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Giuseppe Franzè, Luciano Carotenuto and Pietro Muraca

Abstract— In this paper a new method is proposed for
computing a lower bound to the stability margin of an interval
matrix family, thus providing also a sufficient condition for
stability. The method is based on Gershgorin’s theorem and
on the optimal selection of the eigenvectors of the nominal sys-
tem: the optimization considerably improves previous bounds
reported in literature. The analytical results make the solution
extremely simple. Numerical experiments show that several
problems involving uncertain systems can be solved efficiently
by the proposed method, also in view of the comparisons with
other methods proposed in the literature.

I. INTRODUCTION

Much research has been devoted in the past decades to
the stability of the family of linear systems characterized by
the state space representation: x ∈ Rn, A ∈ Rn×n, q ∈ Rp

σx = A(q)x (1)

In equation (1) σ is an operator indicating the time deriva-
tion d/dt for continuous-time systems or forward unit time
shift for discrete-time systems, and q is a vector of real
uncertain parameters, belonging to a predefined set Q, on
which the entries of A depend. Several hypotheses can be
made on the set Q, as well as on the functional relationship
among the entries aij of A and the parameters. Here we
shall consider the special case of a family of interval
matrices, as defined in [1]:

AI =
{
A | aij = qij , q−ij ≤ qij ≤ q+

ij

}
. (2)

This definition implies that the system is characterized by a
dynamical matrix with entries independent each other, that
may take values in given intervals [q−ij , q+

ij ].
Clearly the definition includes matrices with some fixed
elements, for which q−ij = q+

ij . An alternative representation
of the family AI is obtained by defining

- the nominal matrix A0 with entries a0
ij = (q−ij +q+

ij)/2
- the perturbation matrix δA with entries δaij : |δaij | ≤

∆aij = (q+
ij − q−ij)/2

from which we obtain

AI = {A |A = A0 + δA} . (3)

The non-negative matrix with entries ∆aij will be denoted
by ∆A.
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As usual the set AI is said Hurwitz stable (Schur stable) if
all the eigenvalues of any matrix A ∈ AI have negative real
part (modulus less than unity). For a long time researchers
tried to prove an “extreme point” result which should assert
the equivalence between the stability of the family and
that of all (or some) of vertex matrices. Unfortunately the
claims by Bialas [2] and Jiang [3] that the family AI is
Hurwitz stable (Schur stable respectively) if and only if all
the vertex matrices are so, have been shown to be incorrect.
However in some special cases stability of vertices does
imply stability of the family, as for 2 × 2 matrices [1],
and symmetric matrices [4]. The line of research aiming at
a finitely computable necessary and sufficient condition of
robust stability is still active: for example in [5] the problem
is studied by converting it into the analysis of the robust
non-singularity of a larger auxiliary matrix family.
The lack of simple extreme point results is strictly related
to the fact that the characteristic polynomial of a system
with an interval dynamic matrix has coefficients which are
multilinear in the uncertain parameters. A powerful tool for
the analysis of such polynomials, and hence of the interval
matrix, is provided by the mapping theorem [1],[6]: by its
application in [6] it is shown how to solve the problems:

- is an assigned interval family stable?
- given a nominal stable matrix A0 and possibly weights

∆aij ≥ 0, what is the largest value of ε for which the
interval family

Aε
I =

{
A | a0

ij − ε∆aij ≤ aij ≤ a0
ij + ε∆aij

}
.

is stable?

The key point is to compute numerically the characteristic
polynomials of the vertex matrices and to verify the stability
not only of these polynomials, but also of the polynomials
whose coefficients belong to the segments connecting the
vertices. The stability of segments is verified using the
”Segment Lemma” or the ”Bounded Phase” condition [6].
Although the stability of segment polynomials is not
“finitely computable” in the sense of [5], and is only
sufficient for the stability of the family, the check both of
vertices and of joining segments seems to give a definite
answer to the stability problem of interval matrices. The
very drawback is the exponential dependence of the number
of vertices and segments: letting some entries of A to be
fixed, a number of p ≤ n2 of free parameters imply v = 2p

vertices and s = (v − 1)v/2 = (22p−1 − 2p−1) connecting
segments, although the actual number of segments to check
may be reduced by Karitonov-like expedients. A 3× 3 full
interval matrix has 512 vertices and 130816 segments, a
4×4 one has 65536 vertices and 2, 147, 450, 880 segments.



