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Abstract– This paper combines block control, slid-
ing mode control and integral control techniques to
design a controller, which is able to force an electro-
hydraulic actuator driven by a servovalve to track a
given chaotic reference trajectory. This approach en-
ables to compensate the inherent nonlinearities of the
actuator and to reject external constant disturbances.
A friction model incorporating Karnopp’s stick-slip
model and the Stribeck effect is used for the plant
model. Simulations illustrate the approach applica-
bility.
Keywords– Electro-Hydraulic actuators, Servo-

Valves, Block Control Technique, Sliding Mode Con-
trol, Integral Control.

I. Introduction

Nowadays electro-hydraulic actuators are very im-
portant tools for industrial processes. This is mainly
due to their fast response and great power supply
capacity with respect to their mass or their volume.
These features are not easily matched for any other
commercial technology used today in actuators con-
struction. However, the control of electro-hydraulic
systems can be a difficult problem since their dynam-
ics are highly nonlinear. Therefore, the investigation
of the position or force control for electro-hydraulic
actuators should be of great interest from both aca-
demic and industrial perspectives. This paper is mo-
tivated by coffee harvest automation, where in order
to shake the tree branches, electro-hydraulic actua-
tors would be very useful. In particular, to produce a
broad band spectrum shaking action is very attrac-
tive. Hence the motivation is two folds: academic
and technological.
Many different control techniques have been used

to control position or force for a hydraulic actua-
tor driven by a servovalve, including traditional PID
controllers [1] and [2] , recursive Lyapunov designs
[3],controllers based on adaptive neural networks [4],
and controllers based on quantitative feedback the-
ory (QFT) [5]. On the other hand, a fruitful and
relatively simple approach, especially when dealing
with nonlinear plants subjected to perturbations,
is based on the use of Variable Structure Control
(VSC) technique with sliding mode [7]. Note that a

sliding mode controller was proposed in [6] to con-
trol the electro-hydraulic actuator force; considering
a relative degree equal to two.
In this paper, we consider position tracking with

respect to a prescribed chaotic trajectory. The plant
model is governed by a nonlinear system, which in-
cludes the dynamics of an external cylinder load (a
spring and a damper in parallel), a friction model
and an approximation of the servovalve dynamics.
This plant model, although being a greatly simpli-
fied representation of the actual system, captures
the key component of the real dynamics; the rela-
tive degree in this case is equal to four. Based on
this nonlinear plant model which can be presented
in the Nonlinear Block Controllable form, and us-
ing the combination of the VSC and block control
[8] techniques, we design a robust controller to drive
the position tracking error to zero. To design this
controller, we assume that the system state vector is
completely measurable. An integral control element
is also introduced in order to reject an unknown con-
stant disturbance. In order to test the applicability
of the approach, simulation results are shown at the
end of the paper.
The paper is organized as follows. Section 2 re-

views the detailed 4-th order state space model of
the hydraulic cylinder. In Section 3 the block con-
trol technique is applied to design a nonlinear sliding
surface in such a way that the sliding mode dynamics
is represented by a linear system with desired eigen-
values. For a given bound on the control signal, a
discontinuous control strategy ensuring stability of
the sliding mode is proposed. Section 4 presents
simulation results. Finally, relevant conclusions are
stated in section 5.

II. Mathematical Model

The mathematical model which describes the dy-
namic behaviour of the electro-hydraulic actuator
consider the dynamics of the hydraulic actuator
which is disturbed by an external load (modeled as
a spring and a damper element in parallel attached



to the piston), and the dynamics of the servovalve.

For the space state formulation this model can
be separated as the mechanical subsystem, the hy-
draulic subsystem, and the servovalve subsystem.

A. Mechanical Subsystem

The differential equations governing the mechan-
ical dynamics, namely the dynamics of the piston
with a load (see Fig.1) can be derived using the New-
ton’s equation,

Fig. 1. piston with load

ma =
X

fi = −ksxp − bdvp + ΛaPL − Fr (1)

where xp is the piston position, and vp = dx
dt is the

piston velocity, a is the acceleration of the piston,P
fi represents the forces acting on the system, PL

is the load pressure, Fr is the internal friction of
the cylinder, m is the actuator mass, ks is the load
spring stiffness, bd is the load viscous damping, and
Λa is the piston area. Defining the state variables as
x1 = xp, x2 = vp, and x3 = PL, and adding to (1)
a constant unknown force M as a disturbance, we
obtain the state space model as

ẋ1 = x2 (2)

ẋ2 =
1

m
(−ksx1 − bdx2 + Λax3 − Fr −M) (3)

A.1 Friction Model

The used friction model (Fr) is a static one [3]. A
typical velocity-friction plot of such friction model
is shown in Fig. 2. This friction model includes
Karnopp’s stick-slip friction [11] and the Stribeck
effect [12]. Regarding Karnopp’s friction , there are
two key points:

(1) A stick phase occurs when velocity is within a
small critical velocity range, and

(2) there is a maximum value for friction when the
mass under consideration sticks.

