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ABSTRACT any disturbances. A, PID controller was designed in

The attitude tracking control problem of a rigid spacecraft8] for the trajectory tracking control problem of robotic
with external disturbances is addressed using the concdpgnipulators. In this paper, a PD state-feedback control law
of extended disturbance and the inverse optimal contréf@t solves the inverse optimal gain assignment problem is
method. The proposed attitude tracking control law ifesigned fo_r the attltude_tracklr_lg control problem. The PD
inverse optimal with respect to a meaningful cost functiongfontrol law is alsaH . optimal with respect to the extended
and the associated Lyapunov function satisfies a HamiltofliSturbance, allows thé,-gain v being any positive mag-
Jacobi-Isaacs partial differential equation. Hence, ifig  Nitudes instead ofy > 1 and thus achieves disturbance
optimal with respect to the extended disturbance. The peiiténuation at any given attenuation levewith the target

formance limitation of thel,, inverse optimal PD control signals being included in the extended disturbance.
law is also analyzed. This paper is organized as follows. In section II, prelimi-

naries on nonlineaf . control and inverse optimal control
are briefly reviewed. In Section 1ll the attitude trackin
g INTR.ODU_CT'ON _control pr)(gblem of a rigid spacecraft is formulated using tr?e

In the spacecraft engineering, PID controllers of difynjt quaternions and the extended disturbance is introduced.
ferent forms are widely used for its simplicity and highjn section IV, aH., inverse optimal PD state-feedback
reliability (see [1]). For the past ten years, many authorgontroller is designed using the inverse optimal control
have investigated the relationship between nonlin€ar  method. The performance estimates of tig, controller
control method [2] and PID control and their applicationsgre analyzed in Section V. A simple example is used in
to the attitude control problem of spacecraft with externagection VI to demonstrate the performance of the proposed
disturbances [3][4]. In nonlinear optimal control theory,controller, and finally conclusions follow in Section VIL.
nonlinearHoc control method is robust and should be a The fo”owing notations are used in the papérfv
potential approach to the attitude control problem. Howevegenotes the Lie derivative of the smooth functiéti) with
the practical applications of the nonlinedf., control regpect tar, ie,L;V =2V f Afunctiona: Ry — R, is
method still remain open due to the difficulty in solving thegf class if it is continuous, positive definite, and strictly
associated Hamilton-Jacobi-Isaacs (HJI) partial differentighcreasing. It is of classC., if it is also unbounded. A
equation. There have been some attempts to solve the Hhction 3 : R, x R, — R is of classkL if, for each
equation. One of the approximation methods is the stat@ixed + > 0, 3(-,¢) is of classk and, for each fixed > 0,
dependent-Riccati equation (SDRE) method [5], while i35 +) decreases to ast — cc. We use ||| to denote the

only guarantees local asymptotic stability. The concept ghduced2-norm of A/ and|v| to denote the vector norm.
extended disturbances, including system error dynamics,

was developed in robotics by [6] to help to solve the HJI
equation for nonlineaf ., control. ) ”j PRELIMINARIES

Parallel to nonlinearH,, control, the framework of  Consider a nonlinear system of the form
input-to-state stability (ISS) introduced by Sontag [7] has _ B
triggered great efforts to input-to-state stabilizing controllers &= f(@) + g1(2)d + g2(2)u, y = h(z), @
[8]. The inverse optimal control approach [9] was proposeghere is the state vector is the exogenous disturbance
to achieve optimality for a set of meaningful cost functiongg pe rejectedy is the control input, ang is the penalized
without solving the HJI equation. The inverse optimabytput signal.f(z), g1(z), g»(x) andh(z) are assumed to
controller exists if and only if the nonlinear system is IS§e smooth functions and = 0 is the equilibrium point of
with respect to the disturbance. the nonlinear system, i.ef(0) = h(0) = 0.

