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Decentralized control with input saturation'

Ali Saberi 2

Abstract—In decentralized control it is known that the
system can be stabilized only if the so-called fixed modes are all
stable. If we have input constraints then (semi-)global stability
requires all poles to be in the closed left half plane. This
paper establishes that these two requirements are necessary
and sufficient for stabilizability of a decentralized system with
input saturation.

I. INTRODUCTION

Nonclassical information and control structure are two
essential and distinguishing characteristics of large-scale
systems. The research on decentralized control was formally
initiated by Wang and Davison in their seminal paper [1]
in 1973, and has been the subject of intense study during
the 70’s and 80’s. Most recently there has been a renewed
interest in decentralized control because of its fundamental
role in the problem of coordinating the motion of multiple
autonomous agents which by itself has attracted significant
attention. Coordinating the motion of autonomous agents
has many engineering applications besides having links to
problems in biology, social behavior, statistical physics, and
computer graphics. The engineering applications include
unmanned aerial vehicles (UAVs), autonomous underwater
vehicles (AUVs) and automated highway systems (AHS).
A fundamental concept in the study of stabilization using
decentralized feedback controllers is that of fixed modes.
These are the poles of the system which cannot be shifted
just using any type of decentralized linear time-invariant
controllers. The idea of fixed modes was introduced by
Wang and Davison [1] who also show that decentralized
stabilization is possible if and only if the fixed modes are
stable. More definitive results are obtained by Corfmat and
Morse [2] who present necessary and sufficient conditions
under which spectrum assignment is possible in terms of the
remnant polynomial of complementary subsystems. Since
fixed modes constitute such an important concept in decen-
tralized control, their characterization and determination has
been the subject of many papers in the literature.

The majority of existing research in decentralized con-
trol makes a critical assumption that the interconnections
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between the subsystems of a given system are unknown but
have known bounds. In this regard, tools borrowed from
robust control theory and Lyapunov theory are used for
the purpose of either synthesis or analysis of decentralized
controllers [3]-[5]. For the case when the interconnections
between the subsystems are known, the existing research
is very sparse. In fact, in any case, beyond the decen-
tralized stabilization, no results are yet available dealing
with the fundamental control issues such as exact or almost
disturbance decoupling, control for various performance
objectives etc.

From a different perspective, input saturation in any
control scheme is a common phenomenon. Every physically
conceivable actuator has bounds on its output. Valves can
only be operated between fully open and fully closed states,
pumps and compressors have a finite throughput capacity
and tanks can only hold a certain volume. Ignoring such
saturation effects in any control system design can be
detrimental to the stability and performance of controlled
systems. A classical example for the detrimental effect
of neglecting actuator constraints is the Chernobyl unit
4 nuclear power plant disaster in 1986 [6]. During the
last decade and the present one, there has been an intense
research activity in the area of control of linear plants with
saturating actuators. Such intense research activity has been
chronicled in special issues of journals and edited books
(e.g. for recent literature, see [7] or [8]). Fundamental fuel
behind such a research activity has been to accentuate the
industrial and thus the practical engineering relevance of
modern control theory. In this regard, the primary focus of
the research activity has been to take into account a priori
the presence of saturation nonlinearities in any control
system analysis and design. A number of control issues
have been considered so far including internal, external,
or internal plus external stabilization and output regulation
among others. Although not all aspects of these issues have
been completely resolved, it is fair to say that a good under-
standing of these issues exists at present. However, issues
related to performance, robustness etc., are very poorly
understood and still remain as challenging and complex
problems for future research.

