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ABSTRACT

The attitude tracking control problem of a rigid spacecraft
with external disturbances is addressed using the concept
of extended disturbance and the inverse optimal control
method. The proposed attitude tracking control law is
inverse optimal with respect to a meaningful cost functional
and the associated Lyapunov function satisfies a Hamilton-
Jacobi-Isaacs partial differential equation. Hence, it isH∞
optimal with respect to the extended disturbance. The per-
formance limitation of theH∞ inverse optimal PD control
law is also analyzed.

I. I NTRODUCTION

In the spacecraft engineering, PID controllers of dif-
ferent forms are widely used for its simplicity and high
reliability (see [1]). For the past ten years, many authors
have investigated the relationship between nonlinearH∞
control method [2] and PID control and their applications
to the attitude control problem of spacecraft with external
disturbances [3][4]. In nonlinear optimal control theory,
nonlinearH∞ control method is robust and should be a
potential approach to the attitude control problem. However,
the practical applications of the nonlinearH∞ control
method still remain open due to the difficulty in solving the
associated Hamilton-Jacobi-Isaacs (HJI) partial differential
equation. There have been some attempts to solve the HJI
equation. One of the approximation methods is the state-
dependent-Riccati equation (SDRE) method [5], while it
only guarantees local asymptotic stability. The concept of
extended disturbances, including system error dynamics,
was developed in robotics by [6] to help to solve the HJI
equation for nonlinearH∞ control.

Parallel to nonlinearH∞ control, the framework of
input-to-state stability (ISS) introduced by Sontag [7] has
triggered great efforts to input-to-state stabilizing controllers
[8]. The inverse optimal control approach [9] was proposed
to achieve optimality for a set of meaningful cost functions
without solving the HJI equation. The inverse optimal
controller exists if and only if the nonlinear system is ISS
with respect to the disturbance.

In this paper, the results of [3][4][8][10] are extended to
the attitude tracking control problem of a rigid spacecraft
with external disturbances by using the concept of extended
disturbance and the inverse optimal control method.H∞-
suboptimal attitude controllers of PD form were designed
in [3][4] for the setpoint regulation problem of the rigid
spacecraft, in which theL2-gain γ was limited toγ > 1.
An inverse optimal control was designed in [10] for the
setpoint regulation problem of a rigid spacecraft without
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any disturbances. AH∞ PID controller was designed in
[8] for the trajectory tracking control problem of robotic
manipulators. In this paper, a PD state-feedback control law
that solves the inverse optimal gain assignment problem is
designed for the attitude tracking control problem. The PD
control law is alsoH∞ optimal with respect to the extended
disturbance, allows theL2-gain γ being any positive mag-
nitudes instead ofγ > 1 and thus achieves disturbance
attenuation at any given attenuation levelγ with the target
signals being included in the extended disturbance.

This paper is organized as follows. In section II, prelimi-
naries on nonlinearH∞ control and inverse optimal control
are briefly reviewed. In Section III the attitude tracking
control problem of a rigid spacecraft is formulated using the
unit quaternions and the extended disturbance is introduced.
In Section IV, aH∞ inverse optimal PD state-feedback
controller is designed using the inverse optimal control
method. The performance estimates of theH∞ controller
are analyzed in Section V. A simple example is used in
Section VI to demonstrate the performance of the proposed
controller, and finally conclusions follow in Section VII.

The following notations are used in the paper.LfV
denotes the Lie derivative of the smooth functionV (x) with
respect tox, i.e.,LfV = ∂V

∂x f . A functionα : R+ →R+ is
of classK if it is continuous, positive definite, and strictly
increasing. It is of classK∞ if it is also unbounded. A
function β : R+ ×R+ → R+ is of classKL if, for each
fixed t ≥ 0, β(·, t) is of classK and, for each fixeds ≥ 0,
β(s, t) decreases to0 ast →∞. We use||M || to denote the
induced2-norm of M and |v| to denote the vector norm.