Several approaches have been proposed to avoid the di-
mensionality curse. Just to give a few examples, in [6]
the Lyapunov theorem is used to estimate the parametric
stability radius in the 2-norm; in [9], starting from sufficient
conditions for the validity of NP-hard semi-infinite systems
of LMIs arising from LMIs with uncertain data, it has been
proved that given an interval matrix Up = {A | |Aij −
A0ij

| ≤ α Cij} one can determine a computable lower
bound on the supremum of α for which all instances of
Up share a common quadratic Lyapunov function; in [7] an
explicit expression of the characteristic polynomial of the
interval family allows one to use Karitonov’s theorem to
state a sufficient condition of stability; in [8] a region that
contains the eigenvalues of all the matrices in the family is
estimated using Gershgorin’s theorem.
In this paper we improve the method proposed in [8], to
get much less conservative estimates of the stability margin
and of the parametric stability radius, using a very simple
algorithm, that does not suffer from increasing dimension
of the parameter space. Extensive numerical experiments
are reported, where our method and the performance of the
resulting algorithm are compared to the results achievable
by the methods and algorithms proposed in [6] (stability
of vertices and segment polynomials, use of Lyapunov
theorem).

II. NOTATION AND USEFUL RESULTS

• Notation: In the complex plane C, the open left plane
is denoted by C−, the open unit disk by D1. Given a
matrix (or vector) X , |X| denotes the matrix (vector)
whose elements are the moduli of the elements of X;
X > 0 (X ≥ 0) means that all elements of X are
positive (nonnegative); if X ∈ Rn×n, sp(X) is the
spectrum of X , λk(X) denotes the k − th eigenvalue
of X.

• Irreducible matrices [10]:

Definition 1 A matrix A ∈ Rn×n is said to be
reducible if either

a) n = 1 and A = 0; or
b) n ≥ 2, there is a permutation matrix P ∈ Cn×n,

and there is some integer 1 ≤ r ≤ n−1 such that

PT AP =
[

B C
0 D

]

where B ∈ Cr×r, D ∈ Cn−r×n−r, C ∈ Cr×n−r,
and 0 ∈ Cn−r×r is a zero matrix.

Definition 2 [10, 6.2.21] A matrix A ∈ Rn×n is said
to be irreducible if it is not reducible.

• Nonnegative matrices [10]:

Theorem 1 [10, 8.4.4] Let A ∈ Rn×n, ρ(A) be the
spectral radius of A and suppose that A is irreducible
and nonnegative. Then

a) ρ(A) > 0;
b) ρ(A) > 0 is an eigenvalue of A;
c) There is a positive vector x such that Ax =

ρ(A)x > 0;
d) ρ(A) > 0 is an algebraically (and hence geomet-

rically) simple eigenvalue of A.

Corollary 1 [10, 8.1.31] Let A ∈ Rn×n and suppose
that A is nonnegative. If A has a positive eigenvector,
then

ρ(A) = max
x>0

min
1≤i≤n

1
xi

n∑
j=1

aijxj

= min
x>0

max
1≤i≤n

1
xi

n∑
j=1

aijxj

(4)

III. PROBLEM STATEMENT AND MAIN RESULT

Let us consider the interval matrix

AI = {A |A = A0 + δA} , with ∆aij ≥ |δaij |, (5)

and assume that A0 is diagonalizable. Let sp(A0) =
{λ1, . . . , λn}, Λ = diag([λ1, . . . , λn]), U = [uij ] a matrix
whose columns are right eigenvectors of A0, V = [vij ] =
U−1 its inverse. Obviously we have:

sp(A) = sp(A0 + δA)
= sp(V (A0 + δA)U)
= sp(V A0U + V δAU)
= sp(Λ + V δAU).

Then for any perturbation matrix the perturbed spectrum is
the same as that of the matrix L = Λ+V δAU. By defining
F = |V |∆A|U |, the result proved in [8] is:

Proposition 1 [8] The eigenvalues of any matrix in the
family AI belong to the union of the disks whose centers

are λk and whose radii are ρr
k =

n∑
j=1

fkj , k = 1, . . . , n (sum

of the rows of F), and also to the union of the disks whose

centers are λk and whose radii are ρc
k =

n∑
j=1

fjk, k =

1, . . . , n (sum of the columns of F).

