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Abstract—A stochastic approximation method for 

optimizing a class of discrete functions is considered.  The 
procedure is a version of the Simultaneous Perturbation 
Stochastic Approximation (SPSA) method that has been 
modified to obtain a stochastic optimization method for cost 
functions defined on a grid of points in Euclidean p-space 
having integer components.  We discuss the algorithm and 
examine its convergence properties. 

I. INTRODUCTION 

THE simultaneous perturbation stochastic approximation 
(SPSA) method [1] is a tool for solving continuous 

optimization problems in which the cost function is 
differentiable but analytically unavailable or difficult to 
compute.  The method is essentially a randomized version 
of the Kiefer-Wolfowitz method in which the gradient is 
estimated at each iteration from two measurements of the 
cost function.  SPSA in the continuous setting is 
particularly efficient in problems of high dimension and 
where the cost function estimates is obtained through 
expensive simulations.  The convergence properties of the 
algorithm have been established in a series of papers ([2], 
[3], [4], [5]). 

The present paper discusses a version of SPSA for 
discrete optimization.  The problem is to minimize a cost 
function that is defined on a subset of points in pR  with 
integer coordinates.  It is assumed that only noisy 
measurements of the function are available and that the 
exact form of the function is analytically unavailable or 
difficult to obtain.  An ordinal optimization method for 
finding the minimum was introduced in [6].  The method 
discussed here, which was introduced in [7], relies on 
simultaneous perturbation difference approximations. 
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The main motivation for the algorithm is a class of 
discrete resource allocation problems ([8], [9]), which arise 
in a variety of applications that include, for example, the 
problems of distributing search effort to detect a target, 
allocating buffers in a queueing network, and scheduling 
data transmission in a communication network. 

II. NOTATION AND PROBLEM FORMULATION 
Let Z  denote the set of integers and consider the grid 
pZ  of points in pZ  with integer coordinates.  For 
, px x Z′ ′′ ∈ , we adopt the notation x x′ ≤ ′′  if and only if 

i ix x′ ≤ ′′  for i = 1, …, p,  where ix′  and ix′′  denote the 
coordinates of x′  and x′′ . 

Consider a real-valued function .  The 
function is not assumed to be explicitly known, but noisy 
measurements of it are available: 

: pL Z R→

 
  (1) ( ) ( )( )ny Lθ θ ε= + n θ

 
where ( ){ }nε θ

( )nε θ

)

ny

:

 is a zero-mean stochastic process.  The 

sequence  is not necessarily independent; however, 
sufficient conditions are imposed to ensure that the 

’s are integrable.  We assume also that L is bounded 
below.  The problem is to minimize L using only the 
measurements .  The constrained version of this problem 

assumes that , where the subset Θ  of 

(ny θ

L Θ → R pZ  is a 
discrete rectangle or hypercube in pZ , i.e., for some 

, pa b ∈ Z , the point x  belongs to Θ  if and only if 
. a x≤ ≤ b

Similar to [6], we restrict our attention to cost functions 
that satisfy a certain integer convexity condition.  For the 
case  p = 1, the function  satisfies the inequality :L Z R→

 
  (2) ( ) ( ) ( ) (1L L L Lθ θ θ θ+ − ≥ − − )1

1

 
or, equivalently, 

 
   (3)  ( ) ( ) ( )2 1L L Lθ θ θ≤ + + −



 
 

 

 
for each Zθ ∈ .  The latter inequality is the discrete 
analogue of mid-convexity.  If strict inequality holds, then  
L  is also said to be strictly convex.  Analogous to the 
continuous case, the problem of minimizing L reduces to 
the problem of finding its stationary values, i.e., any point 

Zθ ′ ∈  such that 
 

  (4) ( ) (1L Lθ ′ ± ≥ )θ ′

1

 
or, equivalently, 
 
  (5) ( ) ( ) ( ) ( )1 0L L L Lθ θ θ θ′ ′ ′ ′+ − ≥ ≥ − −
 
If L is strictly convex its stationary point is unique. 

