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A Robust Estimation Algorithm for Printer Modeling *
Mario Rotea and Carlos Lana

Abstract—This paper describes a robust estimation algo- and total least squares [1], is that the models generated
rithm (REA) for estimating the device-specific parameters of with REA tend to be less sensitive to inevitable spatial
the so-called spectral Neugebauer model. This physics-based nqnyniformities and color drifts that arise depending on
model is used to characterize the response of color printers.

The various steps required to use REA are given. A detailed when and where on the pa_per the measurements are tz?lken.
case study, using a high-end color printer, was conducted to On the other hand, REA is more elaborate and requires
evaluate the performance of REA relative to the methods of prior information on the uncertainty associated with the

least squares and total least squares. The main result of the measurements in order to produce models with higher levels
study shows that the model obtained with REA achieves the of robustness.

smallest approximation errors in both spectral and L*a*b*
color spaces. A block diagram of the spectral Neugebauer model is
shown in Fig. 1. The equations associated with each block in
the diagram are given in section Il. The device-specific pa-
Printer calibration plays a central role in print qualityyameters are the four nonlinear mappings referred to as the
assurance. Calibration is necessary to guarantee that a gi‘d%ﬂ-growth functions, and the primary reflectances which
printer will consistently output the correct colors, despitgyre ysed in the so-called Neugebauer equation indicated in
aging and toner variations. Quantitative printer models alifig. 1. REA estimates these parameters by minimizing the
required in most printer calibration methods [1], [2]. Thesgargest worst-case spectral approximation error over a set
guantitative models are then inverted so that the printerss training experiments. For a given experiment, the worst-
digital control values (e.g., cyan, magenta, yellow, angase approximation error is the maximal difference between
black) can be calculated as a function of the desired outpife model output and the set of all reflectances obtained by
color. perturbing the measured reflectance with an unknown but
Approaches for printer modeling can be grouped ihounded perturbation. This bounded perturbation models
two categories: model-based approaches and empirical @easurement errors and modeling uncertainty. In theory, the
interpolation-based approaches. The interpolation-based aRpdel generated by REA is less susceptible to variations in

proaches have the potential of being more accurate if fie data than the models obtained with least-squares and
large enough number of experiments is available [3], [4]. Ifptg|-least squares.

contrast, the model-based approaches take advantage of the ) o

physics behind the process to achieve accuracy, especially' '® Present paper describes the robust estimation algo-
in areas of the color space where experimental data jé"M REA introduced in [8] and [9]. The data and steps
sparse [5], [6], [7], [1]. The model-based approach is théequwed to execute the algorlth_m are _explalned in deta|l_.
preferred approach when, due to cost and time constraintd!€ 'esults of a case study using a high-end xerographic

the number of experiments available for tuning the modé},rmter.are_also prese_nted. A detailed comparison of the
is limited. approximation errors in both spectral space didh*b*

References [8] and [9] have introduced a robust estim&0!0 Space suggests that the models generated with REA
tion algorithm (REA) for estimating the parameters of Putperform the models obtained with the methods of least
physics-based model referred to as the spectral Neugebatigfares and total least squares.
model [10]. This model takes as input the digital control
valuesCMY K, which encode the desired amount color

I. INTRODUCTION

Cyan Dot Growth c Wy
toners to be placed on the paper, and returns the spectrél " Function g W
reflectance of the printed patch. The device-specific param- s
eters of the Neugebauer model are determined from spectrdl Function A . :
measurements of the printed colors. Equations Equation | Output
The fundamental advantage of REA relative to other Function
techniques for parameter estimation, such as least squares :
e .
-unction
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Notation growth functionsC +— ¢,M — m,Y — y, and K — k.

o True (unknown) reflectance For the model to be fully specified the following parameters
7 Model output reflectance must be known:
Fp Model primary reflectance i) the dot growth function® — ¢, M — m,Y — v,
r Measured reflectance and K — k-
re, M, TY, TK Cyan, magenta, yellow, and black single . . . ]
colorant measured reflectances i) the model primary reflectances 1 (1), ..., 7p16(});
C, MY, K Cyan, Magenta, Yellow, and Black digital  iii) the Yule-Nielsen factor..
control values _ Section Ill explains the algorithm proposed in [8] and [9]
c,m,y, k Cyan, magenta, yellow and black nondi-