For the sake of completeness a detailed proof is in the
Appendix. �

We now observe that the matrix U is not uniquely de-
fined: if A0 is diagonalizable and T is a matrix whose
columns are fixed eigenvectors (for instance those with
unit 2-norm), then all matrices of the form U = TH =
Tdiag([h1, . . . , hn−1, hn]), hk �= 0, k = 1, 2, . . . , n, define
a similarity transformation that diagonalizes A0: sp(A) =
sp(Λ + V δAU) = sp(Λ + H−1T−1δATH). The matrix F
whose row-sums and column-sums define the radii of circles
bounding the perturbed spectrum is not uniquely determined



by A0 and ∆A, but depends on n free parameters according
to the formula:

F = H−1|T−1|∆A|T |H
= diag([1/h1, . . . , 1/hn−1, 1/hn])|T−1|∆A

|T |diag([h1, . . . , hn−1, hn]),
hk > 0, k = 1, 2, . . . , n.

Hence, letting F0 = |T−1|∆A|T |, the radii, computed from
rows and columns, become respectively:

ρr
k =

1
hk

(h1f
0
k1 + . . . + hnf0

kn), k = 1, . . . , n, (6)

ρc
k = hk(f0

1k/h1 + . . . + f0
nk/hn), k = 1, . . . , n. (7)

The dependence of the radii on the parameters will be
emphasized by the notation:

ρr
k = ρr

k(h), ρc
k = ρc

k(h).

Since for every choice of h1, . . . , hn Proposition 1 holds,
the result of [8] is improved by the following:

Proposition 2 The eigenvalues of any matrix in the family
AI belong to the set S defined by: S = Sr ∩ Sc,

where

Sx =
⋂

h1>0,...,hn>0

Σx(h1, . . . , hn),

Σx(h1, . . . , hn) =
n⋃
1

Rx
k(h)

Rx
k(h) = {µ ∈ C : |µ − λk| ≤ ρx

k(h)} ,

ρx
k(h) given by equations (6-7), with x=r or x=c

�

Corollary 2 If S ⊂ C−(S ⊂ D1), then AI is Hurwitz (
Schur ) stable.

IV. STABILITY MARGIN AND PARAMETRIC STABILITY

RADIUS

The immediate application of Proposition 2 is to the es-
timation of two parameters related to the robust stability
of an interval matrix family: the stability margin and the
parametric stability radius. Since in the literature the defi-
nitions are not unique, they are here reported with reference
to Hurwitz stability:

- Stability margin of the family AI :

SH = − max
A∈AI

( max
i=1,...,n

(Re(λi(A)))

the opposite of the largest real part of the spectra of
matrices in AI . SH > 0 implies stability of the family.

- Parametric stability radius (weighted and unweighted)
of a stable matrix A0 (corresponding to the parametric
stability margin in l∞ norm of reference [6]):

r∞(A0) = sup {ε|A0 + δA(ε) is stable,
|δA(ε)| ≤ ε∆A}

where ∆aij = 1 if the unweighted radius is concerned.

Let
ak = Re[λk(A0)], k = 1, . . . , n,
Br

H(h) = max
k=1,...,n

[ak + ρr
k(h)],

Bc
H(h) = max

k=1,...,n
[ak + ρc

k(h)],

then a lower bound to the stability margin is given by

B∗ = −min
{

min
h>0

Br
H(h), min

h>0
Bc

H(h)
}

. (8)

The quantity B∗ will be called the optimal Gershgorin-
based lower bound of the stability margin. Its computation
is very simple, although it seems to require the solution of
two min-max problems.
Let us consider the minimization of the bound based on
row-sums Br

H(h). It is required to find the minimum with
respect to h1, . . . , hn, of the maximum of the n functions:

gi(h) = ai + 1
hi

(h1f
0
i1 + . . . hi−1f

0
i,i−1 + hif

0
ii+

hi+1f
0
i,i+1 + . . . + hnf0

in), i = 1, . . . , n.
(9)

Since F0 ≥ 0 h > 0, the solution is strictly related to
the properties of non-negative matrices, recalled in Section
II. Indeed define m = max |ai| and consider the matrix
M = mI +diag([a1 . . . an])+F0. The matrix M is clearly
non-negative and we assume that it is irreducible. Then by
Theorem 1 the eigenvalue of M with largest modulus, say
µ, is real, positive and the associated eigenvector, say x, is
positive; moreover by Corollary 1 we have

µ = max
i=1,...,n


 1

xi

n∑
j=1

xjMij




= min
h>0

max
i=1,...,n


 1

hi

n∑
j=1

hjMij


 .

