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Abstract—In this paper, a new theoretical concept is via high-gain output feedback. On the other hand,
introduced for polynomials: the Stepwise Hurwitz Property with m > 0, it turns out that a naive high-gain approach
Subsequently, it is shown how this concept can be used to sys- will fail.
tematically achieve robust output feedback stabilization for
large classes of uncertainty structures. A principal motivation . ) .
for this paper is the fact that the state feedback controller ~ The simple uncertainty structure above generalizes a
construction methods do not readily admit modifications to  number of uncertainty structures in the literature; see

handle the output feedback case. One of the fundamental [1], [17], [19] and [21]. The structure is generated via a
technical issues addressed in this paper involves the handling sequence of up and down augmentations. Special cases

of poles and zeros at the origin. For example, high-gain . . .
control results which are available to robustly stabilize an of this structure include the well-known lower-triangular

uncertain minimum phase plant G(s, ¢) via output feedback, ~ Structure and upper-triangular structure. By way of

do not readily extend to plants of form s™G(s, q). concrete illustration, the system
X1 = —qT1+ T2+ G2r4;
To = x3;
1. Introduction T3 = Q3r3+ T4;
The main results of this paper bear on the large body of Ty = 1t
literature involving construction of robustly stabilizing y = I3

controllers for sygtems which inqlude an uncertainWith ¢ = (qi,42,q5) does not admit a parameter-
pa!rameters or n_onlmear glements _W'th known bounds. Amdependent transformation taking it to a triangular form
principal motivation for this paper is the fact that resultsbut has transfer function

for robust stabilization via state feedback do not readily

admit modifications to handle the output feedback case; G(s,q) = _ o ssta)

e.g., for state feedback solutions, see [10], [1], [16], [20], st +sd(s,q) +1

[21], [19] and for the case of linear systems and [3], [8],with d(s,q) being a second order polynomial. Now,
[9], [11], [13], [14] and [15] for the case of nonlinear with arbitrarily large uncertainty boundg < ¢; < ¢;"
systems. As far as the literature on robust output feedbadkith q; > 0, the non-minimum phase zero at= 0 is
stabilization is concerned, results for minimum phaseproblematic as far as high-gain robust output feedback
plants are the benchmark against which the results thistabilization. However, for this system, since the sign of
paper can be compared; e.g., see [2], [18] and [22] wherghe low-frequency gain is positive, the results given in
an input-output linear system description is the startinghis paper lead to a systematic construction of a robust

point and [6] and [12] where lower triangular state spaceutput feedback stabilizing compensator; see Section 3
uncertainty structures are considered. where this example is revisited.

By way of motivation, letq denote a finite-dimensional Analogous to the case above, when the transfer function

vector of uncertain parameters with known compactas one-sign low-frequency gain and is of the form
bounding setQ) and takeG(s,q) to be a plant transfer N(s,q)

function with one-sign high-frequency gaing, entering G(s,q) = —
continuously into its coefficients and having the form s D(s,q)

SN (s, q) with D(s, q) robustly stable, while zero feedback is needed
R Stk V4 whenm = 0, the case withmm > 0 and non-minimum
D(s,q) phase becomes challenging. This provides a second exam-
with N(s,q) and D(s,q) being uncertain polynomials. ple from the class of systems for whic_h a_robust stabilizer
Notice that if N (s, ¢) is robustly Hurwitz andn = 0, this ~ ¢an be constructed using the results in this paper.
minimum phase uncertain system is readily stabilizable
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G(qu) =



2. The Stepwise Hurwitz Property sequence opartial polynomial vectors

In this section, we introduce two new concepts: 8tep- FHE(s) = [fo(s) fi(s)... fu(s)]; k=0,1,...,N.

wise Hurwitz Propertyand the notion ofRobust Hurwitz ) i , *)

inducibility, are introduced. We now definel, the maximum |nde>o_f f (s_), to b_e
the maximum degree of thg (s) comprising this partial
vector; i.e.,