In this paper, the results of [3][4][8][10] are extended {0 The nonlinear state-feedback.,, control problemis to
the attitude tracking control problem of a rigid spacecraffing a state-feedback contral= k(z) for (1), with k(0) =
with external disturbances by using the concept of extended sych that theC, gain from the disturbancé to a biock

suboptimal attitude controllers of PD form were designe¢here exists a functio (z) > 0 with K (0) = 0 such that
in [3][4] for the setpoint regulation problem of the rigid o

spacecraft, in which the,-gain v was limited toy > 1. Jo (yP? +u" Ra(x)u)dt <~ [ |d(t)[dt + K (o)
An inverse optimal control was designed in [10] for the.

setpoint regulation problem of a rigid spacecraft Withoug satisfied for any initial condition(0) = x, of (1), where

2(z) is symmetric and positive definite for afl The H..
The work presented in this paper was supported by the NTU AcRPPtimal pr0b|?m|5 to find, if exists, the smallest valug’
under the project number RG 9/00. of such£, gains~y.
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Lemma 1:Consider the nonlinear system (1). Let the

constanty > 0 and the matrixRs(z) = RI (x) > 0 for all
x. Suppose that there exists a smooth solufiofx) > 0

Il1. ATTITUDE TRACKING PROBLEM

The spacecraft is modelled as a rigid body with actuators
providing torques about three mutually perpendicular axes

with V(zo) = 0 to the Hamilton-Jacobi-Issacs partial that define a body-fixed framB. Let the unit quaternion

differential (HJIPD) equation

Wi+ W[ Lggl — g2Ry 9T ]2V + thTh =0, (2)
or to the HJIPD inequality

Wi+ O [ Lol — g2Ry 9T 55X + thTh <0, (3)
then the closed-loop system for the feedback
4)

has thel,-gain less than or equal tg from the disturbance
d to the block vector of outputg and control inputu.

w= 2Ry (2)(L, V)T

It is a direct variation of Theorem 16 in [2]. In general,
the HJIPD inequality (3) only guarantees a suboptim
solution. The most challenging task in solving the nonlinea
H, control problem is to find a smooth positive function
V(x) satisfying the HJIPD equation (2) or the inequality

(3). However, it is very difficult to reach this goal.
Compared to the nonlineafi,, control, the inverse

optimal method [9] solves the nonlinear optimal assignme
problem without solving the HJI partial differential equation
explicitly. For completeness of this paper, we quote the ST(CL) = —S(a), S(a)b =—S(b)a, S(a)a =0

following theorem of the inverse optimal method.
Theorem 1:[9] Consider the nonlinear affine system

&= f(x) + g1(x)d + g2(z)u (5)
and its auxiliary system
&= [(@) + 91 (@) 2L, V) 20 + ga(@)u,  (6)

ILg, VI?

where V(x) is a Lyapunov function candidate; is a
classK ., function whose derivativg’ is also a classC.,
function; 7, denotes the transforrf, (r) = [, (p')~*(s)ds,

where (')~ (r) stands for the inverse function &£\,
Suppose that there exists a matrix-valued funcﬂQrQ;z:d) =
R¥(x) > 0 such that the control law

—Rj ()(Lg, V)" )

globally asymptotically stabilizes (6) with respect¥dz).
Then the control law

u=ax) =

u=a’(z) = fa(z) = —fR} (2)(Le, V)" (8)

q = [qF, q4)" satisfying the constraint! ¢, +q3 = 1 denote

the attitude of the rigid spacecraft in the body-fixed frame
with respect to an inertial frame. L&t® be the unit sphere

in R* where the unit quaternion lies, afith® be the tangent
bundle of S3. The attitude kinematics and dynamics of a
rigid spacecraft can be represented as (see [12, Chapter 4])

Gv :%(%13 + S(Q’U))Wa (9)
W=—-M1S(WMw+M 1 u+M1td, (11)

where w is the angular velocity of the spacecraft with
respect to the inertial frame and expressed in the body-fixed
frame; M = M7 > 0 is the inertia matrix of the spacecraft;
andu are the external disturbance and the control torque,
respectively;Ig is the identity matrix of dimension3 x 3;

0 —as as
S(a)=| as 0 —-a
—as9 a1 0

rE{enotes a skew-symmetric matrix acting on a veetce

a1, az,a3)’ and satisfies the following properties:

S(a)S(b) = ba® — aT'bls, S(S(a)b) = ba” — abT, (12)
which offer very useful insights to designing a robuiss,
inverse optimal PD control law in next section.

