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Abstract - By decoupling product terms between
the Lyapunov matrix and system matrices, this paper
proposes a parameter-dependent bounded real lemma
(BRL) for continuous-time stochastic systems with
polytopic uncertainties. This new criterion is shown, via
a numerical example, to be much less conservative than
previous result in the quadratic framework. In addition,
the obtained result is further extended to cope with
stochastic systems with time-varying state delay. All of
the improved BRLs are expressed as strict linear matrix
inequality (LMI) conditions, which can be easily tested
by using standard numerical software.

I. Introduction

The concept of quadratic stability [2] has been largely
used in robust control theory, which greatly facilitates
the stability test of uncertain linear systems. However,
the analysis and synthesis based on the quadratic
stability notion have been well recognized to be con-
servative, since it uses a single Lyapunov function
to satisfy certain restrictions for the whole uncertain
domain. Therefore, recently many researchers tried to
use parameter-dependent Lyapunov functions to reduce
the conservativeness of quadratic framework.
A breadthrough toward this direction was made in [3],

where parameter-dependent stability was proposed for
discete-time systems with polytopic uncertainties. This
new stability eliminates product terms between the Lya-
punov matrix and system matrices by the introduction
of an additional slack matrix variable, which enables
us to obtain parameter-dependent stability when used
for polytopic uncertain systems. This idea was further
extended in [4] to cope with analysis and synthesis
problems with H2 and H∞ performances. Subsequent
works of similar idea have also been reported (see, for
instance, [1], [6], [11], [12] and the references therein).
It is worth mentioning that the realization of this
idea is relatively easier for discrete-time systems, but
for continuous-time systems, usually special techniques
have to be employed.
In the present work, we make an attempt to in-

vestigate the parameter-dependent stability issue for
continuous-time systems subject to stochastic pertu-
bation. New linear matrix inequality (LMI) based

bounded real lemma (BRL) is proposed, which also
eliminates product terms between the Lyapunov matrix
and system matrices. This new BRL is shown, via a
numerical example, to be much less conservative than
the result in the quadratic framework. In addition,
the obtained result is further extended to cope with
stochastic systems with time-varying state delay. All
of the improved BRLs are expressed as strict LMI
conditions, which can be easily tested by using standard
numerical software.
The notations used throughout the paper are fairly

standard. The superscript “T” stands for matrix trans-
position; Rn denotes the n-dimensional Euclidean space
and the notation P > 0 means that P is real symmetric
and positive definite; L2[0,∞) is the space of square-
integrable vector functions over [0,∞); the notation | · |
refers to the Euclidean vector norm. In symmetric block
matrices or long matrix expressions, we use an asterisk
(∗) to represent a term that is induced by symmetry.
Matrices, if their dimensions are not explicitly stated,
are assumed to be compatible for algebraic operations.
In addition, E{·} denotes the expectation operator.

II. Main Result

Consider the following stochastic system Sc:

Sc : dx(t) = [Ax(t) +Bω(t)] dt (1)

+ [Mx(t) +Nω(t)] dv(t)

z(t) = Cx(t) +Dω(t)

where x(t) ∈ Rn is the state vector; z(t) ∈ Rp is the
objective signal to be attenuated; ω(t) ∈ Rl is the
disturbance input which belongs to L2[0,∞); and v(t)
is a one-dimensional (1-D) Brownian motion satisfying
E {dv(t)} = 0, E

©
dv(t)2

ª
= dt.

We first introduce the following definitions which will
be essential for our derivation [8].
Definition 1: The stochastic system Sc in (1) with

ω(t) = 0 is said to be mean-square asymptotically stable
if limt→∞ E

n
|x(t)|2

o
= 0 for any initial condition.

Definition 2: Given a scalar γ > 0, the stochastic
system Sc in (1) is said to be mean-square asymptot-
ically stable with an H∞ disturbance attenuation γ if
it is mean-square asymptotically stable and under zero



initial condition, kz(t)kE < γ kω(t)k2 for all nonzero
ω(t) ∈ L2[0,∞), where

kz(t)kE : =

s
E
½Z ∞

0

|x(t)|2
¾

kω(t)k2 : =

sZ ∞
0

|ω(t)|2

Then, the standard BRL for the stochastic system Sc
in (1) can be given as follows [8].
Lemma 1: The stochastic system Sc in (1) is mean-

square asymptotically stable with an H∞ disturbance
attenuation γ if and only if there exists a n× n matrix
P > 0 satisfying⎡⎢⎢⎣

−P 0 PM PN
∗ −I C D
∗ ∗ PA+ATP PB
∗ ∗ ∗ −γ2I

⎤⎥⎥⎦ < 0 (2)