II. PRELIMINARIES

Consider a nonlinear system of the form

ẋ = f(x) + g1(x)d + g2(x)u, y = h(x), (1)

wherex is the state vector,d is the exogenous disturbance
to be rejected,u is the control input, andy is the penalized
output signal.f(x), g1(x), g2(x) andh(x) are assumed to
be smooth functions andx = 0 is the equilibrium point of
the nonlinear system, i.e.,f(0) = h(0) = 0.

The nonlinear state-feedbackH∞ control problemis to
find a state-feedback controlu = k(x) for (1), with k(0) =
0, such that theL2 gain from the disturbanced to a block
vector of outputy and inputu is not larger thanγ, i.e.,
there exists a functionK(x) ≥ 0 with K(0) = 0 such that

∫∞
0

(|y|2 + uT R2(x)u
)
dt ≤ γ2

∫∞
0
|d(t)|2dt + K(x0)

is satisfied for any initial conditionx(0) = x0 of (1), where
R2(x) is symmetric and positive definite for allx. TheH∞
optimal problemis to find, if exists, the smallest valueγ∗
of suchL2 gainsγ.



Lemma 1:Consider the nonlinear system (1). Let the
constantγ > 0 and the matrixR2(x) = RT

2 (x) > 0 for all
x. Suppose that there exists a smooth solutionV (x) ≥ 0
with V (x0) = 0 to the Hamilton-Jacobi-Issacs partial
differential (HJIPD) equation

∂V
∂x

f + ∂V
∂x

[ 1
γ2 g1g

T
1 − g2R

−1
2 gT

2

]
∂T V
∂x

+ 1
4hT h = 0, (2)

or to the HJIPD inequality

∂V
∂x

f + ∂V
∂x

[ 1
γ2 g1g

T
1 − g2R

−1
2 gT

2

]
∂T V
∂x

+ 1
4hT h ≤ 0, (3)

then the closed-loop system for the feedback

u = −2R−1
2 (x)(Lg2V )T (4)

has theL2-gain less than or equal toγ from the disturbance
d to the block vector of outputsy and control inputu.

It is a direct variation of Theorem 16 in [2]. In general,
the HJIPD inequality (3) only guarantees a suboptimal
solution. The most challenging task in solving the nonlinear
H∞ control problem is to find a smooth positive function
V (x) satisfying the HJIPD equation (2) or the inequality
(3). However, it is very difficult to reach this goal.

Compared to the nonlinearH∞ control, the inverse
optimal method [9] solves the nonlinear optimal assignment
problem without solving the HJI partial differential equation
explicitly. For completeness of this paper, we quote the
following theorem of the inverse optimal method.

Theorem 1:[9] Consider the nonlinear affine system

ẋ = f(x) + g1(x)d + g2(x)u (5)

and its auxiliary system

ẋ = f(x) + g1(x)`ρ(2|Lg1V |) (Lg1V )T

|Lg1V |2 + g2(x)u, (6)

where V (x) is a Lyapunov function candidate;ρ is a
classK∞ function whose derivativeρ′ is also a classK∞
function; `ρ denotes the transform̀ρ(r) =

∫ r

0
(ρ′)−1(s)ds,

where (ρ′)−1(r) stands for the inverse function ofdρ(r)
dr .

Suppose that there exists a matrix-valued functionR2(x) =
RT

2 (x) > 0 such that the control law

u = α(x) = −RT
2 (x)(Lg2V )T (7)

globally asymptotically stabilizes (6) with respect toV (x).
Then the control law

u = α∗(x) = βα(x) = −βRT
2 (x)(Lg2V )T (8)

with β ≥ 2 solves the inverse optimal gain assignment
problem for the nonlinear system (5) by minimizing the cost
functional

J(u) = sup
d

{
lim

t→∞
[
2βV (x(t))

+
∫ t

0

(
l(x) + uT R2(x)u− βλρ( |d|

λ
)
)
dτ

]}

for any λ ∈ (0, 2], where

l(x) = −2β[LfV + `ρ(2|Lg1V |)− Lg2V R−1
2 (Lg2V )T ]

+β(2− λ)`ρ(2|Lg1V |) + β(β − 2)Lg2V R−1
2 (Lg2V )T .