From this figure, it is possible to see that friction
becomes a constant for high speed.
This function was programed in a Simulink Mat-

lab table function to be used for the plant model.

B. Hydraulic Subsystem

The dynamics of the cylinder are derived in [10] for
a symmetric actuator. Defining the load pressure as
the pressure across the actuator piston, its derivative
is given by the total load flow through the actuator
divided by the fluid capacitance:

Vt
4βe

ṖL = −Λaẋp − CtmPL +QL (4)

where Vt is the total actuator volume, βe is the
effective bulk modulus, Ctm is the coefficient of to-
tal leakage due to pressure and QL is the turbulent
hydraulic fluid flow through an orifice. The relation-
ship between the valve spool displacement xv, and
the load flow QL, is given as

QL = Cdwxv

s
Ps− sgn(xv)PL

ρ
(5)

where Cd is the valve discharge coefficient, w is the
valve spool area gradient, Ps is the supply pressure,
and ρ is hydraulic fluid density. The spool area gra-
dient for a cylindrical spool can be approximated
simply as the circumference of the valve at each port.
Combining (4) and (5), we obtain the load pressure
state equation as

ṖL =
4βe
Vt

(−Λavp − CtmPL

+Cdwxv

s
Ps− sgn(xv)PL

ρ

!
or

ẋ3 = −αx2 − βx3 + γxv
p
Ps− sgn(xv)x3 (6)



with the following constant parameters:

α = (4Λaβe/Vt)

β = (4Ctmβe/Vt)

γ = (4Cdwβe/Vt)
p
1/ρ

Examining briefly the phisical system of an hy-
draulic actuator, it can be readily seen that term
in the square root in (6) can not take negative val-
ues because load pressure can not be larger than
the supply one. However in practice, the termp
Ps− sgn(xv)x3 could be seldom zero when the

system is operating smoothly, due to the noise in
the x3 measurement. This implementation problem
could be easly solved via software.

C. Servovalve Subsystem

Frequency response analysis of a servo valve dy-
namics was measured with an HP Digital Signal An-
alyzer in [9]. There, it was established that a second
order linear model could match well for the mea-
sured frequency response. The model was found to
be:

2.4315× 105
s2 + 6.2529× 102s+ 2.5676× 105. (7)

This model can be approximated by a first order
model, namely, 1/(τs+ 1),

xv(s)

u(s)
= Ka

1/τ

s+ (1/τ)

where τ = 1/573 sec−1 is the time constant, Ka > 0.
Defining x4 = xv, the dynamics of the servovalve
subsystem can be approximated as

ẋ4 = −1
τ
x4 +

Ka
τ
u (8)

where u is the input current to the servovalve.
Then using (2), (3), (6) and (8), we obtain the

plant model as

ẋ1 = x2 (9)

ẋ2 =
1

m
(−ksx1 − bdx2 + Λax3 − Fr −M)

ẋ3 = −αx2 − βx3 + (γ
p
Ps− sgn(x4)x3)x4

ẋ4 = −1
τ
x4 +

Ka
τ
u.

III. Controller Design

The electro-hydraulic actuator model (9) can be
presented as the Nonlinear Block Controllable form
(NBC-form) consisting of four blocks see [13].

ẋ1 = f1(x1) + b1(x1)x2 + d1(x1)w(t) (10)

ẋi = fi(x1, ..., xi) + bi(x1, ..., xi, )xi+1

+di(x1, ..., xi)w(t) (11)

ẋ4 = f4(x) + b4(x)u+ d4(x)w(t).