. for estimating these device-specific parameters.
mensional actual areas

n Yule-Nielsen correction factor lIl. THE ROBUST ESTIMATION ALGORITHM (REA)
w Neugebauer area ) _
A Wavelength The fundamental concept behind REA is the worst-case
o Reflectance error bound approximation error in spectral space, which is defined as
|- Entry-wise absolute value for sequences
|z]|l2 = y/>0r_, @2 ¢2 norm of the sequence = (z1,...,zx) Bvworst = max 17 = 7oll2 ®)

Il. THE NEUGEBAUERPRINTER MODEL In this equation,? = (#(A1),7(A2)...,7(Ax)) is & se-

guence of output reflectances with componetitlsk) cal-
Four-colorant printers may be modeled by the fOHOW'nQ:ulated from (1), in response to a digital control input

spectral Neugebauer equation [11], [10] CMY K. The maximization in (3) is over all reflectances

" r, that satisfy the following inequality
wa}/? (@)
ro(Ae) = 7(Ak) < o(Ak) 4)
where #()\) is the output reflectance predicted by thefor all wavelengths);, k¥ = 1,..., N, wherer()\;) is

model at wavelength\, w; > 0 represents the so-called the measured output reflectance for th&/Y K digital
Neugebauer primary areép;(\) denotes the'® primary control input, ands();) is a given sequence. Essentially,
reflectance, and the numbeis the Yule-Nielsen correction if r,(\;) satisfies (4) then it differs from the measured
factor. reflectancer(\;) by no more thans(\;). The reflectance
For printers using rotated halftone screens, the Neuge; is interpreted as the true, but unknown, reflectance. The
bauer areas; can be modeled with the following equations gitference between, andr is due to the inherent modeling

w = (1-o(1-m)1-y)(1-k) (2a) inaccuracy and the actual measurement errors. The sequence
ws = ol —m)(1—y)(1—Fk) (2b) o(Ag) is a bound on the size of this difference at each
. wavelength. The approximation err@..; in (3) is the

ws = (1-cm(l-y)1—-k) (20) . N
ws = (1—e)(1—my(l— k) 2d) largest difference between the moc_je! output reflectance

* and the set of reflectances that satisfies the error bound
ws = (1=)(1—m){1 —y)k (2€) i the inequality (4). It has been shown in [8] that the worst-
we = em(l-y)(1-k) @) case error may be computed from the simple expression
wr = c(l-—m)y(l—k) (29)
wsg = c(1—m)(1—-y)k (2h) Eorst = [ [P =]+ o, (5)
wy = (1=¢my(l - k) (2i) Ideally, one would like to determine the parame-
wie = (1-c)m(l—y)k (2)  ters of a spectral Neugebauer model that minimize the
wir = (1-¢)(1-m)yk (2k)  largest worst-case approximation errfi,,..; over a set
wiz = cmy(l—k) (2) of experiments that span the entire printer gamut. That
wiz = cm(l—y)k (2m) is, given the P measured reflectance sequenegs =
w14 = C(lfm)yk (2n) (Tj()\l)ﬂ”j()\g)...,Tj()\N)),j:17...,P, then the model
ws = (1—c)myk (20) Parameters are obtained by solving the following optimiza-
wie = cmyk (2p) tion

min lr<njaX 1175 =751+ ol (6)

wherec, m,y andk are the nondimensional areas occupied
by cyan, magenta, yellow and black toner, respectivelyvherer; is the model reflectance computed with (1) and (2).
These nondimensional areas are determined by the digifEthe outer minimization in (6) is over the model parameters,
control valuesC, M,Y and K, which are nondimensional which are: the four dot growth functior — ¢, M +— m,
integers from 0 to 255. Equations (2) are known as th¥ — y, and K — k, the 16 primary reflectance$ 1, ..
Demichel equations [12]. 7p16, and the Yule-Nielsen correction factor

Figure 1 depicts the input-output printer model composed The ideal minimization problem defined in equation (6)
by equation (1), the Demichel equations (2), and the dag non-convex, with local optima that may not be global.
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Reference [9] has given an algorithm to compute a subopti- Initialization: Fix the primary reflectances to the mea-
mal solution to this problem by splitting it into two simpler sured sequences (7). Fix a value for the Yule-Nielsen cor-
problems: the estimation of the dot growth functions andection factom. Compute initial values for th@ samples of
the estimation of the corrected primary reflectances, bothe dot-growth function®' +— ¢, M — m, Y — y, K — k

problems with constant. These problems are simpler be-by calculating the non-dimensional area§ c3,...
cause they do not involve products amongst the optimizationy, m3, . ..

