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On Robust Stability with Nonlinear Parameter Dependence: Some
Benchmark Problems lllustrating the Dilation Integral Method

Akin H. Babayigit, B. Ross Barmish, Pavel S. Shcherbakov

Abstract—In this paper, we consider the problem of robust the dilation integral approach pursued here is the following
stability analysis with uncertain parameters entering nonlin-  |emma, a special case of the results given in [1] and [2].
early into the coefficients of the polynomial of interest. In
this nonlinear setting, the few results which are available in B. Lemma
the literature apply to special cases, or, due to computational . . .
complexity, are tractable for only a few uncertain parameters. For all positive even integers, it follows that
The objective of this paper is to demonstrate the efficacy k
of the so-called “dilation integral” method of [1] and [2] Vol(Qpad) < min/(l — adet H(q)) dq
in a robust stability context. This rather general method (QOQ
involves a “softening” of the robustness formulation to allow
for an “acceptably small” volume of performance violation in ~ Moreover, ask — oo, the right hand side above converges

parameter space. to zero if and only if the given family of polynomials is

I. INTRODUCTION robustly stable.

In this paper, we consider the robust stability problent- Remarks and Rate of Convergence
for systems whose characteristic polynomial has coefficients The lemma above enables us to obtain an upper bound
which depend nonlinearly on the uncertain parameters. W the volume of violation which can be expressed as a

consider the polynomial fraction of the total volume by minimizing the scalar convex
) n function
p(s,9) = an(q)s" + -+ +ai(q)s + ao(q) 1 k
with coefficients a;(¢) being multivariable polynomials ek(a) = Vol (Q) /(1_O‘detH(q)) dq
in ¢ = (q1,92,...,9¢) and associated compact bounding Q

set Q c R’. Without loss of generality, this family of with respect tor > 0 to obtain
polynomials is assumed to have at least one stable mem- .
berp(s, ¢°) and we further assume thats, q) has invariant € = 10{12113 ex(a).

degree; i.e., without loss of generality, we assumed . . .
9 g Y hat) Two key points to note are as follows: First, while a system

is positive for allg € Q. . . . .
b 1@ Joay fail to be robustly stable in a strict theoretical sense,

While there is voluminous literature addressing the ca: h o d iractically stableif. f
when ¢ enters linearly into the coefficients, for example,We may choose to deem iractically stavleit, for pre-

see [3]-[4], results obtained for nonlinear problems argpeciﬁede > 0, we certify, via solution of the optimization

limited in that they either apply to rather special case ngtlier: above,ntgztkbt;ne-dsizogd,bwe note tlh?]t rt:iZIs
involve computations which are tractable only when - cHO ex(cr) can be obtained exactly because polyno

has low dimension or involve Monte Carlo sampling e_g_mvolved indet H(q) are readily integrated in closed form

see [7]-[10]. In contrast, the approach taken here, the Sg_hen@ is a hypercube. In comparison with classical Monte

calleddilation integral methogdis based on exact arithmetic arlro sohlut:\c/mrs] r? frno:]/llrilga;hprﬁble(;nts g;n'n i [7}-13], thﬁ
and symbolic computation. For the robust stability problemapp. oach given here avolds the need to g ISsues such as
%ltlStICéﬂ measures of confidence and sample size into play.

we obtain a sequence of exact volume estimates for the sf;j; ; ;
ne fundamental concern, however, is that the symbolic

of performance violators . X . )
P expressions associated with the computation above may
Qvea = {q € Q : p(s, q) is unstableé. contain a large number of terms if a highvalue is needed
) . to obtain a low volume certification fof),,,. To address
A. The Starting Point this issue, a certainnderlying conditione® is introduced
In this paper, we work with the classiciurwitz ma- in [1] and [2]. More specifically, with
trix H(q) associated withp(s, q). The takeoff point for .
fla) = —det'H(q)
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stability. For example, iff(Q) = [-2,—5], the midpoint with uncertain parameters bounding §g¢t= Q,, described

is fo = —3.5 and the half-width isc = 1.5. Hence, by 11.5 — 85y < ¢ < 11.5 4+ 8.5u and 21 — 11u <
the maximum percentage deviation, expressed as a fractipn < 21 + 11u with 0 < p < 1 defining the radius
is 0 ~ 0.4286. of uncertainty, and coefficients;(¢) as given in [5]. For

this system, it is well known that ag — 1, we obtain
an uncertainty domaid) = @, which nearly touches the
For all positive even integers, it follows thatej < 0% instability boundary in parameter space. This fact suggests
and 0, = ¢;* defines a non-decreasing sequence whicthat the robustness analysis may be difficult in this case.
converges td@ in the strictly robust case and unity other- To this end, we seek to demonstrate that our analysis based
wise. on Lemmas B and D is consistent with this observation;
i.e., the ill conditioning of this problem is manifested by a
high ¢ value and slow rate of convergenceejfto zero.
Combining the above lemmas, we obtain the inequality Using the dilation integral method, we consider the
“difficult” case 4 = 1 and seek to estimate an upper
Vol (Qpad) < i < ok bound for the volume of violation with various values.
Vol(Q) = az0 ex(@) < In order to apply lemmas B and D, we first verify that the
family of polynomials above has a stable member. Indeed,
as the basis for computations to follow. To illustrate, for avith ¢ = ¢° = (11.5,21), we obtain stable roots. Using the
robustly stable family of polynomials with ~ 0.4286 as formula fore;, we now illustrate computation using lemma
in the example above, we are guaranteed that the volurfle Carrying out the requisite integrations, we obtain