with i = 2, 3 and with output

y = h(x) = x1

where x = (x1, ..., x4)T .
For our system we have
f1(·) = 0, f2(·) = 1

m(−ksx1 − bdx2), f3(·) =
−αx2 − βx3, f4(·) = − 1

τ x4, b1(·) = 1, b2(·) = Λa
m ,

b3(·) = γ
p
Ps− sgn(x4)x3 , b4(·) = Ka

τ , d1(·) =
0, d2(·) = 1

m(−Fr −M), d3(·) = 0, d4(·) = 0.
The specific feature of this form, namely

bi(·) 6= 0, i = 1, ..., 4, ∀x ∈ R4. (12)

allows to design a nonlinear sliding surface for a dis-
continuous control, using the block control feedback
linearization technique [8]. As can be easily seen,
the electro-hydraulic actuator fulfills condition (12).
Due to space limitations the generic methodology
given in [8] is not included.
Following this technique, first we define the posi-

tion tracking error as a new variable z1

z1 = x1 − r (13)

where r is a reference signal. Then we introduce the
new variable z2 as

z2 = x2 − ṙ (14)

Taking the derivative of (13) and (14), the first
two transformed blocks of (10) can be represented
in terms of the new variables z1 and z2 as

ż1 = z2 (15)

ż2 = −a21z1 − a22z2 + b̄2x3 + d̄2(t) + w (16)

where a21 =
ks
m , a22 =

bd
m , b̄2 =

Λa
m , d̄2(t) =

−ksm r(t)− bd
m ṙ(t)− r̈(t), w = M

m .

Remark 1: For this transformation, the friction
term Fr affecting ẋ2 is neglected.
To reject the constant disturbance w in (16), we

introduce an integral block as

ż0 = z1 (17)

with new variable z0. Now we select the quasi control
x3 for (16) as

x3 = −b̄−12 (k0z0 + k1z1 + k2z2 − z3)− b̄−12 d̄2(t)
(18)

where the gains k0, k1 and k2 are chosen such that
the matrix As of the closed-loop system (15),(16)



and (17)with (18) ż0
ż1
ż2

 = As

 z0
z1
z2

+Bsz3 +Ws.

As =

 0 1 0
0 0 1
−k0 − (a21 + k1) − (a22 + k2)


Bs =

 0
0
1

 , Ws =

 0
0
w


is Hurwitz.
The new variable ż3 can be obtained from (18) as

z3 = b̄2x3 + k0z0 + k1z1 + k2z2 + d̄2(t)

and then the differential equation for this variable
takes the form

ż3 = f̄3(z) + b̄3(x)x4 + d̄3(t) (19)

where z = (z1, ..., z4)T , and

f̄3(z) = −z0(−βk0)− z1(−βk1 − k0
+k2(as21 + k1))

−z2(a23α− βk2 − k1 + k2(a22 + k2))
−z3(β − k2)

b̄3(x) = b̄2b3(x) = b̄2γ
p
Ps− sgn(x4)x3,

d̄3(t) = −a21βr − b̄2αṙ − a22βṙ − a21ṙ
−βr̈ − a22r̈ − ...r .

To eliminate f̄3(z) and the known disturbance
d̄3(t) terms in (19), we choose the quasi control x4
as

x4 = −b̄−13 (x)[f̄3(z) + d̄3(t)] + b̄−13 (x)(−k3z3 + z4)
(20)

where z4 is the new variable, and k3 > 0. Substi-
tuting (20) in (19) results in the following linearized
equation:

ż3 = −k3z3 + z4.

From (20), we obtain the new variable z4 as

z4 = f̄3(z) + k3z3 + d̄3(t) + b̄3(x)x4 (21)

Using this expression, we select the sliding variable
s, wish takes the value of z+4 or z−4 depending of
x4 > 0, or x4 < 0, respectively, that is

s =

½
z+4 if x4 > 0
z−4 if x4 < 0

¾
(22)

where

z+4 = f̄3(z) + k3z3 + d̄3(t) + b̄
+
3 (x)x4

if x4 > 0, b̄+3 (z) = b̄2γ
p
Ps− x3(z)

z−
0

4 = f̄3(z) + k3z3 + d̄3(t) + b̄
−
3 (x)x4

if x4 < 0, b̄−3 (z) = b̄2γ
p
Ps+ x3(z)

and x3(z) = −b̄−12 (k0z0+k1z1+k2z2−z3)−b̄−12 d̄2(t).
Taking the derivative of s (21) results in

ṡ =

if x4 > 0
f̄4(z) + b̄

+
4 (z)u+ d̄4(t)

with b̄+4 (z) =
γb̄2Ka

τ

p
Ps− x3(z)

if x4 < 0
f̄4(z) + b̄

−
4 (z)u+ d̄4(t)

with b̄−4 (z) =
γb̄2Ka

τ

p
Ps+ x3(z)