Having been involved deeply in the past with research
on linear systems subject to constraints on its input and
state variables, we are now ready to open up a new front
line of research in decentralized control by bringing into
picture the constraints of actuators. The focus of this paper
is to determine the necessary and sufficient conditions
for decentralized stabilization of linear systems subject to
constraints on actuators. Obviously, this is related to the
seminal work of Wang and Davison [1] but goes beyond it
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by bringing into picture the input constraints on the top of
decentralized constraint.
II. PROBLEM FORMULATION

Consider the following system:

v
X =Ax+ZBiG(ui)
i=1
i=1,...,v)

T ey
yi = Cix

where o denotes the standard saturation element with the

property that, for any vector u of arbitrary dimension, o (1)

is a vector of the same dimension as u such that for any

positive integer j less than or equal to the dimension of u

we have

1 if 1 < @);,

W; if —1<@);<I

—1 it (u); <—1,

(au)j =

where (ou); denotes the j’th component of o (1) and (u);
denotes the j’th component of u.
We are looking for v nonlinear controllers of the form

% { zi = fizi,yi), zi €R¥

u; = hi(z;i, yi) @

with f; and h; continuously differentiable.

III. MAIN RESULT

The important concept of decentralized fixed modes was
introduced by Wang and Davison in [1] and is instrumental
in the analysis of the problems in this paper.

Definition III.1 Consider a system of the form (1). A is
called a decentralized fixed mode of the system if for all
matrices K1, ..., K, we have that A is an eigenvalue of

v
A+ Z BiK;C;.
i=1

After the introduction of this concept, there has been
quite some research on interpretations of this concept. The
crucial step in understanding fixed modes was its connection
to complementary systems as introduced by Corfmat and
Morse in the paper [2]. The paper [9] by Anderson and
Clements used the ideas of Corfmat and Morse to yield the
following characterization of fixed modes

Lemma III.2 Consider the system (1). We define

C

Cy

Then A is a decentralized fixed mode if and only if at least
one of the following three conditions is satisfied:

o A is an uncontrollable eigenvalue of (A, B)
o A is an unobservable eigenvalue of (C, A)

o There exists a partition of the integers {1, 2, ..., v} into
two disjoint sets {iy,...,i,} and {ji,..., jy—m} for
which we have

AM—A By, --- B,
Ck.j, o ... 0

rank . . ) . <n.
Ckjoy O - 0

Basically decentralized fixed modes are therefore com-
mon blocking zeros of a complementary system which are
both unobservable and uncontrollable for this complemen-
tary system. For a detailed investigation of blocking zeros
we refer to the paper [10]. Other attempts to characterize
decentralized fixed modes can be found in for instance
[11]-[13]. It is important to stress one important factor:
fixed modes in decentralized control are derived only for
linear systems. It is known that for time-varying linear
or nonlinear controllers only a subset of the fixed modes
are truly fixed modes in the sense that no decentralized
controller can change these modes. For nonlinear, time-
invariant controllers it is not known what can be achieved.

Using this concept of decentralized fixed modes, we will
establish in this paper the following characterization of
semi-global stabilizability of decentralized linear systems
with input saturation:

Theorem II1.3 Consider the system ¥ given by (1). There
exists nonnegative integers si, . .., s, such that for all com-
pact sets W and 8; C R% (i = 1,...v) there exist v
controllers of the form (2) such that the origin of the resulting
closed loop system is locally exponentially stable and the
domain of attraction includes W x &1 x --- x &, if and only
if

o All fixed modes are in the open left half plane,

o All eigenvalues of A are in the closed left half plane.

IV. PROOF OF THEOREM III.3

A. Necessity

We will first show that the conditions of Theorem II1.3
are necessary. Assume that we have a family of controllers
satisfying the conditions of Theorem III.3. Local exponen-
tial stability implies that the linearization of our controllers
must achieve local asymptotic stability when applied to the
system (1). Clearly locally the saturation elements in (1) do
not play a role and hence we have a linear decentralized
controller asymptotically stabilizing a linear system. Let
these controllers be of the form:

5. { zi = Kizi + Liyi, zi € R¥
" ui = Mizi + Niyie

Then, we define
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Ki 0 - 0 Ly 0 - 0
K = 0 K> L= 0 Lo ’
' 0 o 0
O 0 KU O * 0 Ll)
My 0 - 0 N 0 - 0
M= 0 M N = 0 M
B 0 ; 0
O O Ml) 0 O Nl)