(10)

The definition of M implies that:

- γ = µ − m is the largest real eigenvalue of G =
diag([a1 . . . an]) + F0;

- x is a positive eigenvector of G, associated to γ;
-

γ = µ − m

= min
h>0

max
i=1,...,n


m + ai + f0

ii +
1
hi

n∑
j=1,j �=i

hjf
0
ij




−m

= min
h>0

max
i=1,...,n

gi(h) = min
h>0

Br
H(h).

The same argument can be applied to the column-sums:
since transposition does not change the eigenvalues the
result is exactly the same: γ = min

h>0
BH(h). Then we

conclude:

Proposition 3 If the non-negative matrix F0 is irreducible
then the optimal Gershgorin-based lower bound of the



stability margin is B∗ = −γ, where γ is the largest real
eigenvalue of G = diag([Re(λ1), . . . , Re(λn)]) + F0.

Remark 1. The assumption of irreducibility of F0 is not
restrictive because this property is generic.
Also a lower bound of the parametric stability radius can
be estimated by applying our approach: let B∗(ε) be the
lower bound of the stability margin of the interval matrix
Aε

I . Since we assume A0 stable, we have B∗(0) > 0 : then
it is obvious to take as estimate of the parametric stability
radius the quantity E∗ = min{ε > 0|B∗(ε) = 0}. Now
B∗(ε) = 0 is equivalent to the largest real eigenvalue of
G(ε) = diag([Re(λ1), . . . , Re(λn)])+εF0 to be zero. Then
E∗ can be characterized as:

E∗ = min{ε > 0|
det(diag([Re(λ1), . . . , Re(λn)]) + εF0) = 0}.

(11)

V. NUMERICAL EXPERIMENTS AND APPLICATIONS

4.1 The first set of numerical experiments aims at assessing
how conservative is the method we propose in those cases
where stability of vertices ensures stability of the interval
family. In the examples only Hurwitz stability will be
considered.
4.1.1 The 2 × 2 matrix tested in reference [8]:

A0 =
[ −3.8 1.6

0.6 −4.2

]
, ∆A =

[
0.3 0.3
0.3 0.3

]
.

The eigenvalues of A0 are -3,-5; the eigenvector matrix with
unit-norm columns is

T =
[

0.894 −0.800
0.447 0.600

]
.

The estimate of the stability margin given in reference [8]
is B = 1.78; the estimate given by the present method is
B∗ = 2.19, obtained by the optimal eigenvector matrix:

U = diag([0.2771 1])Tdiag([3.614 1])

=
[

3.2325 −0.800
1.6162 0.600

]
.

Using the vertices of the interval family, the margin is
computed as SH = 2.377.
4.1.2 Ten thousand random 2 × 2 interval matrices where
generated and their stability was tested either by the exact
vertices analysis and by the Gershgorin method: using
the exact criterion 3130 where found stable, whereas the
Gershgorin method recognized 1737 stable systems. The
computational complexity of the exact method was ob-
viously much larger: the elapsed-time (computed by the
Matlab intrinsic function tic-toc) was 7.51 times longer
using the vertices than the Gershgorin method.
4.1.3 A symmetric 4 × 4 interval matrix is defined by
10 independent parameters, so that 1024 vertices must be
checked for stability. 100 symmetric matrices A0 where
defined, so to have eigenvalues uniformly distributed in the
interval [−10, 0], and each of them was given an uncertainty
δA : |δaij | ≤ 0.1|a0

ij |. By the analysis of vertices 81

matrices were found stable: 69 of these were stable also
by the optimized Gershgorin method, whereas only 32
were estimated stable by the application of the Gershgorin
method without optimization. In this case the difference in
CPU time was dramatic: an elapsed-time 3331 times longer
using the vertices.
4.2 In the following examples the stability margin and the
parametric stability radius, as estimated by the optimal Ger-
shgorin method, are compared with those obtained by the
analysis both of vertices and of segments joining the vertices
along which the bounded phase condition is checked [6].
4.2.1 Let us consider the interval matrix AI = A0 + δA

A0 =


 −0.2975 0.086333 0.0784349

−0.281541 −1.15707 −0.313211
0.0733216 0.275475 −0.37876


 ,

∆A =


 0.05 0.05 0.05

0.05 0.05 0.05
0.05 0.05 0.05


 .