2.1 Preliminaries for Polynomials Let H denote .
the set of Hurwitz polynomials; i.e., polynomials [ = max{degf,(s), degfz(s), ..., degin(s)}

with all roots in the strict left half plane. Now, We also definei;, the minimum indexof f*)(s) as
if fo(s), f1(s), f2(2),..., fn(s) are polynomials and =  follows: Let s/i be the lowest power of appearing in
(o1, 09,---,an) € RV is fixed, we consider thearam- fi(s) with a non-zero coefficient. Then,

eterized polynomial

f(s) = fo(s) +arfi(s) + azfa(s) +---anfn(s). , . . .
_ _ _ o ~ Note thatl;, andi; are non-decreasing and non-increasing,
For givena € RV, this parameterized polynomial is said respectively. We conclude this section by generalizing the

to have theStepwise Hurwitz Propertif f(s) € H and, discussions above to uncertain polynomials.
for k=0,1,---,N — 1, the partial sums

Z.k', = min{jlaj?a e a]k}

Fi(s) = fo(s) + afils) + azfo(s) + - ar fu(s) 2.5 Robustness GeneralizationsFor the case when the
satisfy the following condition: For each, there exists a Polynomials fi(s) have coefficients depending continu-
non-negative integei;, such that ously on a vectorg of uncertain parameters, we re-

. place f(s), fr(s) and Fy(s) by their uncertain counter-
s~ " Fy(s) € H. parts f(s,q), fx(s,q) and Fy(s,q), respectively. Then,
When such a selection of exists, the polynomial se- 9iven a compact bounding sek for the parameters, we
quence{fx(s)}_, is said to be(Stepwise) Hurwitz in- S&Y that the Stepwise Hurwitz Property.holumaustly if
ducibleand f,(s) is called theHurwitz core f(s,q) € Hforall g € Q and for each partial sutf (s, q)
with k < N, there exists a non-negative integgsuch that

s~ Fy(s,q) € H for all ¢ € Q. Finally, it should be noted
2.2 Remarks In a control theoretic context, if we view thatin this case, the maximum and minimum indices of the
the o; above as parameters which correspond to comperpartial polynomial vectorf(*)(s, ¢), respectively denoted
sator coefficients, it is apparent that Hurwitz inducibility by Ix(¢) andi,(q), are functions of.
is equivalent to stabilizability. In the sequel, one of the
main technical novelties associated with robust stabiliza-
tion is our relabelling of the compensator coefficients 3. Robust Hurwitz Inducibility
so that the Stepwise Hurwitz inducibility is guaranteed.
That is, the obvious ordering for selection of compensato
parameters corresponding to the increasing or decreasi
degrees ok” in N.(s) or D.(s) does not necessarily lead
to satisfaction of the Stepwise Hurwitz Property.

3.1 Theorem of Robust Hurwitz Inducibility (see Sec-
fion 4 for proof): Given the sequence of uncertain poly-
%mialsfk(s,q), qg € Q,k = 0,1,...,N, suppose the
following conditions are satisfied:
(i)  The polynomials= fy(s, q) is a robustly Hur-
witz with a positive highest degree coefficient.
2.3 Example To illustrate the concepts above, we consider (i)~ The maximum and minimum indices of the par-

the parameterized polynomigl(s) above with compo- tial uncertain polynomial vectorg®)(s,q) are
nents fo(s) = % + 5% fi(s) = 25t — s2 + 57 fo(s) = invariant, and thus denoted by, andiy, respec-
s> + s and f3(s) = s — s + 3. Now, for the fixed tively.

choice of parametersy, = oy = 0.25, az = 0.05 (i)  Ask increases from zero t&y, for each transition
and indicesiy, = 2, i1 = iy = 1 andis = 0, a of k — l<_:+1, 1}, (respectively;;) can increase
straightforward calculation leads to the®* shifted partial __ (respectively, decrease) by one at most.
sums s~2Fy(s), s 1Fi(s), s 1Fy(s) and F3(s) are (iv) For k= N, the minimum index iy = 0.

readily verified to be Hurwitz polynomials. Hence, for Then, the sequencéfx(s,q)}Y_, is robustly Hurwitz
this selection of they;, the resulting polynomial has the inducible.
Stepwise Hurwitz Property.