Our objective of attitude control is to track the attitude
target trajectory to achieve the attitude maneuver with a
satisfactory accuracy. Let the target unit quaternion be given
by ¢. = [¢2,, q.4]T. Assume that the target angular velocity
w.(t) and its derivativew.(t) are bounded. From (9) and
(10) we have the differential equations:

(jcv = %(QCZLIS + S(qcv))wc
QC4 = 7%(](7;:;5‘)(:

By the quaternion multiplication [12, Appendix A], the
error quaterniony, = [¢Z,, g.4]? can be expressed as

(13)

Qev = qcaqu — S(QCU)Q'U — q44cv,

(14)
Ges = QoyGv + Qaqea-
The rate erromw, is defined by
we = W — wc_ (15)

Applying (13)—(15) to (9)—(11), we obtain the differential

with 3 > 2 solves the inverse optimal gain assignmengfror dynamics for the tracking control problem

problem for the nonlinear system (5) by minimizing the cost

functional
J(u) = sup { Jim [28V (2(t))
+ [ () + u" Ro(z)u — Brp(1d))dr] }
for any A € (0,2], where

I(x) = =28[LsV + 4,2 L, V]) — L, VR, ' (Lg, V)]
+ﬁ(2 - A)gp(Z‘L!hVD + ﬁ(ﬁ - Q)LQQVRgl(ngv)T'

dev = 3[geals + S(gev)lwe + S(gev)we (16)

Gea = — 3L we (17)
Mw. = —[S(we)Mwe + S(we)Mwe + S(we) Mw)

+u+[d— Mo, — S(we) Mw]. (18)

For simplicity of notation, lete = ¢.,, n = g4 and
define the extended disturbance (which includes information
of system error dynamics, see [6]) as

~ We

d(we,t) = dc _ S(OJC)MWE _ S(we)Mu}C ) (19)
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whered, = d— Mw, — S(w.)Mw,. is a combination of the globally asymptotically stabilizes the auxiliary system
reference signals.(t), w.(t) and the external disturbance

' LinIs + S(€)|we 0s:
d(t). Hence we can represent (16)—(18) as | 5[ _aj-T( e)]w 33
n|= 5€ We + | 013 |u
€ 3l + S(€)Jwe 033 e 1S(we)Mwe M-t
s 756 s N S(e) 033
) o 3
. F Sl Mee M +— |03 O3 (L, V)T (26)
S(E) 033 . v 033 M—1
: 2 . .
" gclai 1\3131 ert (20) about the equilibrium pointe, n,w.) = (0,1,0) on (S3 x

R3)\ (0,—1,0) if the controller gains in (22) and (24)

Thus, the attitude tracking problem is transformed into theatisfy the following conditions:

problem of stabilizing the error system (20) with respect to 279

the extended disturbancw.,, t). =Bk + (ke — D], 1<k <10,
Lemma 2:[11] Two coordinate systems, corresponding b >0, k; > §/\m + 7—2/_\fn — 7—12(1@ —-1).

to ¢ and ¢, respectively, coincide if and only éf= 0
Remark 1:Both (,7) and (¢, —n) represent exactly

the same physical attitude orlentatlon of the spacecraft.

(27)

Proof: If we consider a clas& ., function p( ) = %2,
ét follows that p/(r) = 2v2r, (p)~1(r) = zz Lp(r) =

2
Lemma 2 and the faet’e+172 = 1, we then conclude that J; (¢) ' (s)ds = 5 and (,(2r) = ,%2 We can then
the attitude tracking problem is solved if and onlyif- 0 construct an auxiliary system as follows:
dw, t . .
andwe =0 ast = eo N i(t) = f(@) + @) (Lg, V)T +g2u. (28)
IV. H. PD CONTROLLER DESIGN which is the state representation of (26).