¢
ka, from the

MG YT Yss UG KT kS,

variables. The algorithm introduced in [9] is the so-calledollowing scalar optimization problems,

robust estimation algorithm (REA), which makes use of the

following experimental data. & = amg m[in I 17c.e — re.el + oelly (11a)
cp€l0,1
A. Experimental Data mi = arg Heu[n I [7are — rarel + el (11b)
Primary reflectances: The measured primary re- ‘
flectance sequences are denoted by vi = arg min [1Py,e = ry.el + ol (11c)
rp; = (rpi(A), - 7 (AN)) @) ki = arg min [[|fxe—riel +oell,  (11d)
14 3
where j = 1,...,16, indexes the specific reflectancewhererc y, #ar¢, #y e, andix g, for £ =1,...,Q, are the
and Ay, ..., Ay, are the wavelengths of interest. Thesenodel output reflectance sequencesand, 7/ ¢, ry ¢, and

sixteen output reflectances are obtained in response to gl , are the measured reflectance sequences corresponding

16 possible combinations of digital control input§ M,
Y, K where each control value is either O or 255.
Responses to single colorant input$he measured 1)
output reflectance sequences in response to a set of single
colorant digital control value€’, M, Y, K, are denoted by

ey (rej(M)s- rej(AN)) (8a)
Mo = (TM,J(/\l) TM,J( ~)) (8b)
ryy = (rvi(A1),. TY7J</\N)) (8c)
TRy = (rKaj(Al)W‘WTKJ( N)) (8d)

where the subindexC, M, Y, or K represents the re-
flectance obtained in response to digital control values
of the form (C,0,0,0) (cyan only), (0, M,0,0) (magenta
only), (0,0, Y, 0) (yellow only), or (0,0, 0, K) (black only),
respectively. The subindexis an integer that denotes the
experiment number and it runs frointo Q.

Responses to multicolorant input3o obtain a good
representation of the input color space, colors combining
C, M, Y and K are also included. The measured output
reflectance sequences of these colors are denoted by

ri = (rj(A\),...,7(AN)) 9)

where j ., L, with L denoting the number of
multicolorant experiments.
Error bounds: The error bound sequences are denoted

by

2)

oj = (0j(M),-..,05(An))

where the subindey indicates the reflectance sequence
under consideration; see also equation (4).

(10)

B. The Robust Estimation Algorithm (REA)

The algorithm proposed in [8] and [9] to estimate the dot
growth functions, the corrected primary reflectances and the
Yule-Nielsen correction facton is as follows.

to single colorant inputs defined in (8).
Main step:

Fix the primary reflectances to the current guess. Re-
fine the estimation of the dot-growth functios—

¢, M — m,Y — vy, K — k by calculating the non-
dimensional areasy,c3,...,c5; mi,ms,... ,m_zg;

Y Y5, Y0 k1L kS, ... kg, from the following
scalar minimax optimization problems,

arg min max || |F; —rj| + o 12a
ngE[Ol]jEQ Il 175 il JH2 ( )

my; = arg min max H |75 — 73] + o4, (12b)
mp€l0,1] JEQm

;= — 12¢

Ye arg min max || |75 =ril + o, (12¢)

k; = arg min max |[|7; —r;| + 05, (12d)

ke€[0,1] €2,

where Q.,, Q,,, ©,,, and Q;, denote the sets of
experiments from (8) and (9) with control values
fixed, respectively, aC = Cy, M = M,, Y =Y,
and K = K.

