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Abstract – In this paper, an improved approach to the 
dynamic modeling of a five-link biped and a sliding mode 
control algorithm for motion regulation are developed during 
the double support phase (DSP). By modifying the 
conventional definition of certain physical parameters of the 
biped system, it is shown that the procedure of the derivation 
of the dynamic equations and their final forms are 
significantly simplified. The dynamic model of the five-link 
biped during the DSP is first formulated as the motion of 
robot system under holonomic constraints, and then, the 
horizontal and vertical displacements of the hip and the 
orientation of the trunk are selected as independent 
generalized coordinates to describe the constraint system and 
to eliminate the constraint forces from the equation of motion. 
Based on the presented dynamic formulation, we develop a 
sliding mode controller for biped motion regulation. The 
stability and the robustness of the controller are investigated. 
The control scheme is evaluated by computer simulations. To 
the best of our knowledge, it is the first time that a robust 
sliding mode controller is developed for biped walking during 
the DSP. This work makes it possible to provide robust sliding 
mode control to a full range of biped walking and yield 
dexterity and versatility for performing specific gait patterns. 
 
 

I. INTRODUCTION 
 
    The development of legged locomotion systems has 
recently received increased attention due to their higher 
mobility than conventional wheeled vehicles. A vast 
literature has contributed to biped locomotion on dynamic 
modeling and motion regulation. A general five-link biped 
model has been found in much literature [1-3,9-14] since 
such a model has the advantages that it has sufficiently low 
DOFs to establish the mathematical model yet still has 
enough DOFs to adequately describe the motion. However, 
we noticed that the procedure of the dynamic modeling and 
the detailed forms of the biped model are more complex 
and less structured [1,3,6,9] as compared with those of 
robot manipulators. In addition, most related papers 
concentrated on dynamic modeling and control of biped 
walking with only a single support phase (SSP) [1,2]. A 
double support phase (DSP) is often neglected or assumed 
to be instantaneous [3-5]. Motion of a biped robot with the 
DSP has the advantages in that it is more convenient to 
realize the stable motion and can fulfill more tasks than 
that only walking with the SSP. However, dynamic 
modeling of biped walking during the DSP is more 
challenging due to the involvement of the constraints and 

the constraint forces. Thus, an improved approach to the 
dynamic modeling for the five-link biped is needed. 
    In addition, it is difficult to control biped walking with 
the DSP. One difficulty lies in the involvement of the 
constraints in the highly nonlinear biped dynamic system. 
Motion of a biped robot during the DSP can be described 
as the motion of dynamic system under holonomic 
constraints with the condition that the contact points 
between the feet and the ground are fixed. Constraints 
introduce two difficulties in the solution of mechanical 
problems. One is that the coordinates are no longer 
independent. Another difficulty is that the constraint forces 
are not provided a prior but they are among the unknowns 
of the system which must be obtained from the solution we 
seek. As a result, controlling such constraint systems 
becomes challenging due to the complexity of the 
dynamics. Many published papers were found in the 
discussion of the control algorithms for constraint systems 
with low DOFs only [6-8]. 
     Mitobe et al. [9] discussed the motion of a 4-DOF biped 
robot during the DSP and applied the computed torque 
control algorithm in the system. In their work, the position 
of center of gravity of the trunk were formulated as the 
reduced space independent generalized coordinates, and the 
control problem was defined as a trajectory tracking 
problem which the body of the biped was controlled to 
track a desired trajectory. In their controller, the desired 
constraint forces were designed as control input for 
controlling the constraint forces. 
    Sonoda et al. [10] introduced an approach to a 4-DOF 
biped control utilized redundancy in the DSP. They 
considered the biped robot during the DSP as a redundant 
manipulator, and set a general acceleration reference 
formulation to each joint given by a function with a null 
space vector (performance function), which decided robot’s 
configuration. By choosing the performance function of the 
null space input in compliance with the aim of desired task, 
control of various configurations of the robot can be 
realized. The advantage of this strategy is that once the 
performance function for the desired task was applied to 
the designed reference formula, the configuration control 
can be realized. However, it is not always feasible to 
formulate performance functions for practical tasks. 
    Another difficulty to control biped walking is the 
inaccuracy of the parameters involved in the biped model.  
Sliding mode control as one of the most often used robust 
control techniques has been applied in biped walking with 