It is worth noting that the condition (2) in Lemma 1
contains product terms between the Lyapunov matrix
P and system matrices (A,B,M,N,C,D). When the
BRL in Lemma 1 is extended to cope with stochastic
system with polytopic uncertainties, that is, the system
matrices (A,B,M,N,C,D) are not exactly known but
reside in a given polytope described by

Ω := (A,B,M,N,C,D) ∈ R (3)

where

R :=
(
Ω(λ)

¯̄̄̄
¯Ω(λ) =

sX
i=1

λiΩi;
sX
i=1

λi = 1,λi ≥ 0
)

and Ωi := (Ai, Bi,Mi, Ni, Ci,Di) denotes the vertices
of the polytope R, we obtain the following corollary.
Corollary 1: The stochastic system Sc in (1) with

polytopic uncertainties (3) is robustly mean-square
asymptotically stable with an H∞ disturbance atten-
uation γ if there exists a n×n matrix P > 0 satisfying
(2) for i = 1, . . . , s, where the matrices A,B,M,N,C,D
are taken with Ai, Bi,Mi, Ni, Ci,Di respectively.
Remark 1: Corollary 1 extend Lemma 1 to polytopic

uncertain case. The polytopic uncertainty described by
(3) has been widely used in the problems of robust
control and filtering for uncertain systems (see, for
instance, [10], [7] and the references therein), and many
practical systems possess parameter uncertainties which
can be either exactly modeled or overbounded by the
polytope R. As can be seen above, due to the product
terms between the Lyapunov matrix P and system
matrices in (2), a BRL in the quadratic framework
is obtained when extending Lemma 1 to polytopic
uncertain case. In this extension, the Lyapunov matrix
P is set to be fixed, which is required to satisfy each
vertex of the polytope R. Following the work [1], [3],
[12], we present an improved version of (2) in the
following theorem.

Theorem 1: The stochastic system Sc in (1) is mean-
square asymptotically stable with an H∞ disturbance
attenuation γ if and only if there exist n× n matrices
P > 0, F,G, V satisfying⎡⎢⎢⎢⎢⎣

P − V − V T 0 V TM
∗ −I C
∗ ∗ FTA+ATF
∗ ∗ ∗
∗ ∗ ∗

0 V TN
0 D

P − FT +ATG FTB
−GT −G GTB
∗ −γ2I

⎤⎥⎥⎥⎥⎦ < 0 (4)

To prove the theorem, we need the following lemma
(see, for instance, [5], [9]).
Lemma 2: Let W = WT ∈ Rn×n, Ψ ∈ Rn×m and

Φ ∈ Rk×n be given matrices, and suppose rank(Ψ) < n,
and rank(Φ) < n. Consider the problem of finding some
matrix G satisfying

W +ΨGΦ+ (ΨGΦ)T < 0 (5)

Then, (5) is solvable for G if and only if

Ψ⊥WΨ⊥T < 0, ΦT⊥WΦT⊥T < 0 (6)
Proof of Theorem 1. First by following similar lines as

in the proof of Theorem 1 in [4], LMI (4) is equivalent
to⎡⎢⎢⎢⎢⎣
−P 0 PM 0 PN
∗ −I C 0 D
∗ ∗ FTA+ATF P − FT +ATG FTB
∗ ∗ ∗ −GT −G GTB
∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎦ < 0
(7)

Rewrite (7) in the form of (5), where

W =

⎡⎢⎢⎢⎢⎣
−P 0 PM 0 PN
0 −I C 0 D

MTP CT 0 P 0
0 0 P 0 0

NTP DT 0 0 −γ2I

⎤⎥⎥⎥⎥⎦ ,Ψ =
⎡⎢⎢⎢⎢⎣

0
0
AT

−I
BT

⎤⎥⎥⎥⎥⎦ ,
Φ =

∙
0 0 I 0 0
0 0 0 I 0

¸
,G =

£
F G

¤
Note that

Ψ⊥ =

⎡⎢⎢⎣
I 0 0 0 0
0 I 0 0 0
0 0 I AT 0
0 0 0 BT I

⎤⎥⎥⎦ , ΦT⊥ =
⎡⎣ I 0 0 0 0
0 I 0 0 0
0 0 0 0 I

⎤⎦
Then, by using Lemma 2, (5) is solvable for G if and
only if (2) holds, then the proof is completed. 2