Set the dot-growth functions to the ones computed
in step 1 and computé&y’ samples of the corrected
primary reflectances by solving

,ﬁD,lG] =
arg minmax || |#; — r;| + o], (13)
J
rpi(Ak)] < o(Ax),
k=1,...,N

(s

S.t. |1¢'p,¢(Ak) —
i=1,...,16,

where 7; is the model output reflectance, which
depends on the unknown primary reflectances
7p1,-...,7p16. IN (13),r; is the measured reflectance
corresponding to single or multicolorant responses in
(8) or (9), respectively, and; is the error bound
corresponding to the measured reflectangce

2638



The main step may be iterated to obtain improved paB. Analysis of the models
rameter estimates. Also, both the initialization and the main
step need to be executed for a range of values of the Yule-Nin® models were computed, 3 LS models, 3 TLS
Nielsen correction factor to identify the best one. The M0dels, and 3 REA models. The LS and TLS models were
minimization problems in main steps 1 and 2 can be solveRptained by applying the algorithms in [1] to the three data

using functions from the Matlab Optimization Toolbox [13].S€ts individually. The three REA models were obtained
Further details may be found in [8] and [9]. by applying two iterations of the algorithm described in
section 1lI-B to the three training sets. All the models were

IV. CASE STUDY computed with Yule-Nielsen factor = 7.

, ) i \\orst-case approximation errors over the training sets:
This section describes the performance of several spectigdle istribution of the worst-case errors over the three

Neugebaqer modgls for a hlg_h-end color printer. The mOde{Faining sets were calculated for each model. Specifically,
were obtained using three different methods, the robust g5 oach of the nine models, the worst-case approximation
timation algorithm (REA), the least squares (LS) algorlthr'rérrorS Fuworet Were calculated from equation (5) with the
and the total least squares (TLS) algorithm. The LS and TLafectances in the training set used to estimate the parame-
algorithms are from [1]. For each method, the models werg, s of the model under consideration. Figure 2 shows two
constructed using training data sets with increasing numbgfyicators of the magnitude of the worst-case errors, the
of reflectances. The study has Fwo main objectives: the f'rﬁ;{rgest worst-case error in the distribution (top plot), and
one is to compare the approximation errors of REA, LSye mean value of the distribution. This figure also shows
and TLS, _and_the second One s t(_) investigate _th_e varatiQle standard deviation of the worst-case error distribution.
of approximation errors with the size of the training set. ngiice that the largest worst-case error is exactly the cost
function in equation (6) that REA seeks to minimize.
For this reason, as shown in the top plot, these errors
The three data sets used for parameter estimation are gne minimal with REA for all three training sets. Notice
following. Training set 1: Single colorant reflectances of also that the largest and mean values of the worst-case
the form (8) obtained witlf)=17 digital control values for error distributions increase as experiments are added to the
each input, totaling 68 reflectancé@saining set 2: Training training sets. This is explained, in part, by the fact that
set 1 plus 17 gray reflectances obtained with= M =Y  the training sets are used for evaluation also, which in turn
and K = 0. Training set 3: Training set 2 plus 68 implies that the largest worst-case error will increase as
multicolorant reflectances of the form (9) obtained withexperiments are added. It is interesting to note that the worst
L = 17 values of each single digital control input with case errors (largest and mean values) with REA exhibit the
the remaining digital control inputs set to mid-range. smallest growth rate as experiments in the training set are
In addition, the responses to 16 control values corrégncluded. This result suggests that REA is the least sensitive
sponding to the primary reflectances in equation (7) ammethod to the variations in the training sets. This conclusion
used to initialize the algorithms. is also supported by the standard deviation plots, which
Test set: This data is used for model validation andshow that REA achieves the smallest dispersions regardless
consists of125 control values taken from a homogeneousf the training set.
5x5x5 grid in theCMY color space and converted to the \Worst-case approximation errors over the test séhe
CMY K color space using a standard undercolor removaistribution of the worst-case errofs,.,,s. of each model
algorithm. was also calculated over the test set. This allows to compare
All printed patches were measured at four different spahe worst-case behavior of the models using validation data
tial locations on the charts. Reflectances were measuredveltich was not used for parameter estimation. In this analy-
10nm intervals between 380nm and 730nm using a Gretags, the worst-case error distributions were evaluated using
spectrophotometer model SPM50. The reflectances used the same test data set for all nine models. Figure 3 shows
parameter estimation and model validation were obtainetie largest and mean values, and the standard deviation,
averaging the four measurements available for each contrfl the worst-case error distributions. Notice that the worst-
value. case errors (largest value or mean) tend to decrease as more
The error bound sequences defined in (10) are re- experiments are used to train the models. This behavior,
quired to implement the REA. These sequences have bewhich holds for LS, TLS, and REA, is also intuitive as
estimated considering identical error bounds for all thenore, properly chosen, samples in the training set generally
reflectances; i.e.p; = o for all j. To determine the achieve lower approximation errors in the test set. The
sequences the four measurements available per controlariations across models are not significant. However, REA
input in the training set were used. The mean of eachchieves the best overall result; i.e., the smallest worst-case
four-measurement group was removed from the measuredors (largest or mean value) are obtained with REA and
reflectances and the error bound sequenceas taken to training set 3. Notice also that REA achieves the lowest
be twice the standard deviation of the resulting data. standard deviations also.