Applying (12), we have the following derivative df

Now we proceed to design the attitude tracking controélOng the solutions of (26):

law. Define the state
7 V=LV + 55 (Lg, V) (Lg, V)" + Lg,Vu

=bwl' MnI; — S(€)Jwe + ce’we + i’we—i—belg
1|bwTMS | + (Wl 4+ beT)u

T T
x=[e,n w
Sincen is not an independent variable, we also write

=", wIT. (21)
B ) ) ) ) —EweTM[nIg, — S(€)|we + (we + beT Yu
Let ), denote the maximum eigenvalue of the inertia 1 9 o912 9\ T
matrix M, i.e., \yy = Amax(M) = ||M||. We choose the + 57 (Jwel + 07[€[") + (e + zb)e" we
Lyapunov function candidat&” of the form: — 7[ TM<€€ — €T€]3)Mwe)]. (29)

_ 1T T 2 T
V(@) = qwe Mwe + bwe Me + (1 —n)" +cee, (22) Sincee”e+7n? = 1, it can be shown thatnl;—S(e)|| = 1
whereb should be chosen small enough to ensure that and

is positive definite, and > 0. A sufficient condition forlV/ |WTM[M3 — S()we| < HM'|||we|2. (30)
being positive definite about, 7, w.) = (0, 1,0) is that © -
By (30) and the inequalitye|? < 1, it follows
_ | s M 2l > B2M. (23) .
QV = bM M >0, e, clg > . v <Q>\m|we|2 ( %b)eTwe + (L«JT —|—b€T)
Along the trajectory of (20) and applying the properties in (IweI2 + b%|e|?) + 2 > el e(wl MMuw,)
(12), we have the following Lie derivatives of the Lyapunov Q— 1 2 2 L 2
function candidatd’: §(2>\m + 2 + —>\ ) |wel 72|6|
T T
LyV = bwl MnI; + S(e)Jwe — be" S(we) Mwe + ce” we +let s Fh)e we + (we +belJu. (31)
— b T Minl« — S T We design the control law:(z) to be of a PD form,
2%e T nls (G)T]we+jc,€ we expressed by (24), and select the controller parameters
Lg,V = [ bw; MS(e), w +be" ] b, ¢, ki1, ko satisfying the constraints (27). Clearly, such
Ly, V = wl 4 be™'. parameters guarantee (23) such that the Lyapunov function

V in (22) is positive definite because
Prior to an inverse optimal control law in Theorem 3, we

first present a PD controller that globally asymptotically sta- 2cl3 > 4bky I3 > 207(|M|[|I3 > b* M.
bilizes an auxiliary system of the form (26) of the nonlmeaq_'ence
attitude tracking system (20) oi5® x R3)\ (0, —1,0) by

the following theorem. V< (8Am + 57 + 52027 ) we|? + 5507 e
Theorem 2:The PD control law + (c+ TZ;)GT — (ky + 2]<;2)|we + bel?
u=—Ry"(Lg,V)" = —(k1 + 35ks)(we + be)  (24) < — |77,
with the matrixR»(z) being where ), > 0 is defined by
Ry () = (b + Eko) 5 (25) Ay =min{ky — SX, — N2, 4 B2zt Pl g2y
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It follows from the Barbalat's theorem [13, pp.192] thatthe closed-loop system froraﬁ(we,t) to Z(t) is finite, thus

Z(t) — 0 ast — co. By Lemma 2, this corresponds to theachieving disturbance attenuation.

zero orientation error. . o Theorem 4:The inverse optimal control law designed by
Since |¢[* + n? = 1, the derivativeV = 0 implies  (32) in Theorem 3 is alsd/.. optimal for the closed-

Je” . e Jmpie
two equilibrium points ¢, 7, we) = (0,£1,0) on 5% X B, 504 aitude control system with respect to the extended

standing f_or_ exactly the same physical attitude O.ri.en.tatior&isturbanceci(w #) and the .., performance index (33)
However, itis clear thalh, —1,0) is an unstable eqilibrium Proof: From e{he derivationoso in Theorems 2 and 3 :the

point, because it is a local maximum &f(z) on 53 x R? functi did : he followi
andV < 0 whenever|| # 0. We therefore conclude that LyapPunov function candidaté’(z) solves the following

the PD control law (24) results in the global asymptotic stalamilton-Jacobi-Isaacs partial differential equation:
bility of the auxiliary system (26) oS3 x r3)\ (0, —1,0). VoL OVIL T 1 T1TV , 1y _

Note also that given any initial attitude orientation, one may 9= f+ 5 [w29191 92Ry " 92 } G T 1l(z) =0.
always choose(0) > 0. B substitutingl(z) in (34) into the cost functional/(u) in

