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Abstract— This paper demonstrates a method of introducing
frequency domain constraints into the design of input shapers
within a convex optimization framework. The magnitude
bounds in the frequency domain are approximated to produce a
set of linear constraints at discrete frequency points. The error
bounds due to such approximation are easy to compute. This
technique is applied to automated highway systems by including
ride quality as an explicit frequency domain constraint.

I. I NTRODUCTION

Input shaping is a technique in which a reference command
to a system is modified or shaped through convolution with
an FIR filter (input shaper in Fig. 1). The purpose of this
modification is to remove frequency content from the refer-
ence command that can produce oscillations in the closed-
loop system. With properly chosen impulses, the effect can
be very significant. In practice, input shaping has been used
in areas where zero vibration of an object after a maneuver
is required, for example, a reader arm in a hard disk drive
or a cargo crane [9].
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Fig. 1. Input shaping. Reference command is convolved with an input
shaper.

Automated highway systems [13] are another interesting
application that can benefit from input shaping. A platoon of
automated vehicles can be thought of as a series of spring-
mass-damper systems where vibration must be controlled
for stable operation. For such systems, acceleration can be
used for reference commands, but ideal signals must be
modified to reflect performance limitations of a platoon of
vehicles. A convex optimization approach to input shaper
design that can capture time domain constraints such as
engine saturation or maneuver end-point [8] is therefore quite
useful. Previous work [1] has demonstrated that this approach
can be successfully applied to automated highways.

These previous formulations for designing input shapers,
however, have included only time domain constraints such as
acceleration or position requirements. It is sometimes desir-
able to have constraints specified in the frequency domain,
for instance limiting input shaper gain at high frequencies.
In other cases, constraints can only be effectively expressed
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Fig. 2. A platoon of 3 vehicles.

in the frequency domain. A good example in the context
of automated highways is ride quality, which is strongly
frequency dependent. This paper shows how such constraints
can be added to the convex optimization framework.

This paper begins with a simple model for automated high-
way systems. Input shaping is then formulated as a convex
optimization with time and frequency domain constraints.
Finally, simulation results show how automated highway
systems can benefit from smoother ride due to inclusion of
ride quality constraint.

II. SYSTEM MODELING AND IMPLEMENTATION

An automated highway system of a platoon of three vehi-
cles is used in this work [1]. Each vehicle in the platoon is
modelled as a lumped mass, linear time invariant system with
a first order actuator delay of 5 Hz. Vehicle parameters are
assumed known with sufficient accuracy through parameter
identification techniques [2]. The numerator is scaled for
unity DC gain. In a transfer function form, the model for
each vehicle is

G(s) = L
{

ẍ(t)

u(t)

}

=
b

s + b
(1)

Each loop is closed with a simple constant gain controller.
Controllers act on linear combinations of relative spacing
errors and relative speeds with respect to the preceding
vehicles. In other words, the leader (vehicle #1) is the only
one that sees the reference command while the rest look only
at current position and speed relative to the immediately pre-
ceding vehicle. In addition, no inter-vehicle communication
is assumed. The gains are chosen for a string stable platoon.
The state-space open loop model is described by

ẋ = Ax + Bu (2)

y = Cx + Du

where the states,x = [x1 v1 a1 x2 v2 a2 x3 v3 a3]
T , repre-

sent position, speed and acceleration of vehicle #1, #2 and



#3, respectively in Fig. 2. Outputy is composed of all 9
states and 3u’s.

Closing the loops with control inputs for the leader

u1 = ar + K1(Vr − ẋ1) (3)

and for second and third vehicles,

ui = Ki [(ẋi − ẋi−1) + wi (xi − xi−1)] , i = 2, 3 (4)

the closed loop system is,

ẋ = Aclx + Bclar (5)

y = Cclx + Dclar

Vehicle parameters and controller gains are listed in Ta-
ble I. Representing the system in the frequency domain,

Vehicle # b K w
1 31.4 11 N/A
2 31.4 7 4
3 31.4 10 4

TABLE I

VEHICLE AND CONTROLLER PARAMETERS

transfer functions from reference acceleration,aref (t), to
control effort,u(t), or vehicle acceleration,̈x(t), are denoted
respectively by,

U(s)

Aref (s)
or

s2X(s)

Aref (s)

III. C ONVEX OPTIMIZATION AND TIME DOMAIN

CONSTRAINTS

A. Convex optimization framework

It has been shown that the objectives associated with
input shaper design can be approximately reformulated as
quasi-convex optimization problems in the discrete domain
[12]. The input shaper design is then a special case of FIR
filter design problem. In this framework, a filter with the
minimum length and minimum number of non-zero impulses
is designed to shape reference commands so that a system
tracks the shaped reference command with little residual
while satisfying performance constraints such as bounded
control effort [8].