A. The Experimental Data
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largest worst-case spectral error largest worst-case spectral error
T T

0.2 T

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3
014 i mean Worst—ca'::,e spectral error i i mean worst-case spectral error :
0.08 | 1
0.15fF 1
01Ff 1
Training set 1 Training set 2 Training set 3 0.08 Training set 1 Training set 2 Training set 3

standard deviation of worst-case spectral error standard deviation of worst—case spectral error
T T

0.025

0.06

0.02 0.05

0.04
0.015
0.03
0.01
0.02

0.005 0.01

Training set 1 Training set 2 Training set 3 Training set 1 Training set 2 Training set 3

Fig. 2. Comparison of the largest value, mean value, and standaRig. 3. Comparison of the largest value, mean value, and standard
deviation of the worst-case error distributions with the training sets usedeviation of the worst-case error distributions with the test set. Black:
for estimation. Black: LS, Gray: TLS, White: REA. LS, Gray: TLS, White: REA.

Approximation errors in L*a*b* color space:Approx- the AE?Y, error distribution from training set 3. The three
imation errors were also computed in tdga*b* color methods exhibit the same trend as additional experiments
spacé using the color difference metrid £, [14]. This are incorporated in the data sets used to train the models.
analysis used two data sets for all the nine models: traifh most cases, the mean approximation error decreases with
ing set 3 and the test set. ThRE”, error distributions the number of experiments used in the training set. The
were generated as follows. For each control value in theéariation amongst the models is not significant. However,
training set 3, 1000 reflectances were randomly geneREA achieves the best overall result when used on training
ated using a normal distribution with mean equal to th&et 3; i.e, the model obtained with REA has the lowest
average reflectance measurement, for that control valuerageAE;, with the lowest standard deviation. It is
and standard deviation equal to/2. A similar process important to remark that REA does not minimize the mean
was used to generate 1000 random reflectances for eaapproximation error inL*a*b* color space; hence, the
control value in the test set. These random reflectanc&EA-based model is not optimal under this measure of
were converted tal*a*b* color space to generate 1000performance. Figure 5 shows the mean and the standard
“L*a*b* measurements” for each particular control inputdeviation of theAE?, error distribution from the test set.
The resulting L*a*b* measurements” were then comparedrhe results are similar to the ones in Fig. 4. The main
with the L*a*b* color output of each modkl using the difference is that the models obtained with REA achieve the
color difference metricAE?,. Hence, for each control lowestaverage approximation errors and standard deviations
value CMY K, there are 1000 values @fE*,, which are for all the cases.
classified into training set 3 and test set, depending on the

: V. CONCLUSIONS
particular control value used. ] . ] -
Figure 4 shows the mean and the standard deviation of A robust algorithm (REA) to estimate the device-specific
parameters of the so-called spectral Neugebauer model was

IReflectances are converted fo"a*b* color space under the ciE described. This algorithm is based on the idea that the most
illuminant D50. robust set of parameters is the one that minimizes the largest
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mean AE* approximation error

mean AE* approximation error
T

Training set 1 Training set 2 Training set 3

3 T T T 3
2.5F 2.5F

2F 2k
15F 15F

i3 1k
0.5F 0.5F

0 =" — — 0

Training set 1 Training set 2 Training set 3
standard deviation of AE* = approximation error