3.2 Motivating Example Revisited To illustrate how the
2.4 Notation Given a sequence of polynomials Stepwise Hurwitz Theorem applies to classes of systems
f1(s), f2(s),..., fn(s), we define the associated which are not covered by the existing literature, we revisit
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the motivating example given in Section 1. This examplejs robustly Hurwitz, we need to prove that;,; can
while analyzed in somewhat of an ad hoc manner herehe chosen to make =i+ Fy ,(s,q) robustly Hurwitz.
is addressed more formally in Section 5. Accordingly, theAdopting the shorthand notatiom = aj41, go(s,q) =
procedure below will be formalized as part of a step-by-s—%+1 Fy(s,q), g1(s,q) = s~ *+1 Fj41(s,q) andg(s, q) =
step procedure. We begin with the plant transfer functions=%+1 f;., 1 (s,q) and suppressing thés,q) arguments,

we haveg; = g9 + ag. We now consider four cases
G(s,q) = s(s + 1) corresponding to various combinations &pf,; andi

’ st + (g3 —q1)s® + (¢2 — 1q3)s* — qugzs + 17 P g ! Rt
with its uncertain parameter bounds given by ¢; < 2,

—1<¢2 <1, -1 <g3 <1 and note that the analysis to Case 1 I;;1 = I andiy.1 = is. In this casego is
follow could equally well be carried out with arbitrarily robustly Hurwitz and deg, > degg. It follows from
large uncertainty bounds with the the proviso that- 0.  continuous dependence of the roots of a polynomial on
We now specify a second order controller of the form its coefficients that, is robustly Hurwitz for sufficiently
(s :n232+n15+n0iNc(s)' zfgsag()é?() _ ‘ o .
dos2 + dys + do Do(s) k1 = Ix + 1 andig 1 = ig. In this case, we

) . _observe thayy is robustly Hurwitz, degy = deggg + 1,
To demonstrate that all hypotheses in the Stepwise Hurwitz, 4 the highest degree coefficient of is positively
Theorem are satisfied, we first consider the closed 100Q, ariant. Hence. for this special case, it follows from

polynomial existing results in the literature (see [2] or [18]) that
f(s,q) = sN(s,q)Ne(s) + D(s,q)De(s) is robustly Hurwitz for suitably smalv > 0.

Case 3 I;y1 = I andig; = i — 1. In this case, we

defineg, = s~ F}, and observe thaj, = sgy andg, are

f(s,9) = N(s,q)Ne(s)+doD(s, q)+d1sD(s,q)+d2s*D(s,q).  robustly Hurwitz. Furthermore, deg < deggo, and the

We now claim that the hypotheses of the theorem ar&eroth degree coefficient of is positively invariant. We

satisfied by takingV.(s) to be any positive coefficient now reduce this situation tq Case 2 as follows: For.ming
Hurwitz polynomial and lettingfo(s, q) = sN (s, ¢)Ne(s), the reversed-order polynomi& by reversing the ordering

which is rewritten as

F1(5,9) = sD(5,q), f2(s,q) = D(s,q) and fs(s,q) = pf the coefficient; o:fyl, it is straigptfprward to see thgg
s2D(s,q). Now with iy = 1 and recalling tha; > 1, is robust[y Hurwitz if and only Ifg} is robustly Hur\Nltz_.
it is readily verified thats=i fo(s) = (s + q1)Nu(s) Now for g, the problem of selecting reduces to that in
is robustly Hurwitz. Also, the corresponding minimum ©8S€ 2. .
and maximum indices, = i, = 1, iy = i3 = 0, @€ 4 Lpyr = Ip + 1 andipy = 4 — L In this

Io=4,1, = I, = 5 and Is = 6 and the associated CaS€.90 = sgo, Wheregy = s~ Iy, i_s robustly Hurwitz,
coefficients satisfy the required invariance requirements of€99 = deggo + 1, and both the highest and the zeroth
the theorem. It follows that the parameterized closed looffiedree coefficients of are positively invariant. Letting
polynomial (s, q) is robustly Hurwitz inducible. Now, in 7 = d€ggo, it follows that degg, = degg = n + 2..
accordance with the previous section, it is now possib|é=urthermore, expressing the hlghest.and lowest coefficients
to construct a robustly stabilizing compensator. Indeed, & 91 8 agn+2 andago respectively, it follows that these
lengthy but straightforward computation leads to a robusflu@ntities are positively invariant when > 0. It is now