Defining an input shaper withN impulses (hi) as,

HN =
[

h0 h1 · · · hN−1

]T
(6)

and an FIR filter form,

H(z) =

N−1
∑

i=0

hiz
−i, (7)

the modifiedor shapedreference command fork ≤ N − 1
with the input shaper defined in (7) is

mk =

[

k
∑

i=0

hi

]

r (8)

Discretizing the closed loop system (5) withTs (a design
variable) and propagating through time steps, the discrete
system can be written in a notationally convenient form as

xk = Fxk−1 + Gmk−1 (9)

=

k−1
∑

i=0





k−i−1
∑

j=0

F jG



 hir

= SkHNr

where

Sk =





k−1
∑

j=0

F jG

k−2
∑

j=0

F jG · · · G · · · 0N−k



 (10)

B. Cost function

Performance goals and desired properties are formulated as
linear constraints in the framework of convex optimization.
In fact, this is simply linear programming since cost and
constraint functions are linear.

In this work, the objective of an input shaper design is
to find an FIR filter with the minimum number of non-zero
impulses for a givenN . This l0-norm (non-convex) opti-
mization is approximated with a weightedl1-norm (convex)
optimization. See [8] for details.

min
HN

‖WHN‖1 (11)

C. Constraint functions

A couple of the time domain objectives relevant to auto-
mated highways are listed below. Additional constraints can
be found in [8], [1]. In the following,ǫ’s are design vari-
ables that allow tight/loose control, depending on acceptable
compromise between performance and cost. In addition,Cx

extracts variables such as final acceleration (Caf ) or control
effort (Cu) from the state vectorx.

1) Output constraint with small residual:Final states
(accelerations) should be as close to the final desired states
as possible,xN = Xf,desired = [a1 a2 a3]

T
final = [1 1 1]T .

| xN − Xf | = | CafSNHNr − Xf | ≤ ǫx (12)

2) Control magnitude constraint:Control effort should be
bounded in order to avoid actuator saturation while reaching
the final destination. This constraint is very useful in many
applications where certain outputs would result in undesir-
able saturation and bounding control authority is crucial.

umin ≤ uk = CuSkHNr ≤ umax (13)

IV. CONVEX OPTIMIZATION AND FREQUENCY DOMAIN

CONSTRAINTS

It is well known that an input shaper with positive and
negative impulses (as opposed to only positive impulses)
may have magnitude amplification at high frequencies [6].
While this may be acceptable for real systems since most



physical systems have a high frequency roll-off, a capability
of frequency shaping is useful. This section summarizes
how to incorporate frequency shaping when designing input
shapers using convex optimization.

Expressing (7) in the frequency domain,

H(w) =
N−1
∑

i=0

hie
−jw(iTs), j =

√
−1

=

N−1
∑

i=0

{hi cos(iwTs) − jhi sin(iwTs)} (14)

Some FIR filter design problems assume linear phase (sym-
metric impulses about the midpoint). This assumption sim-
plifies the formulation of FIR filter design in a convex
optimization framework since only real parts of (14) are used.
However, input shapers in this work are not assumed to have
a linear phase, which gives the input shaper more freedom
to achieve the best performance.

Since the phase linearity is not assumed, manipulating the
magnitude of the input shaper frequency response is essen-
tially taking the magnitude of a series of complex numbers
in (14). This makes formulating the filter magnitude shaping
as a linear combination ofhi quite difficult. A number of
techniques have been developed when the magnitude of a
nonlinear phase FIR filter needs to be bounded in a form,

L(w) ≤ |H(w)| ≤ U(w), (15)

such as reformulating the problem using power spectrum of
H(w) and retrieving impulse coefficients through spectral
factorization [12]. However, most such formulations usually
mean a nonlinear convex problem since they work with
magnitude squared, instead of magnitude itself. Therefore,
they cannot be added directly to the existing linear time
domain constraints nor can such problems take advantage
of the speed of a linear optimization solver [1].

