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Abstract— This paper presents a path-tracking hybrid con-
troller for articulated vehicles. It is based on the approximation
of the desired path with lines and arcs: suitable controllers are
designed for tracking each line and arc and the control objec-
tive is attained by switching among the different controllers.
Each controller is designed using partial linearization methods
and variable structure control theory. The proposed control
approach allows the driving point to track any desired path,
starting from the set of feasible vehicle configurations, both in
forward and backward motion, as confirmed by simulation.

I. INTRODUCTION

This paper presents a hybrid path-tracking controller
which makes an articulated vehicle follow a desired path
consisting of lines and arcs, as the vehicle moves forward
and/or backward. This means that the driving point is
required to converge and track the prescribed path.

The path tracking control of articulated vehicles is a
difficult task, especially when they are moving backward,
because of the jack-knife effects between the parts of the
vehicle. At the same time, path-tracking control is of great
interest because it finds application in the field of automatic
guidance of a large class of industrial articulated vehicles
[1], [2]. In the past years, many approaches have been
followed: local linearization [3], fuzzy control [4], neural
network [5], genetic algorithms and expert systems [6], as
well as Lyapunov methods [7].

In the present work the control strategy consists in
approximating the desired path with lines and arcs, design
suitable controllers for tracking each line and arc, and then
switching among the different controllers according to a
prespecified logic. The control laws associated with the
various controllers are designed using partial linearization
[8], [9], and variable structure control theory [10], [11]. The
overall control strategy makes the articulated vehicle follow
any chosen path accurately. Indeed, each controller guaran-
tees that the corresponding reference line or arc is tracked
asymptotically, starting from the set of feasible vehicle
configurations. This set, which will be specified in the paper,
does not contain only peculiar configurations, such as, for
instance, that characterized by the tractor perpendicular to
the trailer, or that for which the trailer is perpendicular
to the line to be tracked. Moreover, it is proved that, on
the whole, the hybrid controlled nonlinear system, after an
arbitrarily short initialization period, becomes equivalent to
an asymptotically stable switched linear system.

II. THE ARTICULATED VEHICLE

Consider the articulated vehicle shown in Fig. 1, where a
generic posture is depicted. It consists of a tractor equipped
with two rear-drive wheels and a front-steering wheel,
linked to a trailer with two rear wheels. The symbols in
Fig. 1 have the following meaning:

L1 is the wheelbase of the tractor;
L2 is the lenght of the semitrailer;
θ is the orientation of the semitrailer with respect to x-

axis;
φ is the orientation of the tractor with respect to the

semitrailer;
α is the steering angle and corresponds to the control

variable to be manipulated;
P is the middle point of the semitrailer’s rear wheels and

it is chosen as “driving point”; its cartesian coordinates are
(xD, yD).

III. THE HYBRID CONTROL STRATEGY

The aim of the control strategy is to make the articulated
vehicle of Fig. 1 follow an arbitrary path. To do this the
hybrid control strategy consists in the following steps:

1) approximate the desired path with lines and arcs;
2) describe the position and the dynamics of the artic-

ulated vehicle as a function of the distance travelled
along the assigned path;
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Fig. 1. The articulated vehicle.



3) partially linearize this state equations with appropriate
state coordinate transformation;

4) design variable structure controllers for tracking each
line and each arc;

5) suitably switch among the different controllers to
track the desired path.

A. Approximation of the desired path (Step 1)

Consider an arbitrary path P to be tracked: it can be
approximated by a suitably chosen sequence SP = {li} of
n straight lines and/or arcs li, i = 1, ..., n. Given a path P ,
it is possible to find an algorithm that computes, given a
finite n, the closest path, consisting of lines and arcs, to the
original path P . How to do this is an important task, but
out of the scope of the present paper.

B. Vehicle dynamics (Step 2)

In the present work, in accordance with [3], and [12],
the basic idea is that of describing the vehicle dynamics as
a function of the distance λi travelled along each line/arc
li ∈ SP , i.e., in defining the so-called path tracking offsets
dynamics, one for each line/arc li. Then the path tracking
problem can be viewed as the problem of driving the offsets
dynamics asymptotically to zero. The state vector is defined
as xi = [los

i φi θos
i ]′ where los

i is the offset of the driving
point from the reference path li, and θos

i is the angular offset
between the orientation of the trailer and the desired path
li.