The eigenvalues of A0 are Λ =
{−0.3333,−0.5000,−1.0000}. The stability margin
is estimated as B∗ = 0.04564; an optimal transformation
matrix and the corresponding F = |(U∗)−1|∆A|U∗| are

U∗ =


 −1.0789 0.0337 0.2060

0.3118 −0.4530 0.3477
0.1497 0.1969 −0.9147


 ,

F =


 0.1200 0.0533 0.1144

0.3981 0.1767 0.3795
0.1895 0.0841 0.1807


 .

The estimate of the unweighted parametric stability radius
is E∗ = 0.0556. Extreme points and segment analysis
gave the results: stability margin: SH = 0.2088; parametric
stability radius: r∞(A0) = 0.1339 (note that to verify the
bound on the phase along the 130816 segments it took an
elapsed-time=956.91 seconds, that should be compared to
0.05 seconds of the proposed method).
4.2.2 Let:

A0 =



−1.11121 0.45636 1.71523 0.537766
−1.33367 −3.42213 −1.57421 −0.522113
0.379664 0.853088 −1.49664 1.57577
−1.6426 −1.08442 −1.79332 −4.97002


 ,

∆A =




0.05 0.05 0.05 0.05
0.05 0.25 0.05 0.01
0.03 0.02 0.05 0.05
0.15 0.03 0.25 0.10


 .

The nominal spectrum is sp(A0) = {−2 + i,−2 −
i,−3,−4}. The stability margin is estimated as B∗ =
0.4489; the weighted parametric stability radius is estimated
as E∗ = 1.2410.
In this example it was possible to compute the eigenvalues
of the 65536 vertices, which gave max Re[λ(Avert)] =
−1.7527 with an elapsed-time of 954 sec. Segment analysis
would have required about 180 days.



4.3 The experiments here reported refer to the linear system
studied in example 12.4 of reference [6]:

A =




−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.0100 0.0024 −4.0208
0.1002 p1 −0.7070 p2

0 0 1.0000 0


 ,

B =




0.4422 0.1761
p3 −7.5922

−5.5200 4.4900
0 0


 , C = [0 1 0 0].

For the 3 parameters the nominal values and the ranges
are given: pi = po

i + δpi, |δpi| ≤ ∆pi, i = 1, 2, 3,
po
1 = 0.3681, po

2 = 1.4200, po
3 = 3.5446;∆p1 =

0.05,∆p2 = 0.01,∆p3 = 0.04. The nominal
open-loop system is unstable: sp(A(po)) =
{−2.0727, −0.2325, 0.2758−0.2576i, 0.2758+0.2576i}.
In [6] the system is stabilized by a constant output
feedback K0 = [−1.63522 1.58236]T , which
produces the spectrum sp[A(po) + B(po)K0C] =
{−19.0122, −0.0629, −0.2441 − 1.4177i, −0.2441 +
1.4177i}. Then the authors perform a robustification
procedure, based on robustness analysis via Liapunov
equation, that provides an estimate of the parametric
stability radius in the 2-norm.
The feedback gain thus computed is: K∗ =
[−0.99633989 1.801833665]T which gives the
closed loop spectrum: sp[A(po) + B(po)K∗C] =
{−18.3963, −0.0736, −0.2476 − 1.2501i, −0.2476 +
1.2501i}. We pose the following problems
P1: Assuming ∆p1 = 0.05,∆p2 = 0.01,∆p3 = 0.04, es-

timate the stability margin and the weighted parametric
stability radius.

P2: Assuming ∆p1 = ∆p2 = ∆p3 = ε, estimate the
unweighted parametric stability radius.

P3: Find a feedback gain that improves the robustness of
the closed loop system.