Note thatl(z) in Theorem 1 can be positive semidefinite,(33) it follows thatJ(u) = 4V (2(0)), which means
which is also an meaningful cost functional. Applying The- "’ ’

orem 1 and Theorem 2, we will design an inverse optimal fg" (I(z) + uTRgu)dt < f;°72|&|2dt +4V(x(0)) (37)
attitude tracking controller by the following theorem.
Theorem 3:If we let 3 = \ = 2, then the PD feedback with the “worst-case” extended disturbandg(z) of (36).
control law Note thatl(z) is positive semidefinite ani, () is positive
— _ 1 definite. Therefore, the inverse optimal PD controller (32)
u = fafe) = =2k + v 2)(we +be) (32) implies the H,, optimality of the attitude tracking control
with the parameters, c, k1, k2 and Ra(z) being given in  with respect to the extended disturbanfe., t). ]
Theorem 2, solve_s the inve_rse optimal gain ass;gnmentm general, we say that the system (1) with control input
pr??blem for the attitude tracking control problem ¢6° <, _ k(z) is integral-input-to-state stable (ilSS) with respect
R )\ (0,—1,0) with respect to the extended dlsturbanceto d if for some functionsn, v € K. and 3 € K., for all

d(we, t) by minimizing the cost function initial statesz(0) and alld, the following estimate holds:

J(u) =sup { lim [4V(z(t))+ (33) ¢
d i | a(lz(t)]) < B(lz(0)],) + [y(Id(s))ds, vt = 0.
t T 2172 . . . .
+ fo (l(x) +u Ry(x)u —7|d| )dT] }» For nonlinear control systems with disturbances or in the
wherel(z) is defined by case of trajectory tracking, thetegral-input-to-state stabil-

ity [14] is a useful theoretical tool to analyze the stability
l(x) = —4LsV — 25 |Ly, V> +4Lg, VR '(Lg, V). (34)  of the closed-loop system: see [8][14] for examples. Under
Proof: This theorem is a consequence of Theorem 1 arnttie control law (32), the stability of the closed-loop attitude
Theorem 2. From the derivations in Theorem 2, we havecontrol system is summarized by the following theorem.

I(z) >4(ky — EXp — 232 k21|, |2 Theorem 5:The attitude tracking full statee(n,w.)-
2 " jf o ¢ system (20) under the inverse optimal PD control law (32)

+4b% (k1 + =) lel, (35) s integral-input-to-state stable 0fiS® x R?)\ (0,~1,0)

which shows that(z) is positive semidefinite (precisely, With respect to the extended disturbantfe.. ). _
I(z) is positive definite ine andw,). Therefore,J (u) is a Proof: The derivative of the Lyapunov function candidate

meaningful cost functional for the attitude tracking control (z) can be expressed as
problem, penalizing both the tracking erratsw. and the . A _ T
control effortu. Substituting/(x) in (34) into J(u) in (33), V =L;V(2)+ Ly Vd — 2Ly, V Ry (I)(ngv)
we get the optimal cosf (u) = 4V (z(0)) and the “worse- = — (@) = 52|Lg, V(@) ]” + Lg, V(2)d(t)
case” extended disturbance _

— Lg, V() Ry (2)(Lg, V()"

d*(@) = Mp) M @2ULg, V) T = E(Le, V)" (36)

By Young'’s inequality, it follows
(see [9] for the detailed computations) wheraés defined
in the same way as in the proof of Theorem 2. ]
Remark 2:It can be seen from (35) that the state penalt L - 4 _
functioni(z) in the performance index (33) can be rewritte%h(ir)e_ﬂf(Equsl(;;)gp ITSh:l;zfrleed only wheloe, ¢) =
asl(z) = #7Q(z)z where the weighting matrix)(z) is v AT ' '
positive definite and its magnitude depends mainly on they < — () - Ly, VR ) (L, V)T + v;‘j(t)ﬁ_ (38)
gain k; and on~. In the viewpoint of optimal theory, if
we are to reduce the system error, we can enlaigand Note thati(z) and Rx(x) are positive definite. As ana-
decreasey, producing a larger weighf)(z) and a bigger lyzed in thg prqof of Theorem 2, the full-state system is
control effort. Conversely, if; is reduced, then a smaller GAS on(S® x R?)\ (0, -1,0) if the extended disturbance