However, methods for approximating these constraints in
a linear form do exist [3], [11]. These methods, described
in the following section, can be quite easily adapted to the
input shaper problem.

A. Complex to real approximation

The magnitude of a complex number can be represented
with a corresponding real number [4]. For any complex
numberz = x + jy,

|z| =
√

x2 + y2 = max{Re(zη) | η ∈ S} (16)

S = {η ∈ C | |η| = 1} (17)

Choosingη = ej2πθ [3], for any complex numberz,

|z| = max
θ∈T

{Re(zej2πθ)} (18)

T = {θ | − 0.5 ≤ θ ≤ 0.5} (19)

Suppose that an FIR filter with amplitude bounds over
frequency points is desired. This is achieved by putting an
upper bound on the magnitude of an FIR filter.

|H(w)| ≤ Z(w), Z(w) ∈ ℜ+ (20)

Since the frequency response of an FIR filter is a complex
number at a given frequency, (20) can be written as

|H(w)| = max
θ∈T

[Re{H(w)ej2πθ}] ≤ Z(w) (21)

Solving (21) is a semi-infinite problem since the constraint
is continuous. Discretizing the constraint by checking2p
points over the2π radius range turns the problem into a
semi-definite problem [3],

A(w) = max
∆r

[Re{H(w)ej∆r}] ≤ Z(w) (22)

∆r =
(r − 1)

2p
, r = 1, 2, . . . , 2p (p ≥ 2) (23)

With the discretized constraints, the discretization error can
be bounded as shown in [3], [10], giving

A(w) ≤ |H(w)| ≤ A(w) sec

(

π

2p

)

(24)

As p gets larger, the discretized constraints more closely
resemble the continuous constraints. For example,p = 4
is used in this work giving an error magnitude bound of
about 8% (sec(π/2p) = 1.08). However,p has to be chosen
carefully as it adds complexity and cost in optimization
process.

B. Frequency domain constraints in convex optimization
framework

From (24),

|H(wk)| ≤

max
∆r

Re

{

N−1
∑

i=0

hi[cos(wkiTs) − j sin(wkiTs)]

· [cos(∆r) + j sin(∆r)]

}

sec

(

π

2p

)

= max
∆r

[

N−1
∑

i=0

hi[cos(wkiTs − ∆r)]

]

sec

(

π

2p

)

(25)

wherek = 1, 2, · · · ,M is the number of frequency points for
constraints to be matched at. As a rule of thumb,M ≈ 10N
[12].

Note that the constraint in (25) is linear inhi. Therefore,
(25) and, hence, (21) atw = wk are satisfied, for all∆r if,

sec

(

π

2p

)

CkHN ≤ Z(wk)1 (26)

where

1
T = [1 · · · 1]1×2p



Ck =







1 cos(wkTs − ∆1) · · · cos(wk(N − 1)Ts − ∆1)
...

...
...

...
1 cos(wkTs − ∆2p) · · · cos(wk(N − 1)Ts − ∆2p)







2p×N

Then, for all frequency points,wk, k = 1, 2, . . . ,M ,

sec

(

π

2p

)

















C1

...
Ck

...
CM

















HN ≤

















Z(w1)1
...

Z(wk)1
...

Z(wM )1

















(27)

Now, (27) can be easily added to the existing linear constraint
matrices such as (12) and (13).

C. Frequency domain constraints for frequency shaping

In the previous section, frequency domain constraints have
been added to modify the input shaper response in a desired
manner. In other words, the magnitude of the input shaper can
be forced to follow a certain frequency profile. The overall
system response (plant as well as input shaper responses) can
also be made to have a certain magnitude profile. A simple
case would be the requirement that the magnitude of the
overall system response be below one at all frequencies.

Ck in (27) represents the magnitude of the system at
each frequency. Thesystemis what we choose it to be:
input shaper only, or overall system (input shaper and plant
dynamics). If we changegains or put weights onCk by
introducing a value, we effectively change the magnitude of
input shaper at each frequency point. In other words, instead
of looking only at the magnitudes of input shaper frequency
response, the overall system magnitude can be manipulated
by working with |Yk|Ck which is the magnitude of input
shaper frequency response, weighted by the magnitude of
plant frequency response at frequencywk. The new constraint
in matrix form is then,

















|Y1|C1

...
|Yk|Ck

...
|YM |CM

















H ≤ 1 (28)

where, for example, to avoid actuator saturation in the
automated highway system,

Yk =
U(wk)

Aref (wk)
or

s2X(wk)

Aref (wk)
. (29)

When Yk = U(s)/Aref (s), the magnitude of the transfer
function from reference acceleration (aref (t)) to control
effort (u(t)) is a design objective. Similarly, the magnitude
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Fig. 3. |U3(s)/Aref (s)| without (solid) and with (dashed) input shaping.
A constant gain frequency constraint is used.

from reference acceleration to a vehicle acceleration is a
constraint whenYk = s2X(s)/Aref (s) is used.