stabilizer given by straightforward to verify that that the Hurwitz matrix for
) g1 is given by
C(s) — s“+s+1
(s) = s24+55+5 Hyo(q) + aHi1(q) 0
Hl(aa Q) =
Hi (g, @) ago(q)
4. Proof of Theorem 3.1

where H; ¢(¢) is the Hurwitz matrix ofg, when viewed

4.1 Preliminaries Given ann-th order polynomial as an(n + 1)-th order polynomial; i.e., withu,, = 0,
. forming the Hurwitz matrix fora,, . ;s"*! + go. Also, in
p(s) = ans" + an—18""" +--ao the expression abové/; ;(q) is the part of the Hurwitz

with a,, > 0, the associated Hurwitz matrix is denoted matrix for g with the last row and column deleted. Further

by H. Note that the last column ofl has zero entries €Xamination shows that, (¢) has the structure
except its last element and thats) is Hurwitz if and an(q) [an—2(q) -]

only if all the principal minors offf are positive. Hyo(q) =

0 Hy(q)
4.2 Proof of Theorem We proceed by induction. That is, where a(q),a1(q),---,a,(q) are the coefficients ofj
assumingay, - - -,y are chosen such that=**F.(s,q)  and Hy(q) is its Hurwitz matrix.
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5.2 Theorem The pseudo-minimum phase uncertain plant
In view of the structural properties above, we claimG(s,q) is robustly stabilizable via output feedback. Fur-
that all the leading principal minors off;(¢q,«) are thermore, a robustly stabilizing proper controll€f(s) =
positively invariant for sufficiently smalle > 0. To  N.(s)/D.(s) can be chosen to be minimum phase and
prove the claim, we consider the highest order minorsatisfying the following conditions:
det Hy(g, @), noting that a similar proof applies to the (i) Whenm = 0,

other lower order minors as well. Indeed, we write
deg N.(s) =degD.(s) =r — 1;

det Hl (q7 O[) = ago(q)(an(q) det HO(q) + 0(Q7 O[)) (") Whenm >0 and d()(q) > 0’
where the ternv(q, «) vanishes uniformly iy asa — 0. degN.(s) =m +r —2;
That is, given any= > 0, there exists a suitably small
a > 0 such that|o(q,a)] < e for all ¢ € Q. Now deg D(s) = max{m —1, m +r —2};

using the properties ofp, we know thatdet Ho(g) and iy Whenm > 0 and dy(q) < 0,
ar(q) are both positively invariant. Therefore, for suitably

small & > 0, det Hy(¢q,) is positively invariant. In deg N.(s) = degD.(s) =m+r—1.
view of this claim, we now conclude that is robustly
Hurwitz for suitably smalla. > 0. It follows by induction
that oy, a0,---,any > 0 can be selected recursively to
make s~ F(s,q), s 2Fy(s,q), -+, "N Fy(s,q) ro-
bustly Hurwitz withiy = 0.

Furthermore, the controllelC(s) can be designed using
the following procedure:
Step 1 ChooseN,(s) to be any Hurwitz polynomial
with the degree as given above and take the
Hurwitz core to be

fo(s,q) = s N(s,q)Ne(s).

5. Stabilizable Transfer Function Structures Step 2 If m = 0, for k = 1,27 let fu(s.q) =

In this section, we provide robust stabilization results for s*=1D(s,q),k =1,2,...,7r. If m > 0, take
the two transfer function structures discussed in Section
1. As previously mentioned, poles or zeros at the origin _ D(s,q) if do(q) > 0;
preclude the use of simple high-gain or low-gain results. D(s,q) = { D(s,q)(s— 1) otherwise
and
5.1 Pseudo-Minimum Phase Uncertain PlantsRecalling fils — ¢m-1p :
. . . . . 1(8, 4 S (Saq ’
the discussion in Section 1, we consider a proper transfer "2 =
function of the form fa(s,0) = s"77D(s,q);
s™N (s, q) ~
) _ Whenr > 1, continue with
wherem > 0, N(s,q) is anv-th order robustly Hurwitz -
polynomial with a positively invariant zeroth degree fmy1(s,q) = s"D(s,q);
coefficient and D(s,q) is an n-th order uncertain fmga(s,q) = s™F1D(s,q);

polynomial with a positively invariant highest degree
coefficient. Whenm > 0, it is further assumed that the

zeroth order coefficiently(q), of D(s, q), is sign-invariant fmtr-1(s,q) = s"T2D(s,q).