only the SSP [1,11], to remove the effect of poor 
performance due to modeling uncertainties. Chang and 
Hurmuzlu [11] has developed a sliding mode control law 
without reaching phase and applied it to a 5-link biped 
during the SSP. Tzafestas et al. [1] developed a robust 
sliding mode controller applied to a 5-link biped during the 
SSP and compared it to computed torque control. They 
both [1,11] proved that sliding mode control has good 
performance and is insensitive to parameter variations. 
However, it is more difficult when applying sliding mode 
control to a biped with the DSP than that of the SSP and no 
literature has been found on sliding mode control to the 
DSP. One of the reasons is that the angular displacements 
as the control variables are not independent. Another 
reason may be the complexity due to the constraint forces 
involved in such high-DOF nonlinear system together with 
the system parametric uncertainties.  
    In this paper, an improved approach to the dynamic 
modeling of a 5-link biped system is proposed and a sliding 
mode control algorithm is developed for biped motion 
regulation during the DSP, provided that the boundaries of 
the system uncertainties are known. In dynamic modeling, 
by modifying the conventional definition of certain 
physical parameters of the biped system, the procedure of 
the derivation of the dynamic equations and their final 
forms are significantly simplified. The dynamic model of 
the five-link biped during the DSP is first formulated as 
motion of robot system under holonomic constraints, and 
the hip position and the trunk orientation are then selected 
as independent generalized coordinates to describe the 
constraint system and to eliminate the constraint forces 
from the equation of motion. Based on the presented 
dynamic formulation, the sliding mode control algorithm is 
developed to this model with the desired joint angle 
profiles taken from [12]. The stability and the robustness of 
the controller in the DSP are analysed in this paper. 
Simulations are carried out to demonstrate the effectiveness 
of the control algorithm. 
 
 

II. MODELING OF BIPED DURING THE DSP 
 
    In this part, the dynamic model of five-link biped 
walking during the DSP is presented. The biped structure is 
taken from Hurmuzlu’s work [13] which has five links—a 
torso and two identical lower limbs with each limb having 
a thigh and a shank. Also the biped has two pelves at the 
hip, two knees between the thighs and the shanks, and two 
ankles at the tips of the two limbs. There is an actuator 
located at each joint and all of the joints are considered 
only rotating in the sagittal plane and friction free. We 
assume massless feet in the model. Although we neglect 
the dynamics of the feet, we assume that the biped can 
apply torques at the ankles. For the DSP, an actuator torque 
is applied at the leading ankle. The rear ankle does not 
possess a torque but can rotate by the effect of gravity. 
Figure 1 depicts a schematic representation of this biped 
model.  

    In this paper, our kinematic model of the biped system is 
different from those found in previous literature in that the 
biped system is considered as a successive open loop of 
kinematic chain from the supporting point to the free ends. 
The value of di indicating the location of the mass centre of 
each link i is measured as the distance between the mass 
centre of link i to joint i (which is the joint of each link i 
connecting to the previous link i-1, refer to figure 1), and θi 
is also denoted as the angle of each link i with respect to 
the vertical axis through joint i counter clockwise. While in 
previous literature on dynamic modeling of bipedal 
walking [1,3,14], di and θi have been both defined at its 
lower joint. Using our denotation, the dynamic models can 
be derived more conveniently and the final forms of the 
dynamic equations are significantly simplified as 
comparing with the above mentioned published works 
(refer to Appendix). Consequently, this modified kinematic 
model has greatly improved the efficiency of the derivation 
procedure and also made the computational programming 
much easier and less prone to mistakes.    
    In the DSP, since the contact position between the tips of 
the limbs and the ground is fixed, there exists a set of 
holonomic constraint equations:  
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    The dynamic model of a biped during the DSP can be 
expressed by: 
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where θ , θ& , θ&& , T 5R∈  denote the generalized 
coordinates, velocities, accelerations and torques, 
respectively. )(θD 55×∈ R  represents the positive definite 

and symmetric inertia matrix, ),( θθ &H 55×∈ R  represents 

the centrifugal-Coriolis matrix, )(θG  5R∈  represents the 
gravity effects. λ is a 2×1 vector of Lagrange multipliers, 

and 52×∈ RJ  is the Jacobian matrix: 
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simplification, we denote )(),( θθθθ GH +=Η &&  hereafter. 
The detailed forms of D, H, G can be found in (A1-A3) in 
Appendix. The conciseness of these forms in (A1-A3) 
show the advantages of our modified kinematic model by 
comparison with other works [1,3,9]. 
    According to Goldstein [15], for a dynamic system under 
holonomic constraints, it is possible to introduce a set of 
independent generalized coordinates to formulate the 
dynamic equations which can describe the constraint 
system without using the terms of constraint forces. Mitobe 
et al. [9] introduced the coordinates of the point at the 
bottom of the trunk as the generalized coordinates for their 
4-DOF biped DSP model. For our 5 link biped model, the 
motion of the system in the DSP can be fully described by 
the hip and trunk motion and the set of independent 



generalized coordinates should be chosen in 3R . Here we 
select the hip position and the trunk orientation as the 
independent generalized coordinates, 