(23)

where f̄4(z) and d̄4(t) =
d(d̄3(t))
dt are bounded func-

tions.
Then the discontinuous control law is defined as

u =

(
−k4

¡
b̄+4 (z)

¢−1
sign(z+4 ) if x4 > 0

−k4
¡
b̄−4 (z)

¢−1
sign(z−4 ) if x4 < 0

(24)

To analyze the stability of the closed-loop system
(23) and (24), we first consider x4 > 0, and a Lya-
punov function candidate [14] such as,

V + =
1

2
(z+4 )

2

Then,

V̇ + = z+4 [f̄4(z)− k4sign(z+4 ) + d̄4(t)]
≤ − ¯̄z+4 ¯̄ (k4 − ¯̄f̄4(z) + d̄4(t)¯̄)

For x4 < 0, we have

V − =
1

2
(z−4 )

2

and

V̇ − = z−4 [f̄4(z)− k4sign(z−4 ) + d̄4(t)]
≤ − ¯̄z−4 ¯̄ (k4 − ¯̄f̄4(z) + d̄4(t)¯̄)

Hence, under the following condition for the con-
stant k4:

k4 >
¯̄
f̄4(z) + d̄4(t)

¯̄
. (25)

the state vector of the closed-loop system reach
the sliding surface z4 = 0 in a finite time. Since
f̄4(z) and d̄4(t) are bounded functions, it is posible
to find such a constant.



The sliding mode motion is governed by the fol-
lowing linear system .

ż0 = z1 (26)

ż1 = −z2
ż2 = −k0z0 − (a21 + k1) z1 − (a22 + k2) z2 + z3
ż3 = −k3z3

It is easy to see that are k0, k1, k2 and k3 such that
the matrix


0 1 0 0
0 0 −1 0
−k0 − (as21 − k1) − (as22 + k2) 1
0 0 0 −k3



is Hurwitz, and in the steady state we have z1 = 0,
as well z2 = 0, z3 = 0 and z0 = M

k0
.

That means that the output (position) will track
the reference and the integral control variable will
reject the constant disturbance M acting in the ve-
locity state, as described in (9). Indeed, this result
stablish, under condition (25), that asymptotic sta-
bility for the tracking error is achieved.

IV. Simulation results

Even if for the control law design, we use a fourth
order model (9), in order to simulate the closed loop,
we consider a servovalve model as a second order
transfer function (7). Hence, the plant state space is
given as:

ẋ1 = x2 (27)

ẋ2 =
1

m
(−ksx1 − bdx2 + Λax3 − Fr −M)

ẋ3 = −αx2 − βx3 + (γ
p
Ps− sgn(x4)x3)x4

ẋ4 = x5

ẋ5 = −cnx4 − bnx5 + anu

where an, bn.and cn must be suitable constants to
be in agreement with (7).

The values of the parameters used for simulations
are

Plant Parameters and Controller Parameters

m 24kg desired eig. -27,-31,-1

ks 1610 N/m k0 837

bd 310N/(m/s) k1 1.76e3

Ps 1.03e07pa k2 72.0833

Λa 3.26e-4m2 k3 100

α 1.51e10N/m3 kr -96000000

β 1(1/s) τ .0017

γ 7.28e8kg0.5/m1.5s2 ka .947

M 300N
an 2.4315e5

bn 6.2529e2

cn 2.5676e5

The Chen chaotic attractor [15] is used to generate
the reference trajectory. This system is given by

ẋ = a(y − x) (28)

ẏ = (c− a)x− xz + cy
ż = xy − bz

with a = 35, b = 3, c = 28
The states x, y, z of (28) are multiplied for a suit-

able constant (.002) in order to fulfill the actuator
amplitude limits.
Simulations results are presented in Fig.3, Fig.4,

and Fig.5. As can be seen, tracking is achieved sat-
isfactorily, using any of the three states of (28) as
the reference.

Fig. 3 - x tracking

Fig. 4 - y tracking



Fig. 5 z tracking

V. Conclusions

A robust controller was designed which is capable
to force the electro-hydraulic actuator to track ap-
proximately desired chaotic position reference tra-
jectories. This capability difference our approach
from existing ones, which do not track a so-complex
trajectory. This controller was developed on the ba-
sis of sliding modes and block control methodologies.
The controller also reject constant disturbances by
means of integral control. Note that a similar design
could be done for force tracking.
Research is being pursued in order to extend

the presented approach for considering disturbances,
which do not fulfill the matched condition, and to in-
clude estimation, by nonlinear observers, for the case
of no measured states.
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