When the line li to be tracked is a straight line, for
example the y-axis, (see Fig. 1), λi = yD, los

i = xD, and
θos

i = θ. When li is an arc, the distance travelled along
the path is given by λi = Riγ, where Ri is the radius of
the circle containing arc li and γ = ± atan2 (yD, xD),
(see Fig. 2). The symbol atan2 denotes the four-quadrant
inverse tangent, the + sign hold for paths to be followed
in the counterclockwise direction and the - sign for the
clockwise direction. The state vector is xi = [los

i φi θos
i ]′

where los
i =

√

x2
D + y2

D − Ri and θos
i = θ − γ + π/2.

Under the usual assumption of a planar and slippage-free
motion, being αi the steering angle in each line/arc li, the
differential equations representing the offsets dynamics of
the vehicle are























dlos
i

dλi
=

Ri+los
i

Ri
tan θos

i

dθos
i

dλi
=

Ri+los
i

Ri

[

1
L1

tan αi

cos θos
i

cos φi
− 1
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i

]

dφi
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=

Ri+los
i

RiL2

tan φi

cos θos
i

+ 1
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= Ri
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i

cos θos
i cos φi

(1)

Note that by setting Ri = +∞ these equations describe the
case of a straight-line li.
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Fig. 2. Deviation of the articulated vehicle from a circular path with
radius R.

C. Partial linearization (Step 3)

Now, to partially linearize (1) we define the following
transformation











ξ1i = los
i

ξ2i =
Ri+los

i

Ri
tan θos

i

ξ3i =
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i

R2

i

1+sin2 θos
i
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i

+
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i )2

R2

i
L2

tan φi

cos3 θos
i

(2)

for los
i ∈ (−∞,∞), φi ∈ (−π/2, π/2), θos

i ∈ (−π/2, π/2)
when the vehicle is moving forward, and θos

i ∈ (π/2, 3π/2)
when it is moving backward [12]. These intervals identify
the set of feasible vehicle configurations, which, in the
sequel, will be denoted by F .

By differentiating the state ξi = [ξ1i, ξ2i, ξ3i]
′ with

respect to λi, it yields

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The resulting linear system, by viewing tan(αi) = νi as
the control variable, is







ξ̇1i = ξ2i

ξ̇2i = ξ3i

ξ̇3i = Fi + Giνi

(4)



being
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D. Design of the control laws (Step 4)

The control law is designed relying on the variable
structure control methodology. To do this, introduce the
linear scalar functions

si(ξi) = f1iξ1i + f2iξ2i + ξ3i, (7)

and the sliding manifolds si(ξi) = 0, one for each portion
li of the desired path, and where f1i, f2i are chosen so
that the polynomial ϕ(λ) = λ2+ f2iλ + f1i is Hurwitz.
Note that, as usual in variable structure control, [10], [11],
the sliding manifold si(ξi) = 0 is selected so that when
the state of system (2) is restricted to lay on it, the system
dynamics exhibits the desired behavior.

Then, according to a variable structure control strategy,
define the control law

νi = −Kisign(si(ξi)), Ki > 0 (8)

where Ki is such that the “reaching” condition for the
sliding manifold si(ξi), by regarding λi as time scale, is
fulfilled [13], i.e.

Ki =
ki

|Gi|
, ki > |f1iξ2i + f2iξ3i + Fi| (9)

Condition (9) guarantees that the sliding manifold
si(ξi) = 0 is reached in finite time [13]. Once in sliding
mode si(ξi) = 0, i.e., ξ3i = −f1iξ1i −f2iξ2i. Then, system
(4) becomes equivalent to the reduced order linear

{

ξ̇1i = ξ2i

ξ̇2i = −f1iξ1i − f2iξ2i

(10)

which can be rewritten, in compact form, as

˙̄ξi = Aiξ̄i (11)

where ξ̄i = [ξ1i, ξ2i]
′ and Ai =

[

0 1
−f1i −f2i

]

.

As a result, once in sliding mode, ξi → 0 as λi → ∞, and
consequently also los

i → 0, and θos
i → 0, i.e., the vehicle

tracks the desired portion of the path.
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Fig. 3. The desired paths.