III. ATTITUDE TRACKING PROBLEM

The spacecraft is modelled as a rigid body with actuators
providing torques about three mutually perpendicular axes
that define a body-fixed frameB. Let the unit quaternion
q = [qT

v , q4]T satisfying the constraintqT
v qv+q2

4 = 1 denote
the attitude of the rigid spacecraft in the body-fixed frame
with respect to an inertial frame. LetS3 be the unit sphere
in R4 where the unit quaternion lies, andTS3 be the tangent
bundle ofS3. The attitude kinematics and dynamics of a
rigid spacecraft can be represented as (see [12, Chapter 4])

q̇v = 1
2 (q4I3 + S(qv))ω, (9)

q̇4 =− 1
2qT

v ω, (10)

ω̇ =−M−1S(ω)Mω + M−1u + M−1d, (11)

where ω is the angular velocity of the spacecraft with
respect to the inertial frame and expressed in the body-fixed
frame;M = MT > 0 is the inertia matrix of the spacecraft;
d andu are the external disturbance and the control torque,
respectively;I3 is the identity matrix of dimensions3× 3;

S(a) =




0 −a3 a2

a3 0 −a1

−a2 a1 0




denotes a skew-symmetric matrix acting on a vectora =
[a1, a2, a3]T and satisfies the following properties:

ST (a) = −S(a), S(a)b = −S(b)a, S(a)a = 0,

S(a)S(b) = baT − aT bI3, S(S(a)b) = baT − abT ,
(12)

which offer very useful insights to designing a robustH∞
inverse optimal PD control law in next section.

Our objective of attitude control is to track the attitude
target trajectory to achieve the attitude maneuver with a
satisfactory accuracy. Let the target unit quaternion be given
by qc = [qT

cv, qc4]T . Assume that the target angular velocity
wc(t) and its derivativeẇc(t) are bounded. From (9) and
(10) we have the differential equations:

q̇cv = 1
2 (qc4I3 + S(qcv))ωc

q̇c4 = − 1
2qT

cvωc

(13)

By the quaternion multiplication [12, Appendix A], the
error quaternionqe = [qT

ev, qe4]T can be expressed as

qev = qc4qv − S(qcv)qv − q4qcv,

qe4 = qT
cvqv + q4qc4.

(14)

The rate errorwe is defined by

ωe = ω − ωc. (15)

Applying (13)–(15) to (9)–(11), we obtain the differential
error dynamics for the tracking control problem

q̇ev = 1
2 [qe4I3 + S(qev)]ωe + S(qev)ωc (16)

q̇e4 = − 1
2qT

evωe (17)

Mω̇e = −[S(ωe)Mωe + S(ωc)Mωe + S(ωe)Mωc]
+ u + [d−Mω̇c − S(ωc)Mωc]. (18)

For simplicity of notation, letε = qev, η = qe4 and
define the extended disturbance (which includes information
of system error dynamics, see [6]) as

d̂(ωe, t) =
[

ωc

dc − S(ωc)Mωe − S(ωe)Mωc

]
, (19)



wheredc = d−Mω̇c−S(ωc)Mωc is a combination of the
reference signalṡωc(t), ωc(t) and the external disturbance
d(t). Hence we can represent (16)–(18) as




ε̇
η̇
ω̇e


 =




1
2 [ηI3 + S(ε)]ωe

− 1
2εT ωe

−M−1S(ωe)Mωe


 +




033

013

M−1


u

+




S(ε) 033

013 013

033 M−1


d̂(ωe, t). (20)

Thus, the attitude tracking problem is transformed into the
problem of stabilizing the error system (20) with respect to
the extended disturbancêd(ωe, t).

Lemma 2: [11] Two coordinate systems, corresponding
to q and qc respectively, coincide if and only ifε = 0.

Remark 1:Both (ε, η) and (−ε,−η) represent exactly
the same physical attitude orientation of the spacecraft. By
Lemma 2 and the factεT ε+ η2 = 1, we then conclude that
the attitude tracking problem is solved if and only ifε → 0
andωe → 0 as t →∞. ⊗

IV. H∞ PD CONTROLLER DESIGN

Now we proceed to design the attitude tracking control
law. Define the state

x = [εT , η, ωT
e ]T .

