o

-0.5
15

0.5

To: VDC (pu)

0 0.1

0.2 030

Time (sec)

Fig. 5. Closed-loop step response wity (s)

From: |

lorDER From: V.

ORDER

e —

AN

0.2 030
Time (sec)

Fig. 6. Closed-loop step response with;(s)

VI. CONCLUSION

and can help in bridging the gap between the rich theory of
robust control and practical applications that require fixed
structure controllers.
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This paper introduces a novel approach that can be used
for a variety of control applications involving non-convex
constraints. Many powerful analysis results involving a
Lyapunov matrixP have been developed over recent years,
and the possibility of turning them into synthesis algorithms
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