13×∈ Rp : ( )T
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where ( )hh yx ,  is the hip coordinate. The transformation 
from (θi) set to (pj) set can be written as 
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    Furthermore, in order to use the independent coordinates 
to establish the dynamic model, we need to transform the 
(pj) set to (θi) set. Firstly, by differentiating (3) twice with 
respect to time, yields  

θ= && Rp     (4) 

θ+θ= &&&&&& RRp    (5) 

where 53×∈
θ∂

∂
= RpR . Moreover, in order to apply the 

constraint conditions in the dynamic derivation, (1) is 
differentiated twice with respect to time, to yield 
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0)()( =θθ+θθ=Φ &&&&&& JJ   (7) 
Combining (4), (5) and (6), (7), we have 
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is invertible. Since we have transformed the (pj) set to (θi) 
set, we can rewrite the dynamic equation with (pj) instead 
of (θi). Combining (8)-(9) and (2a), we have 
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which can be symbolically written as 
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Note that 2cS  is an invertible matrix. Thus, (11) can be 
expressed as 
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    The difference between (12) and (2) is that in (12b) the 
constraint forces are separated from the second order 
derivatives of the state vector. Thus they can be first solved 
from (12b) and then substituted into (12a), equation (12) 
becomes  
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    Equation (13) will be used for a sliding mode controller 
design in next section. 
 
 

III. SLIDING MODE CONTROLLER DESIGN 
 
    In (13), we have derived the dynamic equations for 
biped DSP without the constraint forces. This was under 
the assumption that the constraints, shown in (1), is always 
satisfied, i.e., both feet of the biped maintain firm contact 
on the ground without slipping and lifting during the DSP. 
However, this condition is not guaranteed a prior, because 
the nature of the contact depends on the constraint forces, 
which in turn vary depending on the motion of the biped 
robot [9]. Thus, in some work dealing with constrained 
systems [7-9], force/motion control algorithm is employed 
such that the constraint forces are maintained by force 
control and the constrained system keeps its prescribed 
motion with motion control. In this case, desired 
trajectories of both forces and motion need to be designed. 
Our control objective in this work is to provide stable 
motion for the biped robot during the DSP as far as the 
constraints are not violated when tracking some desired 
trajectories. Equation (13) is thus used for controlling the 
five-link biped during the DSP in this section. Conditions 
for satisfying the contact constraints will also be 
determined. 
    For the system described by (13), a sliding mode control 
algorithm can be developed to track the desired motion, 
maintain the constraint conditions and eliminate the effect 
of system parametric uncertainties. First, the following 
assumptions are made before establishing the control law: 

1) The bounds of the parameter uncertainties of the 
biped system are known.  

2) The state space variables are available for 
measurement. 

    ‘The parameters with uncertainties’ are those physical 
parameters of the biped system, including m, l, I and d. We 
use the symbols iϕ  as each physical parameters (m, l, I, d), 
Ei×100% (0≤ Ei<1) as their uncertainties in the upper 
bounds, iii E ϕ+=ϕ )1(ˆ  as the corresponding estimated 
value of each parameter. Also, we use the symbol Mi as the 
matrices (D, H, G, J, etc) in (2), then, the estimated 
matrices are obtained by: 
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    In our second order differential system described by 
(13), a time-varying sliding surface S is defined as 
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where Λ is a 3×3 diagonal matrix of  positive gains, e and 
e&  are the vectors of tracking errors.  
    By introducing the PD controller 
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Η+−= −− ˆˆˆˆˆ pBCuCT &   (16) 
the sliding mode controller is designed as 

( ) 5...2,1,ˆ)sgn(ˆˆ 3

1

5

1
=

















σ+η−= ∑ ∑

= =

− iCsCTT
j k

kkjkjijii  

(17) 
where 3R∈η  represents the system uncertainty bounds; 

1)ˆˆ(ˆˆ −− = TT CCCC  represents the pseudo-inverse matrix of 

Ĉ   as Ĉ  is not square.  
    In general, control law (17) is associated with a 
chattering problem due to the discontinuous switching 
function sgn(s) in the controller. It is undesirable in 
practice and should be eliminated. Slotine and Sastry [16] 
suggested a solution to this problem by replacing sgn(s) 
with a saturation function in a thin boundary layer 
neighboring the switching surface. Once the system 
trajectories enter the boundary layer, they will remain 
inside. Cai and Song [17] further discussed the control law 
by using a hyperbolic function tanh(s) which has the 
advantage of being smooth and it is adapted to our work: 
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where α∈R3 and σ∈R5 are constant vectors. 
   The constants of the entries in α can be determined by a 
sliding condition analysis through its necessary criteria for 
convergence. The quadratic Lyapunov function is 
considered as 02

1 >= ssV T , and the derivative of V along 
the solution trajectory of (13) is given by 
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here ( )[ ] ijij CCabs ˆˆ =  denotes a 3×5 matrix, each entry 

being the absolute value of that of matrix Ĉ . 
    For the parameter uncertainties less than 100%, we have 
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    When the width of the boundary layer εi is selected, αi 
can be chosen according to (21).  
 