Sinceη is not an independent variable, we also write

x̃ = [εT , ωT
e ]T . (21)

Let λ̄m denote the maximum eigenvalue of the inertia
matrix M , i.e., λ̄m = λmax(M) = ||M ||. We choose the
Lyapunov function candidateV of the form:

V (x) = 1
2ωT

e Mωe + bωT
e Mε + c(1− η)2 + cεT ε, (22)

whereb should be chosen small enough to ensure thatV
is positive definite, andc > 0. A sufficient condition forV
being positive definite about(ε, η, ωe) = (0, 1, 0) is that

QV =
[

2cI3 bM
bM M

]
> 0, i.e., 2cI3 > b2M. (23)

Along the trajectory of (20) and applying the properties in
(12), we have the following Lie derivatives of the Lyapunov
function candidateV :

LfV = b
2
ωT

e M [ηI3 + S(ε)]ωe − bεT S(ωe)Mωe + cεT ωe

= b
2
ωT

e M [ηI3 − S(ε)]ωe + cεT ωe

Lg1V =
[

bωT
e MS(ε), ωT

e + bεT
]

Lg2V = ωT
e + bεT .

Prior to an inverse optimal control law in Theorem 3, we
first present a PD controller that globally asymptotically sta-
bilizes an auxiliary system of the form (26) of the nonlinear
attitude tracking system (20) on(S3 × R3) \ (0,−1, 0) by
the following theorem.

Theorem 2:The PD control law

u = −R−1
2 (Lg2V )T = −(k1 + 1

γ2 k2)(ωe + bε) (24)

with the matrixR2(x) being

R−1
2 (x) = (k1 + 1

γ2 k2)I3 (25)

globally asymptotically stabilizes the auxiliary system



ε̇
η̇
ẇe


 =




1
2 [ηI3 + S(ε)]ωe

− 1
2εT ωe

−M−1S(ωe)Mωe


 +




033

013

M−1


u

+
1
γ2




S(ε) 033

013 013

033 M−1


(Lg1V )T (26)

about the equilibrium point(ε, η, ωe) = (0, 1, 0) on (S3 ×
R3) \ (0,−1, 0) if the controller gains in (22) and (24)
satisfy the following conditions:

c = 2b
[
k1 + 1

γ2 (k2 − 1)
]
, 1 ≤ k2 ≤ 1 + b2λ̄2

m,

b > 0, k1 > b
2
λ̄m + b2

γ2 λ̄2
m − 1

γ2 (k2 − 1).
(27)

Proof: If we consider a classK∞ functionρ(r) = γ2r2,
it follows that ρ′(r) = 2γ2r, (ρ′)−1(r) = r

2γ2 , `ρ(r) =∫ r

0
(ρ′)−1(s)ds = r2

4γ2 and `ρ(2r) = r2

γ2 . We can then
construct an auxiliary system as follows:

ẋ(t) = f(x) + 1
γ2 g1(x)(Lg1V )T + g2u, (28)

which is the state representation of (26).
Applying (12), we have the following derivative ofV

along the solutions of (26):

V̇ =LfV + 1
γ2 (Lg1V )(Lg1V )T + Lg2V u

= b
2
ωT

e M [ηI3 − S(ε)]ωe + cεT ωe + 1
γ2

∣∣ωe + bε
∣∣2

+ 1
γ2

∣∣bωT
e MS(ε)

∣∣2 + (ωT
e + bεT )u

= b
2
ωT

e M [ηI3 − S(ε)]ωe + (ωT
e + bεT )u

+ 1
γ2 (|ωe|2 + b2|ε|2) + (c + 2

γ2 b)εT ωe

− b2

γ2

[
ωT

e M
(
εεT − εT εI3

)
Mωe)

]
. (29)

SinceεT ε+η2 = 1, it can be shown that||ηI3−S(ε)|| = 1
and

|ωT
e M [ηI3 − S(ε)]ωe| ≤ ||M |||ωe|2. (30)

By (30) and the inequality|ε|2 ≤ 1, it follows

V̇ ≤ b
2
λ̄m|ωe|2 + (c + 2

γ2 b)εT ωe + (ωT
e + bεT )u

+ 1
γ2 (|ωe|2 + b2|ε|2) + b2

γ2 εT ε(ωT
e MMωe)

≤( b
2
λ̄m + 1

γ2 + b2

γ2 λ̄2
m)|ωe|2 + b2

γ2 |ε|2
+ (c + 2

γ2 b)εT ωe + (ωT
e + bεT )u. (31)

We design the control lawu(x) to be of a PD form,
expressed by (24), and select the controller parameters
b, c, k1, k2 satisfying the constraints (27). Clearly, such
parameters guarantee (23) such that the Lyapunov function
V in (22) is positive definite because

2cI3 ≥ 4bk1I3 > 2b2||M ||I3 > b2M.