V. SIMULATION RESULTS AND ANALYSIS

A platoon of three vehicles is analyzed with a step accel-
eration reference input. Transfer functions from acceleration
reference input to control authorities,Ui(s)/Aref (s), are
shown in solid in Fig. 3 and the subsequent frequency
response plots. These transfer functions are normalized inthe
sense that maximum reference acceleration of the magnitude
of one would produce maximum control authority of the
same magnitude. Constraints on these transfer functions thus
limit the control used in response to a given reference
acceleration and can be employed to prevent saturation [1].

A. Unity gain constraint

Fig. 3 shows the input shaper response,|H(s)|, (dotted)
and the overall system responses,|U3(s)/Aref (s)|, without
(solid) and with (dashed) input shaping. The objective of the
frequency constraint in the plot is to limit the magnitude
of the overall system frequency response below one. The
factor of sec(π/2p) in (27) is not used in this and the
following simulations. Therefore, in Fig. 3, the magnitude
of the overall system (dashed) matches within the magnitude
error of 5%. Fig. 4 shows|A3(s)/Aref (s)| that is identical
to |U3(s)/Aref (s)| since there are no additional dynamics
between these responses.

The actuator responses are bounded in Fig. 5 by the fre-
quency domain constraint,|Ui(s)/Aref (s)|. This could also
be accomplished with a time domain constraint [1]. In Fig. 5,
the control effort (solid) is now bounded (dotted horizontal)
with input shaping, compared to that without input shaping
(dashed). Fig. 6 shows that the input shaper happens to
have positive impulses only and the magnitude each impulse
is below one (with 20 impulses and the sampling time of 0.1
sec).
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input shaping with a constant gain frequency constraint.

B. Ride quality constraint

Ride quality or comfort is a subjective perception that
is the cumulative effect of many factors such as seating
position, interior volume, tactile inputs, duration of exposure
and sound/visual vibration inputs. As a simple proxy, how-
ever, the human tolerance to fore/aft vibration can be used
to give a measure of the impact of the truck acceleration
on ride quality. Tolerance to vibration varies as a function
of frequency, reflecting resonances in the torso in the 1-4
Hz range [7]. A sample curve representing human tolerance
limits over frequency for fore/aft motion is shown in Fig. 7
[5].

This plot can be used to generate a weighting function
in the form of a frequency domain constraint. For example,
if the maximum reference acceleration for a heavy truck is
0.16g, the gain amplification between 1 Hz and 10 Hz should
be less than 0.5 (= 0.08g/0.16g). Otherwise, the human
tolerance limit would be violated (0.08g in that frequency
range). Using the technique described in Section IV-C, the
resulting frequency responses are shown along with the
discretized frequency constraint for ride quality (thin dashed)
in Fig. 8. Expressing such a constraint in time domain would
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Fig. 7. Human tolerance limits for fore/aft vibrations.

be very hard and, therefore, formulation of such constraints
in frequency domain is essential. Magnitude of the overall
system response is now below the ride quality constraint
within error bounds.

Actual impulses with the ride quality constraint are shown
in Fig. 9. In addition, the actuator responses are bounded in
Fig. 10 with input shaping. Compared to Fig. 5, the actu-
ator responses are smoother with less overshoot or sudden
variation which could be interpreted as better ride quality.
Inclusion of the ride quality constraint has not increased the
system response time since the input shaper length remains
fixed.

VI. CONCLUSION

Constraints in previous input shaper design methods with
convex optimization have been time domain based. When
certain characteristics are desired that can only be represented
in the frequency domain, such as ride quality in a vehicle,
they can also be added to the input shaper design by approx-
imate discretization. The usefulness of the frequency domain
constraints in input shaper design in a convex optimization
framework has been demonstrated with an automated high-
way system.
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