The notion of integer convexity can be extended to pZ  
as follows (see, e.g., [10], [11]).  For , px x Z′ ′′ ∈ , x x′′′ ≤  if 
and only if i ix x′ ≤ ′′  for i = 1, …, p, where ix′  and ix′′  

denote the coordinates of x′  and x′′ .  For px Z∈ , let x    

and x    denote the vectors obtained by rounding down 
and rounding up, respectively, the components of x to the 
nearest integers.  The discrete neighborhood ( ) pN x ⊆ Z  

about px Z∈ , is the set of points 
 

 ( ) { }:pN x Z xθ θ= ∈ ≤ ≤      θ  

 
which is simply the smallest hypercube in pZ  about x.  A 
real-valued function L on pZ  is integrally or discretely 
convex if for any , pZθ θ′ ′′ ∈  and scalar  in the interval λ
[ ]0,1  

 
 . (6) ( )

( )( )
( ) ( ) ( )

1
min 1
N

L L L
θ λθ λ θ

θ λ θ λ θ
′ ′′∈ + −

′≤ + − ′′

 
Observe that this condition implies (3) since for any 

pZθ ∈ , ( ) ( )( ) { }1 1
2 21 1N θ θ+ + − = θ . 

A discretely convex function  defined on L pZ  can be 
extended to a convex function  defined on all of *L pR .  
The extension is continuous and piecewise linear ([11]).  If 
L is strictly convex, then so is its continuous extension.  
For the case p = 1, the extension  is obtained by linearly 
interpolating L between points in 

*L
Z . 

The following is a consequence of (2) and (5). 
Lemma 1: Assume that L is a strictly and discretely 

convex function on Z .  The function 
 

  (7) ( ) ( ) ( )* * 1g L Lθ θ θ= − − g

 
is continuous and strictly monotonic on .  Furthermore, 
if  is a zero of g, then 

R
*θ *θ    or  minimizes L. *θ  

III. FINITE-DIFFERENCE BASED ALGORITHM 
The difference function in (7) is not directly available, 

we must rely on noisy estimates ĝ  to obtain .  We can 
then find the minimum of the discrete function L by means 
of a stochastic approximation procedure based on the 
estimates 

*θ

ĝ  of g.  The approximation is obtained from the 

difference estimates  of . ( ) ( )y yθ − 1θ − ( ) ( )1θ− −L Lθ
To be more specific, consider the following stochastic 

approximation algorithm: 
 

 ( ) (( )1
ˆ ˆ ˆ ˆ 1k k k k k k ka y yθ θ θ θ+ )  = − − − 

    , 1̂
pZθ ∈  (8) 

 
where the sequence { }na

< ∞

 satisfies the standard conditions, 

i.e. , 0ka > 2
ka∑  and ka = ∞∑ . 

Proposition 1: Assume that L is a discretely and strictly 
convex function on Z  and is bounded below.  Suppose 
also that .  The sequence in 

(8) converges almost surely to the minimum  of . 

( )( ) (( ) 1L E θ θ≤ Ο )2+2 2θ ε+
*θ *L

Proof: The proof follows straightforwardly from 
Theorem 1 of [12] as a result of Lemma 1. 

In [6], the cost function  is assumed to be 
discretely convex and separable, i.e., 

: pL Z R→

 
  (9) ( ) ( )1

p
i ii

L Lθ
=

=∑ θ
 
where each  is a discretely convex function on iL Z .  If L 
is separable, then a necessary and sufficient condition for 

 to be a minimum is that  for i = 1, …, 
p (see [10]).  In other words, a separable convex function 
achieves its minimum at the point whose components 
correspond to the stationary points of the ’s.  If each  
is strictly convex then the global minimum is unique and 
any local minimum is also a global minimum. 

θ ( ) (1i i i iL Lθ ± ≥

iL

)θ

iL

The minimization of separable convex functions on pZ  
can be handled in a manner similar to that for the scalar 
case.  Consider the vector-valued function ĝ  with i-th 
component ˆ ig  given by 

 
 . ( ) ( ) ( )1ˆ , , 1, ,i ig y yθ θ θ θ θ= − −… … p

 
Thus, ˆ i  is an estimate of the i-th difference 



 
 

 

( ) ( ) ( )1i i i i ig L Lθ θ θ= − −  in (9), which is strictly 
monotonic on Z .  These difference estimates are 
analogous to finite difference estimates of gradients in 
continuous optimization. 

1

p

i=∑

*θ
*g

g

R

( ) ( )* 0Tg x x θ− − >

x θ≠ iL

( 1, ,
T

k k kp∆ = ∆ ∆…

1±

pR
( )ky ⋅

( )k ky Lθ θ+ = +

( )k ky Lθ θ− = −

0kc >
H

( )

1

We have the following multivariate extension of 
Proposition 1. 

Proposition 2: Assume that L is a discretely and strictly 
convex separable function on pZ  and is bounded below.  
Assume also that .  

Then (8) converges almost surely to the unique global 
minimum  of the continuous extension  of . 