Hence,

V̇ ≤ (
b
2
λ̄m + 1

γ2 + 1
γ2 b2λ̄2

m

)|ωe|2 + 1
γ2 b2|ε|2

+ (c + 2b
γ2 )εT ωe − (k1 + 1

γ2 k2)|ωe + bε|2
≤− λb|x̃|2,

whereλb > 0 is defined by

λb = min{k1 − b
2
λ̄m − b2

γ2 λ̄2
m + k2−1

γ2 , b2(k2−1)
γ2 + k1b

2}.



It follows from the Barbalat’s theorem [13, pp.192] that
x̃(t) → 0 as t →∞. By Lemma 2, this corresponds to the
zero orientation error.

Since |ε|2 + η2 = 1, the derivativeV̇ = 0 implies
two equilibrium points (ε, η, ωe) = (0,±1, 0) on S3 × R3,
standing for exactly the same physical attitude orientation.
However, it is clear that(0,−1, 0) is an unstable equilibrium
point, because it is a local maximum ofV (x) on S3 ×R3

and V̇ < 0 whenever|x̃| 6= 0. We therefore conclude that
the PD control law (24) results in the global asymptotic sta-
bility of the auxiliary system (26) on(S3×R3)\(0,−1, 0).
Note also that given any initial attitude orientation, one may
always chooseη(0) ≥ 0. ¥

Note thatl(x) in Theorem 1 can be positive semidefinite,
which is also an meaningful cost functional. Applying The-
orem 1 and Theorem 2, we will design an inverse optimal
attitude tracking controller by the following theorem.

Theorem 3:If we let β = λ = 2, then the PD feedback
control law

u = βα(x) = −2(k1 + 1
γ2 k2)(ωe + bε) (32)

with the parametersb, c, k1, k2 and R2(x) being given in
Theorem 2, solves the inverse optimal gain assignment
problem for the attitude tracking control problem on(S3×
R3) \ (0,−1, 0) with respect to the extended disturbance
d̂(ωe, t) by minimizing the cost function

J(u) = sup
d̂

{
lim

t→∞
[
4V (x(t))+ (33)

+
∫ t

0

(
l(x) + uT R2(x)u− γ2|d̂|2)dτ

]}
,

wherel(x) is defined by

l(x) = −4LfV − 4
γ2 |Lg1V |2 +4Lg2V R−1

2 (Lg2V )T . (34)
Proof: This theorem is a consequence of Theorem 1 and

Theorem 2. From the derivations in Theorem 2, we have

l(x) ≥4(k1 − b
2
λ̄m − b2

γ2 λ̄2
m + k2−1

γ2 )|ωe|2

+ 4b2(k1 + k2−1
γ2 )|ε|2, (35)

which shows thatl(x) is positive semidefinite (precisely,
l(x) is positive definite inε andωe). Therefore,J(u) is a
meaningful cost functional for the attitude tracking control
problem, penalizing both the tracking errorsε, ωe and the
control effortu. Substitutingl(x) in (34) intoJ(u) in (33),
we get the optimal costJ(u) = 4V (x(0)) and the “worse-
case” extended disturbance

d̂∗(x) = λ(ρ′)−1(2|Lg1V |) (Lg1V )T

|Lg1V | = 2
γ2 (Lg1V )T (36)

(see [9] for the detailed computations) whereρ is defined
in the same way as in the proof of Theorem 2. ¥

Remark 2: It can be seen from (35) that the state penalty
functionl(x) in the performance index (33) can be rewritten
as l(x) = x̃T Q(x)x̃ where the weighting matrixQ(x) is
positive definite and its magnitude depends mainly on the
gain k1 and onγ. In the viewpoint of optimal theory, if
we are to reduce the system error, we can enlargek1 and
decreaseγ, producing a larger weightQ(x) and a bigger
control effort. Conversely, ifk1 is reduced, then a smaller
control effort and a bigger error will result. ⊗

It is interesting that such an inverse optimal PD controller
showsH∞ optimality, which implies that theL2-gain of

the closed-loop system from̂d(ωe, t) to x̃(t) is finite, thus
achieving disturbance attenuation.