Remark 2: From the above proof, we can see that
LMI (4) in Theorem 1 is actually equivalent to LMI
(2). The advantage of LMI (4) lies in the fact that
by introducing three additional slack variables F,G, V ,
it eliminates the product terms between the Lyapunov



matrix P and system matrices. This decoupling will
enable us to obtain an improved BRL for stochastic
systems with polytopic uncertainties, yielding the fol-
lowing corollary.
Corollary 2: The stochastic system Sc in (1) with

polytopic uncertainties (3) is robustly mean-square
asymptotically stable with an H∞ disturbance at-
tenuation γ if there exist n × n matrices Pi >
0, F,G, V satisfying (4) for i = 1, . . . , s, where
the matrices P,A,B,M,N,C,D are taken with
Pi, Ai, Bi,Mi,Ni, Ci,Di respectively.
Remark 3: Corollary 2 can be called parameter-

dependent BRL, since it requires different Lyapunov
matrices Pi for each vertex of the polytope R. As is
mentioned above, this idea stems from [3], following
which many results have been proposed for different
systems.
By following similar lines as in the proof of Theo-

rem 1, the improved stability condition for stochastic
systems can be given as follows.
Corollary 3: The following stochastic system

dx(t) = Ax(t)dt+Mx(t)dv(t) (8)

is mean-square asymptotically stable if and only if there
exist n× n matrices P > 0, F,G, V satisfying⎡⎣ P − V − V T V TM 0

∗ FTA+ATF P − FT +ATG
∗ ∗ −GT −G

⎤⎦ < 0
In the following, we will present an illustrative ex-

ample to show the less conservativeness of Corollary 2
than Corollary 1.

Example 1. Consider system Sc in (1) with the
following matrices:

A =

∙
0 1

−1 + g −1− g

¸
, B =

∙
0
1

¸
,

M =

∙
0 0.5 + g
0 0

¸
, N =

∙
0.5− g
0

¸
,

C =
£
1 −2

¤
,D = 0

where g is an uncertain parameter that is known to
reside in the interval

£
−g1 g1

¤
. Our purpose is to

check the H∞ performance of the above uncertain sto-
chastic system. The guaranteed minimum γ∗ obtained
by applying Corollary 2 and Corollary 1 for different g1
are listed in Table 1.

different cases g1 = 0 g1 = 0.4 g1 = 0.6
γ∗ by Corollary 2 3.8845 5.2791 6.4307
γ∗ by Corollary 1 3.8871 8.1355 70.9889

Table 1. Calculation Results of Example 1

The obtained results in Table 1 show that the
parameter-dependent approach (Corollary 2) is much
less conservative than the quadratic approach (Corol-
lary 1).

III. Extension to Time-Delay Case

In this section, we extend the above results to time-
delay case. Consider the following stochastic time-delay
system Sd:

Sd : dx(t) = [Ax(t) +Adx(t− d(t)) +Bω(t)] dt (9)

+ [Mx(t) +Mdx(t− d(t)) +Nω(t)] dv(t)

z(t) = Cx(t) + Cdx(t− d(t)) +Dω(t)

where x(t), z(t), ω(t) and v(t) have the same meanings
and dimensions as in the above section. d(t) is a time-
varying delay satisfying 0 < d(t) ≤ d̄ < ∞, ḋ(t) ≤ τ <
1, where d̄ and τ are real constant scalars.
Then, the following lemma provides a BRL for the

stochastic time-delay system Sd in (9) [13].
Lemma 3: The stochastic time-delay system Sd in

(9) is mean-square asymptotically stable with an H∞
disturbance attenuation γ if there exist n× n matrices
P > 0 and Q > 0 satisfying⎡⎢⎢⎢⎢⎣
−P 0 PM PMd PN
∗ −I C Cd D
∗ ∗ Q+ATP + PA PAd PB
∗ ∗ ∗ −(1− τ)Q 0
∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎦ < 0
(10)

By extending Lemma 3 to stochastic time-delay
system with polytopic uncertainties, that is, the system
matrices (A,Ad, B,M,Md, N,C,Cd,D) are not exactly
known but reside in a given polytope described by

Σ := (A,Ad, B,M,Md, N,C,Cd,D) ∈ Rd (11)

where

Rd :=
(
Σ(λ)

¯̄̄̄
¯Σ(λ) =

sX
i=1

λiΣi;
sX
i=1

λi = 1,λi ≥ 0
)

and Σi := (Ai, Adi, Bi,Mi,Mdi, Ni, Ci, Cdi,Di) denotes
the vertices of the polytope Rd, we obtain the following
Lemma.
Corollary 4: The stochastic time-delay system Sd in