 

IV. SIMULATION RESULTS 
 
    In this section, the five-link biped walking in the saggital 
plane is simulated to demonstrate the effectiveness of the 
control algorithm. The physical parameters of the biped 
model used in our simulation can be found in Table 1. The 
reference trajectory is taken from [12] with the average 
walking speed=1m/s, step length=0.68m, SSP time 
period=0.6s; DSP time period=0.1s. System parameter 
uncertainties are introduced as inertia terms within 40%, 
dimensions within 10%. Figure 2 shows the tracking errors 
of the horizontal and the vertical displacements at the hip 
and the angular displacement of the trunk. Figure 3 shows 
the actuate torques for the joints of one step in the DSP. 
Figure 4 shows the constraint forces between both tips and 
the ground. These results show that the control objective is 
achieved successfully in both ensuring the robustness 
against parameter uncertainties and guaranteeing the 
tracking accuracy. In addition, the constraint conditions are 
satisfied provided that the friction coefficient between the 
biped lower limb tips and the ground is greater than 0.4, 
which is not an overly restricted condition. Figure 5 shows 
the stick diagram of the biped walking for one full step. It 
shows that a stable gait can be produced by the proposed 
controller. 
 

Table 1. Parameters of the biped robot 
Link mi (kg) Ii (kgm2) li (m) di (m) 
Torso 14.79 3.30×10-2 0.486 0.282 
Thigh 5.28 3.30×10-2 0.302 0.236 
Leg 2.23 3.30×10-2 0.332 0.189 

 
 

V. CONCLUSIONS 
 
    An approach to modeling and control of five-link biped 
walking with the DSP has been presented in this paper. By 
modifying the conventional definition of certain physical 
parameters of the biped system, the procedure of the 
derivation of the dynamic equations and the final forms of 
the equations are significantly simplified. It has greatly 
improved the efficiency of the derivation procedure and 
also made the programming much easier and is less prone 
to mistakes. The biped DSP model is formulated as motion 
of robot system under holonomic constraints and the hip 



and trunk motion is selected as a set of independent 
generalized coordinates to describe such a biped system. 
Based on the dynamic model and proposed trajectory [12], 
a control algorithm is developed to track the biped hip and 
trunk motion without force control and thus the control 
design is simplified by avoiding a separate force control 
law. The sliding mode controller is designed for the system 
in the presence of parameter uncertainties. To eliminate the 
chattering problem during the implementation of sliding 
mode control, the continuous control law is used to 
approximate the discontinuous controller. The simulation 
results show that in spite of the presence of system 
parameter uncertainties, the controller has a good 
performance in tracking reference signals. The results also 
show that the constraint condition can be satisfied with a 
moderate friction coefficient of contact surface. The control 
algorithm which allows the actuator joint torques to track 
Cartesian coordinates by introducing a non-squared 
transformation matrix has the potential to allow people 
having the freedom to distribute the joint torques, 
especially when some specific bounds for certain joint 
torques are imposed. The significance of this paper is to 
form a solid basis for the studies of a full range of motion 
planning and control of bipedal walking. 
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APPENDIX: the detailed forms of (1) 
 
    The detailed forms of )(θD , ),( θθ &H , )(θG  in (1) are 
presented below: 

[ ] )cos( jiijij pDD θ−θ==   (A1) 

[ ] jjiijij pHH θθ−θ== &)sin(   (A2) 

[ ] iii gGG θ== sin    (A3) 

where i, j=1,2…5, ijp and ig are inertial terms defined as 
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where ai=0 when i=3, and ai=1 when i=1,2,4,5. The 
concise form of (A1-A3) shows the great improvement of 
the dynamic modeling for the biped system as compared 
with previous works [1,3,9].  
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Figure 1 Biped model of DSP 
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Figure 2 Tracking errors of the hip and trunk during DSP 
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Figure 3 Actuator joint torques during DSP 
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Figure 4 Constraint forces during DSP 
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Figure 5 Stick diagram of the biped walking 
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