Theorem 4:The inverse optimal control law designed by
(32) in Theorem 3 is alsoH∞ optimal for the closed-
loop attitude control system with respect to the extended
disturbanced̂(ωe, t) and theH∞ performance index (33).

Proof: From the derivations in Theorems 2 and 3, the
Lyapunov function candidateV (x) solves the following
Hamilton-Jacobi-Isaacs partial differential equation:

∂V
∂x

f + ∂V
∂x

[ 1
γ2 g1g

T
1 − g2R

−1
2 gT

2

]
∂T V
∂x

+ 1
4 l(x) = 0.

Substitutingl(x) in (34) into the cost functionalJ(u) in
(33), it follows thatJ(u) = 4V (x(0)), which means

∫∞
0

(
l(x) + uT R2u

)
dt ≤ ∫∞

0
γ2|d̂|2dt + 4V (x(0)) (37)

with the “worst-case” extended disturbanced̂∗(x) of (36).
Note thatl(x) is positive semidefinite andR2(x) is positive
definite. Therefore, the inverse optimal PD controller (32)
implies theH∞ optimality of the attitude tracking control
with respect to the extended disturbanced̂(ωe, t). ¥

In general, we say that the system (1) with control input
u = k(x) is integral-input-to-state stable (iISS) with respect
to d if for some functionsα, γ ∈ K∞ andβ ∈ KL, for all
initial statesx(0) and alld, the following estimate holds:

α(|x(t)|) ≤ β(|x(0)|, t) +
∫ t

0
γ(|d(s)|)ds, ∀t ≥ 0.

For nonlinear control systems with disturbances or in the
case of trajectory tracking, theintegral-input-to-state stabil-
ity [14] is a useful theoretical tool to analyze the stability
of the closed-loop system; see [8][14] for examples. Under
the control law (32), the stability of the closed-loop attitude
control system is summarized by the following theorem.

Theorem 5:The attitude tracking full state (ε, η, ωe)-
system (20) under the inverse optimal PD control law (32)
is integral-input-to-state stable on(S3 × R3) \ (0,−1, 0)
with respect to the extended disturbanced̂(ωe, t).

Proof: The derivative of the Lyapunov function candidate
V (x) can be expressed as

V̇ =LfV (x) + Lg1V d̂− 2Lg2V R−1
2 (x)(Lg2V )T

=− 1
4 l(x)− 1

γ2 |Lg1V (x)|2 + Lg1V (x)d̂(t)

− Lg2V (x)R−1
2 (x)(Lg2V (x))T .

By Young’s inequality, it follows

Lg1V d̂ ≤ γ2

4
|d̂|2 + 1

γ2 |Lg1V |2,

where the equal sign is satisfied only when̂d(ωe, t) =
d̂∗(x) = 2

γ2 (Lg1V (x))T . Therefore,

V̇ ≤ − 1
4 l(x)− Lg2V R−1

2 (x)(Lg2V )T + γ2

4
|d̂(t)|2. (38)

Note thatl(x) and R2(x) are positive definite. As ana-
lyzed in the proof of Theorem 2, the full-state system is
GAS on(S3 ×R3) \ (0,−1, 0) if the extended disturbance
d̂ = 0. It is also zero-output dissipative because, if we let
the output functionh(x) = 0, V̇ < γ2

4 |d̂|2. Then, according
to [14], the system is iISS with respect tôd(ωe, t). ¥



V. PERFORMANCE ANALYSIS

In the previous section, although the inverse optimal PD
control law (32) guarantees the system iISS, it does not
provide the global asymptotic stability due to the extended
disturbance. In this section, we will introduce the concept
of performance limitation and some results in [8] to analyze
the performance of the attitude tracking controller.