Since there are only three parameters, the computation of
the stability of vertex polynomials and of the connecting
segments can be carried out, and the results are in [6], where
also the results from the Lyapunov method are reported.
Clearly our approach should be compared with Lyapunov
results.
Table 1 summarizes the estimates B∗ and E∗ of the
relevant robustness parameters of the closed-loop system
either with feedback matrix K0 and K∗ : they are much
less conservative than those achievable by the Lyapunov
method of [6]. Moreover, since the evaluation of B∗ and
E∗ is computationally very simple, these parameters can
be used within a criterion for optimizing robustness of
the closed-loop system: the feedback gain K1 is found by
minimizing the function J(K) = −B∗(A0 + B0KC) −
w1E

∗(A0 +B0KC)+w2‖K‖2. The norm of K is used to
”regularize” the function which otherwise would decrease
along a direction. Actually a whole family of optimal
feedback matrices may be generated changing weights in

TABLE I

Feedback gain Stability Margin
of the family ACL(po + δp)

K0 = [−1.63522 0.06246
1.58236]T

K∗ = [−0.99633989 0.07296
1.801833665]T

K1 = [−1.7759765625 0.08233
5.7232421875]T

Feedback gain Parametric stability
radius of ACL(po)

K0 = [−1.63522 0.2128
1.58236]T

K∗ = [−0.99633989 0.2034
1.801833665]T

K1 = [−1.7759765625 0.2532
5.7232421875]T

Feedback gain Weighted parametric
radius of ACL(po)

K0 = [−1.63522 9.63
1.58236]T

K∗ = [−0.99633989 10.05
1.801833665]T

K1 = [−1.7759765625 16.5
5.7232421875]T

the function J , among which the designer may choose. The
resulting closed loop nominal spectrum is

sp[A(po) + B(po)K1C] = {−50.8157, −0.0830,
−0.3010 − 1.1401i, −0.3010 + 1.1401i}.

In this case the method of checking vertices and segments
cannot be used for optimization.

VI. CONCLUSIONS

A simple, but very efficient way to checking stability
and estimating stability margins of an interval matrix fam-
ily has been proposed. The method, based on optimized
Gershgorin’s regions, does not suffer from dimensionality
curse and is less conservative than competing approaches,
such as those using Lyapunov equation. It is an efficient
tool to solve analysis problems in cases where the number
of parameters makes impossible the analysis of vertices and
edges.
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APPENDIX

Proof Proposition 1: By Gershgorin’s theorem the eigenvalues of
Λ + V δAU belong to the set

SδA =
⋃

k=1,...,n

Dk,

Dk =

{
µ ∈ C :

∣∣∣∣∣µ − (λk +
n∑

r=1

n∑
s=1

vkrδarsusk)

∣∣∣∣∣ ≤
n,j �=k∑
j=1

∣∣∣∣∣
n∑

r=1

n∑
s=1

vkrδarsusj

∣∣∣∣∣
}

.

Since ∣∣∣∣∣µ − λk −
n∑

r=1

n∑
s=1

vkrδarsusk

∣∣∣∣∣ ≥
∣∣∣∣∣|µ − λk| −

∣∣∣∣∣
n∑

r=1

n∑
s=1

vkrδarsusk

∣∣∣∣∣
∣∣∣∣∣

each disk Dk is contained in the disk (with center in λk)

Ek = {µ ∈ C : |µ − λk| ≤∣∣∣∣∣
n∑

r=1

n∑
s=1

vkrδarsusk

∣∣∣∣∣+
n,j �=k∑
j=1

∣∣∣∣∣
n∑

r=1

n∑
s=1

vkrδarsusj

∣∣∣∣∣
=

n∑
j=1

∣∣∣∣∣
n∑

r=1

n∑
s=1

vkrδarsusj)

∣∣∣∣∣
}

.

From the inequality

n∑
j=1

∣∣∣∣∣
n∑

r=1

n∑
s=1

vkrδarsusj

∣∣∣∣∣≤
n∑

j=1

(
n∑

r=1

n∑
s=1

|vkr| |δars| |usj |
)

≤
n∑

j=1

(
n∑

r=1

n∑
s=1

|vkr|∆ars |usj |
)

,

it follows that each disk Ek is contained in a disk Rk with the
same center λk and a larger radius

ρr
k =

n∑
j=1

(
n∑

r=1

n∑
s=1

|vkr|∆ars |usj |
)

=
n∑

j=1

fkj .

The same argument can be applied to the columns of Λ+V δAU.
Then the eigenvalues of A0+δA belong to the union of disks with
centers in the eigenvalues of A0 and radii given by the sums of the
elements of the respective rows (or columns) of F = |V |∆A|U |.
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