(9) with polytopic uncertainties (11) is robustly mean-
square asymptotically stable with an H∞ disturbance
attenuation γ if there exist n × n matrices P > 0 and
Q > 0 satisfying (10) for i = 1, . . . , s, where the matrices
A,Ad, B,M,Md, N,C,Cd,D are taken with
Ai, Adi, Bi,Mi,Mdi, Ni, Ci, Cdi,Di respectively.
Then, the following theorem presents an improved

version of Lemma 3.
Theorem 2: The stochastic time-delay system Sd in

(9) is mean-square asymptotically stable with an H∞
disturbance attenuation γ if there exist n× n matrices



P > 0, Q > 0, F,G, V satisfying⎡⎢⎢⎢⎢⎢⎢⎣
P − V − V T 0 V TM

∗ −I C
∗ ∗ FTA+ATF +Q
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
0 V TMd V TN
0 Cd D

P − FT +ATG FTAd FTB
−GT −G GTAd GTB
∗ −(1− τ)Q 0
∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0

(12)
Proof. First by following similar lines as in the proof

of Theorem 1 in [4], LMI (12) is equivalent to⎡⎢⎢⎢⎢⎢⎢⎣
−P 0 PM
∗ −I C
∗ ∗ FTA+ATF +Q
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

0 PMd PN
0 Cd D

P − FT +ATG FTAd FTB
−GT −G GTAd GTB
∗ −(1− τ)Q 0
∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎥⎥⎦ < 0

(13)

Rewrite (12) in the following form (5), where

W =

⎡⎢⎢⎢⎢⎢⎢⎣
−P 0 PM 0 PMd PN
0 −I C 0 Cd D

MTP CT Q P 0 0
0 0 P 0 0 0

MT
d P CTd 0 0 −(1− τ)Q 0

NTP DT 0 0 0 −γ2I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎣
0
0
AT

−I
ATd
BT

⎤⎥⎥⎥⎥⎥⎥⎦ , Φ =

∙
0 0 I 0 0 0
0 0 0 I 0 0

¸
,

G =
£
F G

¤
Note that

Ψ⊥ =

⎡⎢⎢⎢⎢⎣
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I AT 0 0
0 0 0 ATd I 0
0 0 0 BT 0 I

⎤⎥⎥⎥⎥⎦ ,

ΦT⊥ =

⎡⎢⎢⎣
I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤⎥⎥⎦
Then, by using Lemma 2, (5) is solvable for G if and
only if (10) holds, then the proof is completed. 2

Then we readily have the following corollary.
Corollary 5: The stochastic time-delay system Sd in

(9) with polytopic uncertainties (11) is robustly mean-
square asymptotically stable with an H∞ disturbance
attenuation γ if there exist n × n matrices Pi > 0,
Qi > 0, F,G, V satisfying (12) for i = 1, . . . , s, where
the matrices P, Q, A, Ad, B, M, Md, N, C, Cd, D are
taken with Pi, Qi, Ai, Adi, Bi, Mi, Mdi, Ni, Ci, Cdi,
Di respectively.

Example 2. Consider system Sd in (9) with the
following matrices:

A =

∙
0 3 + 0.5ρ
−4 −5

¸
, Ad =

∙
−0.1 0
0.2 −0.2 + 0.3σ

¸
,

B =

∙
−0.5
1

¸
, N =

∙
0.5 + 0.2σ

1

¸
,

M = Md =

∙
0.5 0
0 0.5 + 0.2ρ

¸
,

C =
£
1 2

¤
, Cd =

£
0.5 0.3

¤
, D = 1

where ρ and σ are uncertain real parameters satisfying
|ρ| ≤ ρ1, |σ| ≤ σ1. Our purpose is to check the H∞
performance of the above uncertain stochastic system.
The guaranteed minimum γ∗ obtained by applying
Corollary 5 and Corollary 4 for different ρ1 and σ1 are
listed in Table 2.

different cases ρ1 = σ1 = 2 ρ1 = σ1 = 2.5
γ∗ by Corollary 5 6.0669 8.5766
γ∗ by Corollary 4 8.6465 69.1348

Table 2. Calculation Results of Example 2

The obtained results in Table 2 show again that
the parameter-dependent approach (Corollary 5) is
much less conservative than the quadratic approach
(Corollary 4).

IV. Concluding Remarks

This note investigates the parameter-dependent sta-
bility issue for stochastic systems with polytopic uncer-
tainties. By decoupling product terms between the Lya-
punov matrix and system matrices, improved bounded
real lemma is proposed, which is shown, via a numerical
example, to be less conservative than the result in the
quadratic framework. In addition, the obtained result
is further extended to cope with stochastic time-delay
systems. All of the improved BRLs are expressed as
strict LMI conditions, which can be easily tested by
using standard numerical software.
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