The extended disturbancêd(ωe, t) expressed by (19) can
be represented as:

d̂(ωe, t) = H(t)ωe + h(t), (39)

where

H(t) =
[

0
−S(ωc)M + S(Mωc)

]
, h(t) =

[
ωc

dc

]
.

Under the assumption of the boundedness of the target
signalsωc(t), ẇc(t) and the external disturbanced(t) in
the attitude dynamics (11), there exist some finite positive
time-varying coefficientsc1, c2, c3, β1 andβ2 such that

|d̂(ωe, t)|2 = ωT
e (HT H)ωe + 2ωT

e (HT h) + (hT h)

≤ c1|ωe|2 + c2|ωe|+ c3,

≤ β1|ωe|2 + β2. (40)

Such time-varying coefficients can be chosen as

c1 = ||H||2 ≤ 4λ̄2
m|ωc|2,

c2 = 2|HT h| ≤ 4λ̄m|ωc||dc|,
c3 = |hT h| = |ωc|2 + |dc|2,
β1 = 6λ̄2

m|ωc|2, β2 = 3|dc|2 + |ωc|2.
If d(t) = 0, the GAS holds for the setpoint regulation

problem (corresponding toẇc = ωc = 0 and qc =
constant) becausec1 = c2 = c3 = 0 and thenV̇ < 0.
However, the static PD controller cannot guarantee the
GAS either in the trajectory tracking or in the existence
of external disturbances. This fact brings a performance
limitation of the inverse optimal PD controller. The con-
trol performance is determined by the gain values of the
controller. Therefore, it is important to set up the relation
between the gain values and the system errors, which is
found by examining points that satisfẏV = 0 where the
state cannot be further reduced.

Theorem 6:Choosek2 = 1. Suppose thatλc is the
minimum eigenvalue of the matrix

Qc =

[
(2k1 + 1

γ2 )b2I3 (k1 + 1
γ2 )bI3

(k1 + 1
γ2 )bI3 Qc2

]
,

with Qc2 = (2k1 + 1
γ2 − b

2 λ̄m − b2

γ2 λ̄2
m − γ2

4 c̄1)I3. Let the
performance limitation|x̃|PL be defined as the Euclidian
norm of x̃ that satisfiesV̇ = 0. If the inverse optimal
PD controller law (32) withk2 = 1 is applied to the
attitude tracking system (20) andλc > 0 is satisfied, then
its performance limitation is upper bounded by

|x̃|PL ≤ γ2

8λc

[
c̄2 +

√
c̄2
2 + 16

γ2 λcc̄3

]
, (41)

where c̄1 = sup{c1(t) : ∀t ≥ 0}, c̄2 = sup{c2(t) : ∀t ≥ 0}
and c̄3 = sup{c3(t) : ∀t ≥ 0} with c1(t), c2(t) and c3(t)
defined by (40).

Proof: Substitutingl(x) of (34) with k2 = 1 into the
derivativeV̇ in (38), we have

V̇ ≤− (
k1 − b

2
λ̄m − b2

γ2 λ̄2
m

)|ωe|2 − k1b
2|ε|2

− (
k1 + 1

γ2

)|ωe + bε|2 + γ2

4
|d̂(t)|2

≤− x̃T Qcx̃ + γ2

4
(c2|ωe|+ c3)

≤− λc|x̃|2 + γ2

4
c̄2|x̃|+ γ2

4
c̄3, (42)

whereλc is the minimum eigenvalue of the matrixQc. The
state vector cannot be further reduced at a point satisfying
V̇ = 0. By the definition of the performance limitation, the
inequality (42) brings the performance limitation of (41).¥

Remark 3:The inequality (41) can be considered as an
upper bound of the system error for all time and then can be
used as a formula to predict the performance of the closed-
loop system for various values of the controller gains.⊗

Remark 4:Since the right-hand side of (41) is mono-
tonically decreasing withλc, the inequality holds ifλc

is replaced by any smaller positive value. The minimum
eigenvalueλc of the matrixQc in Theorem 6 satisfies