D. Lemma

E. Implications and Objectives

of Qpaq Will be less than one percent of (@) with & = 6. () = 1427566 x 10%a + 3.6459 x 10*7a?;
As stated earlier, for cases when a suitably low volume ' 03 ' 8 o
certification is obtained, say M@;.4) < €Vol(Q) for some ea(a) = 1-55132x 107+ 2.1875 x 10T«
small user-defined > 0 is deemed acceptable, we say that —6.4471 x 10™a® + 8.8731 x 10%a*

practical robust stabilityhas been certified. In this regard,
for prescribed § > 0, we can also consider the case o . :
results in an upper bound on the fractional volume of

practical instability obtained wherd > 1 — §. While a 77"~ " . )
. . . . violation in parameter space and estimates of the underlying
family of polynomials may be robustly stable in a strict " . L
conditioner. For example wittk = 4, the minimum value

mathematical sense, we adopt the point of view that whe . . : : N
6 is high, the large percentage spread about the midpoiét es(a) is 0.9292 with corresponding estimaté, =~

nd note that finding the minima of these convex functions

of the uncertainty range suggests that the system is liab 99818'

to lose its stability when uncertainty bounds differ inghtIyIeast equal td),, we conclude that this problem is highly

from those assumed in our analysis. : i . . ST
. . ) ... . ill-conditioned. While a classical analysis indicates that
In the remainder of this paper, our first objective is : . .
Fwe system is robustly stable, our point of view, based

to illustrate, via four benchmark examples, the type ) . . . .
' ° © ark-e pies, the tYPe Ohn the extremely highd certification given, is that this

computations involved when the dilation integral metho stem should be viewed as “oractically unstable” It is also

is specialized to the robust stability setting. Our second. . asp aty :

T : . . .Interesting to note that a highvalue will result for levels of

objective is to provide a plausible explanation why certain . :

: uncertainty far below those considered here. For example,

well-known examples from the literature are known to be'. . . o
) o with ¢ = 0.2, it can readily be verified that > 0.95.

notoriously difficult.

Il. ACKERMANN'S TRACK-GUIDED BUS 1. ACKERMANN’S UNSTABLE ENCLAVE

Ackermann’s track-guided bus problem, as given in [5], is We consider the polynomial, given in [6], described by
a benchmark example which includes nonlinear parameter y(s, q) = 3+ (q1 +q2 +1)s*> + (q1 + g2 + 3)s
dependence and has been studied by many authors in the 2
robustness literature. For this system with fifth order plant + (14 "+ 61 + 6g2 + 20102),
and third order compensator, the lightly damped poles of where d > 0 is a parameter which can be viewed
the system make classical robust stability analysis quits part of the given data. The range for the uncertainty
challenging to perform. Our objective in this section is tds 0.3 < ¢; < 2.5 and0 < ¢ < 1.7. With this setup, it is
show that difficulties in robust stability analysis for thiseasy to see that this family of polynomials has an “unstable
example are reflected in the rate of convergencs ¢ zero  enclave” described bfy; —1)2+ (g2 —1)>—d? > 0. That is,
and the closeness of the conditiorfeto one. We consider for g € @, stability is guaranteed if and only if is outside

Based on these results, since the true valu® i at

the characteristic polynomial the circle with radiusl, centered a1, 1). Since the size of
s the unstable enclave can be made arbitrarily small by choice
p(s,q) = Zai(q)si, of d > 0, this example provides a g_ood benchmark against
P which one can demonstrate the efficacy of a formal theory
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aimed at “detection” of the instability. To this end, we VI. CONCLUSION

applied lemmas B and D with ?ncreasingly smaller values | this paper, we used four benchmark problems to
of d > 0. For a first computation we tool = 0.5 and  gemonstrate the efficacy of Lemmas B and D for problems
k = 6 and found the minimum ofg () to bee; ~ 0.5536,  wijth nonlinear parameter dependence. Most notably, in
corresponding to at most 85.36% volume of violation. some of the examples, while the polynomial was robustly
This finding, via lemma D, gives us a lower bound on th&aple in the strict theoretical sense, we deemed it to
underlying conditione > s ~ 0.9061. Therefore, even pe “practically unstable” based on considerations of the
at value as high ast = 0.5, we already deem this system congitioner 6. By way of future research, it would be

ill-conditioned and it is arguable that this system is to bgs interest to investigate efficient computational methods
c_ate_gorized as “practically unstable_". Next, we carried out &nich would enable the integrand in Lemma B to raised
similar analysis for the smaller radii= 0.1 andd = 0.01. {5 higher ¥ powers, while still remaining calculable. It

For the cased = 0.1, we obtainedeg ~ 0.3356 with  would also be of interest to investigate the possibility of

corresponding lower bound > 6 ~ 0.8336, and for the expoiting the structure of the Hurwitz matrix in lessening
cased = 0.01, we obtainedss ~ 0.3294 andfs ~ 0.8310.  the computational burden.

For both of these cases, due to the highvalue, it is
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As a final example, we analyze the robust stability of
a 3x3 interval matrix described byl(q) = Ay + AA(q),

with
-1 0 0 q1 92 Q3
Ay = 0 -1 01; A =]| @ o g
0 0 -1 qr g8 Q9

and the uncertainty boundg;| < 0.21 4+ 0.01% for k =
1,2,...,8,9. Beginning with the characteristic polyno-
mial p(s,q) = det(sI — A(q)), we minimizede(«) for
various values of: and rapidly certified a low volume of
violation. For example, fok = 6, a symbolic computation
yields €} ~ 0.19 x 1073.
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