2 T T 2
15F

1k
0.5F

Training set 1 Training set 2 Training set 3

standard deviation of AE* approximation error
T

Training set 1 Training set 2 Training set 3

Fig. 4. Comparison of the mean and standard deviation of the approxrig. 5. Comparison of the mean and standard deviation of the approxi-
mation error distributions ir.*a*b* color space with the training set 3. mation error distributions i *a*b* color space with the test set. Black:
Black: LS, Gray: TLS, White: REA. LS, Gray: TLS, White: REA.

worst-case spectral approximation error over the entire sdf!
of training experiments. This minimization problem is not
convex and hard to solve. REA gives a suboptimal solution
to this problem by splitting it into two simpler subproblems, 6]
the estimation of dot growth functions and the estimation
of the corrected primary reflectances. 7

The results of a case study using a high-end color
printer were given. The analysis of approximation errorsig)
in spectral space showed that REA is capable of producing
distributions of the worst-case approximation error with the 9
smallest values (max and mean), and the least dispersion
(Fig. 2). Hence, the models obtained with REA achieve the
best performance, uniformly over the various training seti.10
Further analysis with test data, not used for parameter es-
timation, showed comparable performance for all the threél]
methods, LS, TLS and REA. However, the model obtaine
with REA and training set 3 showed the best performanges)
amongst all nine models (Fig. 3). This conclusion also holdg4]
true when the models are evaluated in th&*b* color
space (Figs. 4 and 5).

REFERENCES

[1] M. Xia, E. Saber, G. Sharma, and M. Tekalp, “End-to-end color
printer calibration by total least squares regressitlBEE Transac-
tions on Image Processingol. 8, no. 5, pp. 700-716, May 1999.

[2] P. Emmel and R. Hersch, “Colour calibration for colour reproduc-
tion,” in IEEE International Symposium on Circuits and Systems
Geneva, Switzerland, May 2000, pp. V105-V108.

[3] P. C. Hung, “Colorimetric calibration in electronic imaging devices
using a look-up table model and interpolatiorElectronic Imaging
vol. 2, pp. 53-61, January 1993.

[4] J. Hardeberg and F. Schmitt, “Color printer characterization using
a computational geometry approach,”IB&T and SID’s 5th Color
Imaging Conference: Color Science, Systems and Applicati®@®y.

R. Balasubramanian, “The use of spectral regression in modeling
halftone color printers,” ifST/OSA Anual Conference, Optics Imag-
ing in the Information, Age Rochester, N®ctober 1996, pp. 372—
375.

——, “Optimization of the spectral Neugebauer model for printer
characterization,”Electronic Imaging vol. 8, no. 2, pp. 156-166,
April 1999.

R. Rolleston and R. Balasubramanian, “Accuracy of various types of
Neugebauer models,” if8&T and SID’s Color Imaging Conference:
Transforms and Transportability of ColoNov. 1993, pp. 32-37.

C. Lana, M. Rotea, and D. Viassolo, “Characterization of color
printers using robust parameter estimatiodgurnal of Electronic
Imaging, submitted for publicatior2003.

M. Rotea, C. Lana, and D. Viassolo, “Robust estimation algorithm
for spectral Neugebauer models,” Rroceeding of the 42nd IEEE
Conference on Decision and Control, Maui, Hawddec. 2003, pp.
4109-4114.

J. A. S. Viggiano, “Modeling the color of multi-colored halftones,” in
Technical Association of the Graphic Arts (TAGAD9O0, pp. 44-62.
——, “The color of halftone tints,” inTechnical Association of the
Graphic Arts (TAGA) 1985, pp. 647-661.

E. Demichel,In Procedg, vol. 26, pp. 17-21,26-27, 1924.
MathWorks, Optimization Toolbox User’'s Guide, version 22000.
CIE, Colorimetry, 2nd ed., C. Publication, Ed. Central Bureau of
the CIE, Vienna, Austria: CIE Publication no. 15.2, 1986.

2641



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThM01.3
	Page0: 2636
	Page1: 2637
	Page2: 2638
	Page3: 2639
	Page4: 2640
	Page5: 2641