E. Choice of the switching strategy (Step 5)
Given a path to be tracked, approximated by a suitable

sequence SP = {li} of straight lines and arcs, up to
now it has been showed how to design a sequence
of controllers CP = {νi} each of them guaranteeing,
starting from any configuration in F , the tracking of the
corresponding line/arc li. It is now necessary to define
how to switch between the different control laws νi: in
fact, it is well known that an hybrid strategy where the
controller switches between different control laws can
result in an overall unstable closed-loop system even if
each control law is designed so as to guarantee stability.
To this end, the following switching strategy can be defined:

Switching time conditions
Let I be a finite set of indexes (it contains the integers
from 1 to n, n being the number of the li’s composing
the reference path), and let A = {Ai : i ∈ I} be the closed
bounded set of the real 2×2 matrices Ai in (11), which, by
virtue of the choice of the control laws νi, are stable and
such that there exist two finite, nonnegative and positive
numbers, respectively, for which

exp(A1t) ≤ exp(ai − λit), t ≥ 0

Starting from an initial configuration in F , assume that the
line/arc l1 path tracking controller ν1 is first used.

When the vehicle, controlled by the ν1 control law, enters
a convenient region I12 containing the crossing point C12

between line/arc l1 and line/arc l2 (see Fig. 3), one needs
to switch to the line/arc l2 path tracking controller, paying
attention to the fact that the switching time instant t12
satisfies the following conditions:

τ12 < t12 < Tmax and |α1 − α2| ≤ ε
or
t12 = Tmax

(12)

where ε and Tmax are project parameters and τ12 is given
by max {τ0, T1, T2}, being T1, T2 the reaching times for the



sliding manifolds s1(ξ1) = 0, and s2(ξ2) = 0, respectively,
and τ0 is a dwelling time such that

τ0 = sup
i∈I

{

ai

λi

}

(13)

.
When the vehicle, following a generic part li of the

reference path, controlled by the νi control law, enters a
convenient region Iij containing the crossing point Cij

between line/arc li and line/arc lj , one needs to switch to the
line/arc lj path tracking controller, paying attention to the
fact that the switching time instant tij satisfies the following
conditions:

τij < tij < Tmax and |αi − αj | ≤ ε
or
tij = Tmax

(14)

where the dwelling time τij is given by max {τ0, Tj}, being
Tj the reaching time for the sliding manifold sj(ξj) = 0.
Note that condition tij ≥ Ti is not needed because, after
the first switch, it is automatically satisfied by the choice
of the switching strategy.

The above conditions have the following meaning: con-
dition tij > τij assures that the interval between any two
consecutive switching times is no smaller than the so-called
“dwelling time” τ0, and that the reaching condition for the
sliding manifold sj(ξj) = 0 is satisfied. Then, system (1)
becomes equivalent to the reduced order linear (11) with
stable matrix Ai. It is indeed well known, see [14], that the
switch among stable linear systems may result in a stable
controlled system provided that the switching is “slow”, i.e.,
when a switch has occurred, a new one can occur only after
a suitable dwelling time.

Then, if tij ≥ τij , the steering angle αi for tracking line
li using the path tracking control law νi, and the steering
angle αj for tracking line lj using the path tracking control
law νj are calculated contemporarily. The switch between
the two controllers occurs only when |αi − αj | ≤ ε in order
to guarantee continuity of the steering angle and to avoid
abrupt swerves.

It could happen that within a prespecified waiting time
Tmax, it is not possible to satisfy this continuity condition on
the steering angle. In this case, at tij = Tmax the controller
switches from the control law νi to the control law νj even
if |αi − αj | > ε. This condition is needed to assure that
the vehicle does not deviate too much from the desired
path. After the switching the vehicle is controlled by the
νj control law for tracking line lj until conditions for a
new switch arise.

IV. STABILITY AND CONVERGENCE ANALYSIS

The stability of the origin of the overall hybrid closed-
loop system (1), (8) is now investigated.
Proposition 1: Given, for i = 1, . . . , n, system (1), con-
trolled by (8), the switching time instants complying with
the switching time conditions (12), (14) with τ0 as in (13).