so that there is no unstable ZeI’O-pole cancellation. Since Step 3 App'y Stepwise Hurwitz Theorem to recursive'y
the numerator of the plant has its zeros at the origin select the;. If r < 1, take

and in the open left half plane, we refer to the plant as _

pseudo-minimum phase De(s) = ars™ !+ ans™ 2 o 4 .

o ) _ Whenr > 1, let
Now for the non-trivial case wheDP (s, ¢) is non-Hurwitz,

we apply a proper compensatoi(s) = N,.(s)/D.(s) and De(s) = a1s™ '+ aas" P4 F
the objective is to select the coefficients 8f.(s) and s 18™ + Qg™ 4
D.(s) to assure that the resulting closed loop polynomial 8T,

f(s,q) = s™N(s,q)Ne(s) + D(s,q)De(s) Then,D,(s) is given by

is robustly Hurwitz. When such a compensator exists, the De(s) = { @(S)(S —1) if m > 0 & do(q) > 0;
system isrobustly stabilizable via output feedback D(s) otherwise
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Proof. It is easy to verify that the specified dimensionsof the form

guarantee that the controller'(s) is proper. Hence, it G(s,q) = _Ns,9)

suffices to show that thé, sequence, constructed via the s™D(s, q)

procedure above, is robustly Hurwitz inducible. We firstwherem > 0, D(s,q) is ann-th order robustly Hurwitz
consider the case where = 1 anddy(q) is negatively  polynomial. Without loss of generality, we assume that
invariant. In the design procedure above, for this case, we) (s, ¢) has positively invariant coefficients. Finally, the
first modify D(s,q) by multiplying the factor(s — 1). It uncertain polynomialV (s, q) is assumed to have a sign-
is straightforward to check that the resulting denominatoinvariant zeroth degree coefficient. The degreg;), o

D(s, q) has a positively invariant zeroth degree coefficient. .N(s,q) is allowed to vary withg, provided thatG(s, q)
Thus, this case is reduced to the case where> 0  remains proper. Since the denominator has all its roots
and do(q) is positively invariant but with a new degree at the origin and in the open left half plane, we refer to
n =n-+1 and relative degree = r+1. Suppose the mod- the plant as beingseudo-stableThe result below follows
ified uncertain transfer functios™N(s,q)/D(s,q) can easily from Theorem 3.1.

be robustly stabilized by a controlle¥..(s)/D.(s) with
degV.(s) = m+7—2 and ded.(s) = max{m—1, m+

7 —2}. Then it follows that the original uncertain transfer
function N(s,q)/D(s,q) can be robustly stabilized by

5.4 Theorem The pseudo-stable uncertain pla6fs, q)
above is robustly stabilizable via output feedback. Fur-

N.(s)/De(s) with D,(s) = Du(s)(s — 1). Becauser = thermore, a robustly stabilizing proper controlléf(s) =
r i 1 anam > 1 dégN (s) _ degD.(s) = m +r — 1. N.(s)/D.(s) can be chosen to be stable satisfying
Hence, in the sequel, we only need to consider the cases deg N.(s) = degD.(s) = m — 1

m = 0 and the casen > 0 with dy(q) > 0. _ _ _
and the controller can be designed using the following

procedure:
Note thatio = m ands~% f,(s, q) is robustly Hurwitz with Step L Choose D.(s) to be any(m — 1)-th order
a positively invariant zeroth degree coefficient. For the case Hurwitz polynomial and let the Hurwitz core be
m = 0, we havei, =0 for all k and I, = I, + 1. By fo(s,q) = s™D(s,q)Dc(s,q).
Theorem 3.1, it follows that thg, sequence is robustly Step2 For & = 1,2,...,m, let fi(s,q) =
Hurwitz inducible. For the case: > 0, we claim thati; = s™ *N(s,q)Sn, Where Sy is the sign of the
io—1 andl; = Iy+1. The first part of the claim is easy to zeroth degree coefficient @ (s, q).
see becausf (s, ¢) has a factos™ ! whereasfy (s, q) has Step 3 Apply Stepwise Hurwitz Theorem to recursively
a factors™ and bothD(s, q) and N(s, q) have positively design thex;. Then, let

invariant zeroth degree coefficients. To praye= Iy + 1,
by noting that bothD(s,¢) and N(s,q) have positively
invariant highest degree coefficients, it follows that