L.‘th < %Idﬁ + $|L91V|27

control effort and a bigger error will result. ® d=0.Itis also zero-output dissieative because, if we let
It is interesting that such an inverse optimal PD controllethe output functior(z) = 0, V' < %-|d|?. Then, according
shows H, optimality, which implies that theC,-gain of to [14], the system is iISS with respect dw., t). |
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V. PERFORMANCE ANALYSIS whereé; = sup{cy(t) : Vt > 0}, ¢2 = sup{ca(t) : V¢t > 0}

In the previous section, although the inverse optimal pnd ¢s = sup{cs(t) : vt > O} with c1(t), e2(t) and es(t)
control law (32) guarantees the system ilSS, it does ngtefmed.by (40)_' . . .
provide the global asymptotic stability due to the extende Rroqf. Supst|tut|ngl(x) of (34) with k = 1 into the
disturbance. In this section, we will introduce the concep%er'vat'vev in (38), we have
of performance limitation and some results in [8] to analyze V< - (/ﬁ — gj\m _ LZj\fn)|we|2 — k1b%|€)?
the performance of the attitude tracking controller. K

~ 1 2 203 2
The extended disturbanclw,, ) expressed by (19) can = (b + 72)|‘*’6 + bel” + - |d(1)]

be represented as: <-3'Q.q + %(02|we| +c3)
d(we,t) = H(t)we + h(t), (39) < = AJE? + Lol + 2es, (42)
where where)\. is the minimum eigenvalue of the matri}.. The
state vector cannot be further reduced at a point satisfying
H(t) = 0 ], h(t) = { We } ) V' = 0. By the definition of the performance limitation, the
—S(we)M + S(Mwe) de inequality (42) brings the performance limitation of (4.

Under the assumption of the boundedness of the targetRemark 3:The inequality (41) can be considered as an
signalsw, (), w.(t) and the external disturbanc#t) in Upper bound of the system error for all time and then can be

the attitude dynamics (11), there exist some finite positiveSed as a formula to predict the performance of the closed-

. Remark 4:Since the right-hand side of (41) is mono-
|d(we, 1)]* = wl (H H)we + 2wl (H"h) + (h"h) tonically decreasing with\., the inequality holds if).
< cr|wel? + colwe| + c3, is replaced by any smaller positive value. The minimum
eigenvalue)\. of the matrix@. in Theorem 6 satisfies
< Bilwe|? + Ba. (a0) *©9 ?

> min {2 D W A T ]
Such time-varying coefficients can be chosen as Ae 2 min {0k, (k1 = gAm = S An = 1)} (43)
) . ) It is because
e = [HI° < AXnluel™ k02l 0 I 0102 bl
_ T 2 _ |M¥ 43 1 : 3 3
62—2|H h‘ §4)\m|wc||dc|, Qc |: 0 q22]3:| +(k1+72)[i13 Is:| |: 0 0 :|
Cc3 = |]’I,Th,| = \wc|2 + |dc|27 ith b B2 1o 72 d th o
— 632 |, |2 —_ 3(d,[2 2. vv_|t qa2 = k1 — 5Am — 3 A5, — rC an the minimum
& mlwel ™ ] + ol eigenvalue of the secoﬁd part ¢f. is zero. Hence\.
If d(t) = 0, the GAS holds for the setpoint regulationsatisfies (43). B ®
problem (corresponding tab. = w. = 0 and ¢. = Remark 5:Suppose thaff, ()| < f1 = sup,{|6:1(t)|}.
constant) becauser; = ¢, = ¢5 = 0 and thenV < 0. Then it follows from (40) and (38) that
However, the static PD controller cannot guarantee t bX b2 N2 25 9 9 12 2
; ) . ) ; . < - —0Am DA yTH - 1B,
GAS either in the trajectory tracking or in the emstenc?f <= 2 72 4 el — kub%le]” + 4
qf gxtgrnal dlsturbances. Thls fact brings a performancﬁ (ks i _% _@) > 0. it follows that the closed-
limitation of the inverse optimal PD controller. The con- 2 .7 4 o .
) ) . loop system isFx-to-(e,w.) stable. In addition, ifw.(t),
trol performance is determined by the gain values of the .
Co @e(t), d(t) € L2]0,00), then theLs-gain from 3, to (e, w,)
controller. Therefore, it is important to set up the relation “.."”!
: . Is finite ande, w, € L2[0, c0). ®
between the gain values and the system errors, which is
found by examining points that satisfy = 0 where the