λc ≥ min
{
b2k1,

(
k1 − b

2
λ̄m − b2

γ2 λ̄2
m − γ2

4
c1

)}
. (43)

It is because

Qc =
[
k1b

2I3 0
0 q22I3

]
+ (k1 + 1

γ2 )
[

I3 0
1
b I3 I3

][
b2I3 bI3

0 0

]

with q22 = k1 − b
2 λ̄m − b2

γ2 λ̄2
m − γ2

4 c1, and the minimum
eigenvalue of the second part ofQc is zero. Hence,λc

satisfies (43). ⊗
Remark 5:Suppose that|β1(t)| ≤ β̄1 = supt{|β1(t)|}.

Then it follows from (40) and (38) that

V̇ ≤− (k1 − bλ̄m

2
− b2λ̄2

m

γ2 − γ2β̄1
4

)|ωe|2 − k1b
2|ε|2 + γ2β2

4
.

If (k1− bλ̄m

2 − b2λ̄2
m

γ2 − γ2β̄1
4 ) > 0, it follows that the closed-

loop system isβ2-to-(ε, ωe) stable. In addition, ifωc(t),
ω̇c(t), d(t) ∈ L2[0,∞), then theL2-gain fromβ2 to (ε, ωe)
is finite andε, ωe ∈ L2[0,∞). ⊗

VI. SIMULATION RESULTS

In this section, a rigid-body micro-satellite is simulated
to demonstrate the performance of theH∞ inverse optimal
tracking controller. We assume that the inertia matrix of the
satellite is diagonal,

M = diag{10, 10, 8} kg·m2,

and the external disturbanced(t) is given by

d(t) =




0.005− 0.05 sin( 2πt
400 ) + δ(200, 0.2) + v1

0.005 + 0.05 sin( 2πt
400 ) + δ(250, 0.2) + v2

0.005− 0.03 sin( 2πt
400 ) + δ(300, 0.2) + v3


 Nm,

where δ(t1, ∆T ) denotes an impulsive disturbance with
magnitude1 and width∆T , starting at the time pointt1.
The termsv1, v2 and v3 denote white Gaussian noises



with mean valuesmv1 = mv2 = mv3 = 0 and variances
σv1 = σv2 = σv3 = 0.005.

The desired angular velocityωc is given by

ωc =




0.05 sin(2πt/400)
−0.05 sin(2πt/400)
0.03 sin(2πt/400)


 · rad/s

and is plotted as in Fig.1 in dotted lines. The target
quaternionqc can then be obtained by integrating (13) with
the initial conditionqc(0) = [0, 0, 0, 1]T .

The initial conditions of the quaternionq and the angular
velocity w are given byq(0) = [0.3, 0.2, 0.3, −0.8832]T

andw(0) = [0, 0, 0]T .
We choose a set of gains,γ = 1, k1 = 4.0, k2 = 1 and

b = 0.18, to demonstrate the performance of the proposed
H∞ inverse optimal PD tracking controller (32). Fig.1 and
Fig.2 depict the time responses of the angular velocities
ω, ωc and the corresponding rate errorωe, from which we
can say that the actual angular velocityω tracks the target
angular velocityωc well with a small error. The sharp peaks
are due to the large impulsive disturbances. Fig.3 and Fig.4
plot the time behaviors of the actual quaternionq compared
to the desired quaternionqc and the corresponding tracking
error ε, from which it is seen that theH∞ inverse optimal
controller (32) achieves a good performance on the attitude
tracking with a satisfactory orientation error.

VII. CONCLUSIONS

With the introduction of extended disturbance, the inverse
optimal control method has been applied to the attitude
tracking control problem of a rigid spacecraft with external
disturbances. The proposed state-feedback control law is
inverse optimal with respect to a meaningful cost func-
tional. The associated control Lyapunov function satisfies a
Hamilton-Jacobi-Isaacs equation. Thus, nonlinearH∞ opti-
mality with respect to the extended disturbance is achieved
without obtaining a direct solution to the HJI equation, and
H∞ disturbance attenuation is also achieved. Performance
estimates have been given in terms of the performance
limitation. Such a feedback law is in the form of a PD
controller, which is easy to implement in practice.
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