For any A with ReA > 0 there exists a § such that
(A+68)I — K is invertible and the closed loop system when
replacing K by K — 81 is still asymptotically stable. But
then the linearization of the closed loop system cannot have
a pole in A which implies that we must have

det (u _A-B [M(M —(K—sI)7'L + N] c) £ 0.
But then the block diagonal matrix
S=MGI - (K -8D)"'L+N
has the property that
det(A\l — A — BSC) #0,

and hence A is not a fixed mode of the system. Since this
argument is valid for any A in the closed right half plane
this implies that all fixed modes must be in the open left
half plane.

Next assume that A is an eigenvalue of A in the open
right half plane with corresponding left eigenvector p, i.e.
p’'A = Ap. Then we have

%p/x(t) = Ap'x (1) + v(r)

and there exists an M > 0 such that
v
v(t) = Z p’ B satu;(t)
i=1

has the property that ||v(¢)|| < M for all ¢+ > 0. But then

M M
"y (¢ At "¢ (0)| —
Ipx(®)] > e (|Px( )| —Re/\>+—Re/\

which doesnot converge to zero provided the initial condi-
tion is such that

M
/
0 —_—.
lPxO) > g

Note that this is valid for all controllers and therefore clearly
we cannot achieve semi-global stability.

B. Sufficiency

The next step is to prove sufficiency of the conditions
in Theorem III.3. For this conference version of the paper
we will only establish sufficiency for the case that all
the eigenvalues of A are on the imaginary axis and have
multiplicity 1. For this case we will exploit the following
lemma which follows directly from classical results of
eigenvalues and eigenvectors and the results of perturbations
of the matrix on those eigenvalues and eigenvectors (see for
instance [14], [15]).

Lemma IV.1 . Let A € R™*" be a matrix with all eigenval-
ues in the closed left-half plane and with r eigenvalues on the
imaginary axis with all of them having multiplicity 1. Then
there exists a matrix P > O such that A’P + PA < 0 and the
rank of A’P + PA equalsn —r.

Consider a family of perturbations A, parameterized in &
with A, — 0 as e | 0 and such that A + A, still has all
eigenvalues in the closed left-half plane.

Then for ¢ small enough there exists a matrix P such
that (A + Ag)P + P(A 4+ Ag) < 0 and the rank of
(A+A.) P+P(A+A,) equals the number of asymptotically
stable eigenvalues of A + A;. Finally, P, — P ase | O.

We will present recursively an algorithm which at each
step applies a preliminary feedback which stabilizes at least
one eigenvalue on the imaginary axis while preserving the
stability of the system and such that the magnitude of
each preliminary feedback is guaranteed never to exceed
1/n. Therefore, after at most n steps the combination of
these preliminary feedbacks will asymptotically stabilize the
system without ever violating the magnitude constraints of
each of the inputs.

We first initialize our algorithm at step 0. Since the
eigenvalues on the imaginary axis all have multiplicity 1,
we know that there exists a matrix P > O such that

A'P+PA<O0

such that
rank(A’P + PA)

equals the number of asymptotically stable eigenvalues of
A. We define

Po:={xeR" | x'Px <c}

with ¢ > 0 such that W C £y. Note that 5 is an invariant
set of the differential equation x = Ax in the sense that
x(0) € Py implies that x(¢) € Py for all t > 0. Define Ag =
A,By; = B; and Cp; = C; (i = 0,...,v). Moreover,
X0 = X.