state cannot be further reduced. VI. SIMULATION RESULTS

Theorem 6:Choosek; = 1. Suppose that\. is the In this section, a rigid-body micro-satellite is simulated
minimum eigenvalue of the matrix to demonstrate the performance of tHe, inverse optimal
tracking controller. We assume that the inertia matrix of the
0. = (2k1 + 5)0%I5 (k1 + 55)bl3 satellite is diagonal,
| (it %)513 Qe2 ’ ) 9
M = diag{10, 10, 8} kg-m~,

. < 2 — 2
with Qeo = (2k1 + 55 — 5Am — A7, — &)1 Let the  and the external disturbanekt) is given by
performance limitationz|p;, be defined as the Euclidian (2T 1§
norm of & that satisfies’ = 0. If the inverse optimal 0.005 — 0'055}H(Tg) +6(200,0.2) + vy

d(t) = | 0.005+ 0.05sin(25t) + §(250,0.2) + vy | Nm,

PD controller law (32) withk, = 1 is applied to the . 400
attitude tracking system (20) ankl. > 0 is satisfied, then 0.005 — 0.03sin(375) 4 6(300,0.2) + vs

its performance limitation is upper bounded by where §(t;, AT) denotes an impulsive disturbance with
} _ PUNETI magnitudel and width AT, starting at the time point; .
%P < 5 {Cz +1/c + ?/\063}a (41)  The termsw;, v, and v denote white Gaussian noises
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with mean valuesn,, = m,, = m,, = 0 and variances
Oy, = Opy = Oyy = 0.005.
The desired angular velocity,. is given by

0.05 sin(27t/400)
—0.05 sin (2t /400)
0.03 sin(27t/400)

and is plotted as in Fig.1 in dotted lines. The target
guaterniong. can then be obtained by integrating (13) with
the initial conditiong.(0) = [0, 0, 0, 1]%.

The initial conditions of the quaterniapand the angular
velocity w are given byg(0) = [0.3, 0.2, 0.3, —0.8832]7
andw(0) = [0, 0, 0]%.

We choose a set of gains,= 1, k; = 4.0, ko = 1 and
b = 0.18, to demonstrate the performance of the proposed
H, inverse optimal PD tracking controller (32). Fig.1 and
Fig.2 depict the time responses of the angular velocities
w, w. and the corresponding rate errog, from which we
can say that the actual angular velocitytracks the target
angular velocityw, well with a small error. The sharp peaks

-rad/s

We =

are due to the large impulsive disturbances. Fig.3 and Fig.4ig.2:

plot the time behaviors of the actual quaternipcompared

to the desired quaterniap and the corresponding tracking
error ¢, from which it is seen that thél . inverse optimal
controller (32) achieves a good performance on the attitude
tracking with a satisfactory orientation error.

VII. CONCLUSIONS

With the introduction of extended disturbance, the inverse
optimal control method has been applied to the attitude

tracking control problem of a rigid spacecraft with external rig.3:

disturbances. The proposed state-feedback control law is
inverse optimal with respect to a meaningful cost func-
tional. The associated control Lyapunov function satisfies a
Hamilton-Jacobi-Isaacs equation. Thus, nonlinggs opti-
mality with respect to the extended disturbance is achieved
without obtaining a direct solution to the HJI equation, and
H, disturbance attenuation is also achieved. Performance
estimates have been given in terms of the performance
limitation. Such a feedback law is in the form of a PD
controller, which is easy to implement in practice.

Fig.1:

-0.02

3

—0.04

-0.06

Anguiar veloces w_and w [ad’s)

—o.08|-

o1

—0.12,
o

50 100 150 250 300 350 200

Time second]
The angular velocitiesv and w.. The dotted lines stand fap., the
solid lines denotev.

0.02

Relative rate eror  [rads]

tracking errow, = [we1, wea, wes]” .

Unit quaterions  and g

) 50

The unit quaterniong and g.. The dotted lines stand fay., the solid
lines denote;.

os

Vector art of quatemion error

Fig.4: The tracking erroke = [e1, €2, €3]7.
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