Then, for any xi ∈ F , and for t ≥ T1, the overall hybrid
controlled system is equivalent in Filippov’s sense [10], to
a switched linear system of type ẋ = Aσx, and its state
transition matrix satisfies

‖Φ(t, µ)‖ ≤ exp(a − λ(t − µ)), ∀ t ≥ µ ≥ T1

where the symbol ‖ · ‖ denotes the norm and

a = sup{ai} λ = inf

{

λi −
ai

τ0

}

with λ ∈ (0, λi], and i ∈ I .
Proof:
The result can be proved by a straightforward application
of Lemma 2 in [15]. Indeed, because of the choice of the
switching time conditions which are at the basis of the
switching logic, and of the choice of the sliding mode based
control laws, the evolution of the overall controlled system
in time can be viewed as a sequence of time evolutions of
linear autonomous systems with matrices Ai. Then, starting
from the reaching time instant of the sliding manifold
s1(ξ1) = 0, namely T1, the overall hybrid controlled system
is equivalent in Filippov’s sense, to a switched linear system
of type ẋ = Aσx, which, by virtue of the assumptions,
satisfies Lemma 2 in [15].

The direct consequence of this result is that, from the
reaching time instant T1 on, the matrix Aσ of the equivalent
system is exponentially stable with a decay rate λ. Relying
on this fact, the main result can be proved.
Proposition 2: Given, for i = 1, . . . , n, system (1), con-
trolled by (8), then, for any x1 ∈ F , the final portion ln of
the reference path is reached in finite time, and the origin
of the ξn state space is an asymptotically stable equilibrium
point of system (1) with i = n.
Proof:
This result follows from the fact that, by assumption,
x1 ∈ F , and, for 0 ≤ t < T1, the reaching condition is
satisfied by virtue of the choice of the control law ν1. For
t ≥ T1, the result of Proposition 1 holds. The final portion
of the reference path is reached in finite time because of
the choice of the switching time conditions, which enable
the commutation between the control laws νi and νj only if
sj(ξj) = 0, and because of the fact that the reaching of each
sliding manifold naturally occurs in finite time. Then, An

is asymptotically stable, and ξn is asymptotically steered to
the origin of the state space.

V. SIMULATION EXAMPLE

As an example, in this section, an articulated vehicle is
considered consisting of a tractor with wheelbase L1 = 5m,
towing a trailer of length L2 = 5m, the absolute value of
the longitudinal velocity is v = 1m/s. In Fig. 3 two simple
paths to be tracked are depicted: they can be approximated
by two straight lines and one arc. In Fig. 4 the simulated
trajectories of the driving point P2 are shown, demonstrating
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the tracking properties of the designed control strategy. The
solid line represents the trajectory of the driving point (start-
ing from the initial configuration x2 = −40m, y2 = −40m,
θ1 = π/3, θ2 = π/4, when the vehicle is moving forward
and it is following the desired path DP1; the dashed line
represents the trajectory of the driving point (starting from
the initial configuration x2 = 40m, y2 = 40m, θ1 = π/3,
θ2 = π/4, when the vehicle is moving backward and it
is following the desired path DP2. In Fig. 5 and Fig. 6
the evolution of the si’s versus time is depicted in both
cases. Fig. 7, Fig. 8 and Fig. 9 show the evolutions of los,
φ, θos versus time, when the vehicle is moving forward,
following the x-axis (Fig. 7), a part of a circle (Fig. 8) and
the y-axis (Fig. 9) respectively. Since this variables (los, φ,
θos), which represent the difference between the simulated
trajectory and the desired path, are steered to zero, it is
possible to conclude about the good tracking properties of
the proposed control strategy.
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Fig. 7. Time evolution of los, φ, θos in forward motion, following the
x-axis.

VI. CONCLUSIONS

In this paper, a hybrid variable structure control strategy
for articulated vehicles has been designed. The proposed
controller allows the vehicle to follow any path, while it
is moving forward or backward. The stability features of
the proposed hybrid control approach have been analyzed.
With respect to other proposals appeared in the literature,
the advantages of the presented control strategy are that the
controllers associated with the various lines and arcs of the
reference path are very simple, and that they have good
robustness features versus matched bounded uncertainties,
since they inherit the robustness properties of variable
structure control. However, an extensive discussion of this
issue is out of the scope of the present paper, this robustness
feature being a typical attribute of sliding mode based
controllers.
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