Consider, the system after k steps. Let A be an eigenvalue
on the imaginary axis of A;. We know that preliminary
feedbacks do not change the fixed modes and therefore,
since A was not a fixed mode of the original system, it is
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not a fixed mode of the system obtained after k preliminary
feedbacks either. Hence there exists a K; such that

%
Ap + Z ByiKiCy,i
i=1

has no eigenvalue in A. Hence

v
Ae = Ax + ¢ Z By i K Cy,i
i=1
has no eigenvalue in A for almost all ¢ > 0 (the determinant
of LI — A, is a polynomial in & which is nonzero for ¢ = 1
and hence has a finite number of zeros). Choose & small
enough such that K; = ¢K; has the property that

%
Ap + Z By i KiCp,i
i=1

has no eigenvalue in A, and

1
Ki —
[Kix| < o

for all x with x’' Prx < ¢ + 2n. Let j be the largest integer
such that

v
A=A+ Z ByiKiCri
i=1
has the same number of eigenvalues on the imaginary axis
as A. Then )
(A, Bj+1,Cjt1)

has a stabilizable and detectable eigenvalue on the imagi-
nary axis. Choose V such that

VV'=1 and kerV = (kerCy jt+1 | A).

We choose the following preliminary feedback
v
p =Asp+ ZVBk,iui + K(Cr,j+1V'p—yj+1)
i=1
ujr1 = Fsp+vjq

with p € R® and where Ay is such that A,V = V A while K
is chosen such that A;+K Cy_j+1V' is asymptotically stable
and for all § the matrix A+ B FsV has at least one eigenvalue
less on the imaginary axis and still has all eigenvalues in the
closed left half plane and F5 — 0 as § | 0. Rewriting the
resulting system in a new basis consisting of x and p — Vx
results in

v
. _ (A+BjFsV 0 o
X1 = ( 0 AL KCj+1)xk+1 + ZBk+l,zuz

i=1

i=1,...,v)

for suitably chosen By, and Ciy1,; where

Xkl = xk
=1, vy )

Note that after applying the preliminary feedback, we
renamed vjy1 as uy1. Strictly speaking not correct but

Vi = Ckt1,iXk+1

it eases the notation. Choosing any compact set §; € R,
there exists a matrix R; > 0 such that

(A+ KCi j+1) Ri + Ri(A+ KC j1+1) <0

and such that for all x; € $#; and for all p € § we have
that

Xkl € {x e R” |x/([())k ng>x <c+k}.

A+ Bjy1FsV is a perturbation of A which has at least
one eigenvalue less on the imaginary axis and still has all
eigenvalues in the closed left half plane. But then for §
small there exists a matrix Ps by Lemma IV.1 such that

(A+ Bj41FsV)Ps+ Ps(A+ Bj41FsV) <0
while
rank [(A + Bj41FsV)' Ps+ Ps(A+ Bj 11 FsV)]| =n—r

with r the number of eigenvalues on the imaginary axis of
A+ Bj1FsV. Define

(P50
Pk+1—<0 Rk)-

Choose a § small enough such that the resulting Py
guarantees that

x,/(+1Pk+1xk+1 <c+2n—k-—1

implies
X Pexg <c+2n —k.

Moreover |
Fsx|| < —
| Fsx| < o

for all x satifying x| Pcy1Xk+1 < ¢ 4 2n. Finally
Prarex eR" | X' Pey1x <c+k+1}

is such that x; € $ and p € 4§ implies that xyy1 € Pry1.

Next set k = k + 1 and stop if Ax4; is asymptotically
stable. Otherwise repeat the above to remove a further
imaginary axis eigenvalue.

But then after the final step we have an asymptically
stable system with an invariant set 41 such that for all
initial conditions of the original system in $ and all initial
conditions of the preliminary feedbacks in the sets 4; we
have that the state is in $¢+1 and each preliminary feedback
is such that the magnitude of the input is no larger than 1/n.
Hence all these preliminary feedbacks together will never
cause a constraint violation. This concludes the proof.

V. CONCLUSION

Decentralized control is an important problem in many
applications. The same is true for input saturation. This
is one of the first papers which looks at the intricacies
of the link between saturation and decentralized control.
Clearly, there are still many open problems to be resolved.
Stabilization is a first step but the aim is obviously to
come to a design methodology for decentralized controllers
subject to saturation.
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