( )i iL E ( )( ) (2 2 1θ ε θ+ ≤ Ο

*L L

)2θ+

Proof: Let  denote the function obtained by extending 
each component of  to a continuous convex functions on 

.  We need only check that the function ( )*g x−  satisfies 
the conditions in Theorem 4 of [12].  The main condition 
that must be verified (the others hold by assumption) is that 

, for some pRθ ∈  and all px R∈

*θ θ=

, 

.  Since the ’s are strictly convex, this inequality 

follows from (2) applied to each term in (9), when . 

IV.  THE SPSA METHOD 
The SPSA method is based on simultaneous perturbation 

estimates of the gradient.  In the discrete case, differences 
replace the gradient.  To estimate the differences of  
we use simultaneous random perturbations.  At each 
iteration k of the algorithm, we take a random perturbation 

vector , where the ∆ ’s form an i.i.d. 

sequence of Bernoulli random variables taking the values 
.  The perturbations are assumed to be independent of 

the measurement noise process.  For cost functions defined 
on 

( )L θ

) ki

, the difference estimate at iteration k is obtained by 
evaluating    at two values: 

 
 , ( ) ( )2 1k kc cε θ−∆ + + ∆k k

k k

 
 . ( ) ( )2k kc cε θ∆ + − ∆
 

where .  The i-th component of the difference 
estimate  is 

 
 ( ) ( )( ), 2i k kH k y y cθ θ θ+ −= − k ki∆

)

 (10). 

 
Consider the sequence 
 

 . (11) (ˆ ˆ ˆ1,k k k ka H kθ θ θ+
 = − +  

with an initial estimate 1̂
pZθ ∈ . 

The discrete, fixed gain version of this algorithm, i.e. 
, c , where , was introduced in [7].  In that 

algorithm, the difference estimate in (11) was replaced by 
its truncation 

ka a≡ 1k ≡ 0a >

H    and the iterates were constrained to lie 

in the set pZ . 
Consider the following discrete optimization algorithm, 

which was introduced in [13] 
 
  (12) (*

1
ˆ ˆ ˆ1,k k k ka H kθ θ θ+ = − + )

 
where the components of *H  are obtained from an 
approximation to  based on noise-corrupted 
measurements  of L.  In this version, 

*L
( )y θ { }ka  and 

{ }kc  satisfy the standard conditions for a Kiefer-
Wolfowitz type algorithm.  (Also, assumptions on the 
perturbations  can be relaxed, i.e., they need not be 

Bernoulli random variables.) The sequence  in (12) 

provides an estimate of the minimum of the extension . 

k∆

k̂θ
*L

Proposition 3: Assume the conditions of Proposition 2.  

Assume also that the components of  

are  bounded, i.i.d., symmetrically distributed about zero 
and satisfy 

( )1, ,
T

k k kp∆ = ∆ ∆…

1
ki

E −∆ < ∞ .  The sequence in (12) converges 

almost surely to the stationary value of . *L
The proof of this result relies on the notion of 

subgradients.  A subgradient of  at  is any *L θ pRξ ∈  such 

that ( ) ( )* * TL h Lθ θ hξ+ − ≥  for all ph ∈ R .  Since  is a 
convex function and is continuous at , the set of 
subgradients of  at  is a nonempty compact set. ([14]). 

*L
θ

*L θ
Proof: The result follows from [15] (see Proposition 2) 

or [16] (see Theorem 5.6.2) if we can show that *H  is an 
approximate subgradient of  in the following sense.  For 
each  and , there is a subgradient of  at , 
denoted , such that 

*L
1k ≥ 0ε >

)k

*L θ
( ,kξ θ ∆

 

 
( ) ( ) ( )

( )

* ,
2

, .

k k
i ki

k
T
k k k

y y
H k

c
θ θ

θ

ξ θ ε

+ −−
= ∆

= ∆ ∆ +

 

 
Lemma 1 of [15] derives this approximation under the 
assumption that the ∆ ’s are supported on a finite discrete 

set.  Since  is piecewise linear, this restriction can be 
relaxed.  The subgradient of  at  can then be chosen so 
that it is independent of .  In other words, for each , 

ki

*L
*L θ

k∆ θ



 
 

 

there is a subgradient ( )ξ θ

( )

 of  at  such that *L θ

} ( ) (,k o= +
 
 { )k kE H c cθ ξ θ . 

 
The conclusion now follows from this and Proposition 2 of 
[15] or Theorem 5.6.2 of [16]. 
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