Ne(s) = Sn(ars™ ' +as™ 2+ 4+ ap)

I, = degs™N(s)+ degN.(s) 5.5 Remark In Theorems 5.2 and 5.4, we specified the

= m—r)+(m+r—2)=n+m-—2 order of the stabilizing cc?r_ltroller. It is easy to constru_ct

examples show that stabilizing controllers may not exist

and in general if the order is lower than those given in the
theorems.

IL=(m—1)+degD(s,q) =(m—1)+n=1+ 1

Next, for k = 1,2,...,m — 1, it is easy to verify that
the specified dimensions guarantee thigt; = I and
ix+1 = 1, — 1. A particular consequence of this fact is that In this section, we show that the pseudo-minimum phase

6. Stabilizable State-Space Structures

im = 0. Finally, if m +r —2>m — 1, we have uncertainty structure given in the previous section cov-
ers a large class of uncertain systems in the state-space
L1 =Im + 15 g1 =i = 0; framework. These systems admit a so-called Skepwise
Augmentation Structurevhich can be generated recur-
Imie = Imp1r + 1 imie = fmi1 = 0. sively using the so-calledlown augmentationg&nd up

augmentations Such structures, first introduced in [1],
were called thedmissible shuffled ater in [17], the term
anti-symmetric stepwise configuratioms used to describe

a similar class of systems. For such systems, it is shown in
[1], [17] that a robust linear, time-invariant state feedback
5.3 Pseudo-Stable Uncertain PlantsRecalling the dis- stabilizer can be constructed. Such structures were also
cussion in Section 1, we consider a proper transfer functiostudied recently in [5] in the context of output regulation

2678

Contmumg in an identical manner for any indices above
Lnio, by Theorem 3.1, thg, sequence is again robustly
Hurwitz inducible.



control via state feedback. The purpose of this section isve consider the four possible structures fidi(q) associ-
to prove that a large class of such structures is robustijted with 4-th order systems

stabilizable via output feedback, provided that a suitably

*x 0 0 0]0 0 0 * x|0
chosen output is available. x « 0 0[]0 |. 0 0 6 x|0 |
*x x x 00 |’ 0O 0 0 6|0 |
* x ok x| 0 * ok ok % ‘ %
In the construction to follow, we begin with an uncertain
system 0 0 % 0 ‘ 0 0 0 x x|0
0 0 6 0|0 | 0 0 0 00
. = * x 00 |’ 0 0 = 610
ro= /;(q)erb(q)u * % x x| 6 * % %k x| 0
y = c (g

where x denotes entries that are arbitrary functions of
whereq € @ represents uncertain parameters as before; and ¢ denotes the entries which are sign-invariant. For

A(g) is ann x n continuous matrix functionh(¢) and  each matrix, the underlined state variable corresponds to
c¢(q) aren x 1 continuous vector functions, andz andy  the generating system. For example, for the third matrix

are the input, state and output of the system, respectivelp/(q) above, the generating system is described by
We call X = (A(q),b(q), c(q)) agenerating system

=0(q)u
6.1 Down-augmented SystemsGiven a generating sys- The sequences of augmentations for the structures above
tem s = (A(q), b(q), ¢(q)), the system are respectively down-down-down, down-up-up, down-up-
’ ’ ' down and down-down-up. In all of the examples above,
z = A(gQ)z+b(q)xni1; the generating system is a scalar system of the form
ini1 = BT(@)7 + a(@)zntr +0(g)u; . = a(Q)zr + 0(q)u;
y = (g

y = Tk
with n+1 state variables is said to belawn augmentation which is clearly robustly minimum-phase. It is also possi-

of X if the added vectors and scalat$g), 5(q) andf(q)  ble to give examples which is somewhat more complicated
depend continuously og and 0(g) is sign-invariant. We in the sense that the order of the generating system is
call z, 1 the augmenting state variable higher than one.

6.2 Up-augmented SystemsGiven a generating system 6.5 Theorem Let X = (A(q),b(q),c(q)) be a generating

¥ = (A(q),b(q),c(q)), the system system. Then, a down augmentation does not introduce any
. T new zeros and each up augmentation introduces at most
wo = A (@) one zero ak = 0. Furthermore, ifm up augmentations are
& = Alg)r+bg)(a(g)zo + u); involved and the finalA-matrix for the augmented system
y = (g is nonsingular for allg € @, then the augmented system

) ) ] ) ] has exactlyn new zeros at = 0.
with n+ 1 state variables is said to be ap augmentation

of X if the added vector and scalafq) and 5(q) depend _ . _
continuously ong and the first entry ofg(q) is sign- 6.6 Corollary: A stepwise augmentation structure is ro-
invariant. In this casey, is called theaugmenting state bustly pseudo-minimum phase, and thus robustly stabiliz-
variable able via output feedback.

) ) Sketch of Proof of Theorem 6.5 We suppress the depen-
6.3 Stepwise Augmentation Structure Let ¥ = dence of the system apand denote the transfer function
(A(q),b(q), c(q)) be a generating system with a robustly of the generating uncertain system®ys) = N(s)/D(s).
minimum phase transfer function. Then, a system is said t§aking Laplace transforms and expressing the transfer
be astepwise augmentation structufet is obtained from  fynction g7 (sI — A)~'b as Ns(s)/D(s), a calculation
¥ via a sequence of up and down augmentations, and igads to
addition, if up augmentations are involved, théy)-matrix N(s)
of the augmented system is nonsingular forgatt Q. Y(s) = Ul(s).

D(s)(s — o) = Np(s)
Hence, the down augmentation does not introduce any

6.4 Examples To illustrate the stepwise augmentation pey zeros. Now, the transfer function of the up-augmented
structure, we list some of the uncertain systems which fikystem is similarly computed. We obtain

into this framework. Using the notation

B sN(s) s
M(g) = [A(q) | b(q)] Y = e —anys) U
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Hence, at most one new zero &= 0 can be introduced by Australian Research Council.

by each up augmentation. Finally,7f up augmentations

are involved (regardless of the number of down augmen-
tations), the numerator of the augmented transfer functionl!]
will be s N (s, ¢). The new factos™ can not be cancelled

if the denominator of the augmented transfer function has a[2]
sign-invariant zeroth degree coefficient. This is guaranteed
if the A-matrix of the augmented system is nonsingular

forall ¢ € Q. [3]

Proof of Corollary 6.6: By definition, the generating [
system of a stepwise augmentation structure is robustly
minimum phase. By Theorem 6.5, down augmentations do[5]
not introduce new zeros and, if. up augmentations are 6]
involved, m new zeros ats = 0 are introduced because
the A(g)-matrix of the augmented system is nonsingular
for all ¢ € Q. This implies that the denominator of the []
augmented transfer function has a sign-invariant zeroth
degree coefficient. Therefore, the transfer function of a
stepwise augmentation structure is a robustly pseudols]
minimum phase system, and thus robustly stabilizable via

output feedback, according to Theorem 5.2. [9]

(10]

7. Conclusion and Future Research "

In this paper, we introduced the Stepwise Hurwitz
Property as a means for extending a number of robust,
stabilization results from the full state feedback case to
the output feedback case. Via the techniques introduced in
this paper, it becomes possible to address large classes
of uncertain systems falling into the pseudo-minimum[13]
phase or pseudo-stable categories. The results of this
paper suggest some directions for future research. Most,
notably, the recursive design approach offered in this
paper is a frequency domain approach, which is applicablﬁls]
to time-invariant parameters. If the uncertain parameter
are time-varying, an analogous recursive method in the
state-space domain is needed. In this regard, the concepf!
of quadratic stabilization, which employs a parameter-
independent quadratic Lyapunov function, is particularly[17]
useful. In fact, the state feedback design methods in [1],
[19], [17] and [21], involve uncertainty structures similar 18]
to the Stepwise Augmentation Structure but with time-
varying uncertainties. It would be important to investi-

. . ol
gate the extent to which our frequency domain approac
also has a Lyapunov function interpretation. This sort of
Lyapunov function interpretation would also be a stepping?°!
stone to output feedback stabilization of nonlinear systems
with similar structures. [21]

[22]
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